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Abstract

Contour is an important cue for object recognition. In
this paper, built upon the concept of torque in image space,
we propose a new contour-related feature to detect and de-
scribe local contour information in images. There are t-
wo components for our proposed feature: One is a con-
tour patch detector for detecting image patches with inter-
esting information of object contour, which we call the Max-
imal/Minimal Torque Patch (MTP) detector. The other is a
contour patch descriptor for characterizing a contour patch
by sampling the torque values, which we call the Multi-scale
Torque (MST) descriptor. Experiments for object recogni-
tion on the Caltech-101 dataset showed that the proposed
contour feature outperforms other contour-related features
and is on a par with many other types of features. When
combing our descriptor with the complementary SIFT de-
scriptor, impressive recognition results are observed.

1. Introduction
While many recent object recognition studies have been

based on interest point detectors and descriptors (e.g., [1, 6,
8, 11, 12, 18, 19, 20]) tuned to texture-based features, some
other powerful cues have not been sufficiently explored yet,
and one of them is the cue of contour. Contours consist of
curve or edge fragments, which present some meaningful
geometric concepts. Contour features can effectively rep-
resent objects that can be clearly defined by shape (e.g., a
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bottle or an LED monitor). It is clear that humans do rec-
ognize a wide range of objects based on their 2D outlines
alone. Thus, contour features should play an important role
in object recognition.

The contour-based approach is not as popular as the
texture-based approach because of the complexity of de-
tecting extended contours. A promising alternative ap-
proach is to use contour patches (fragments of contour) (e.g.
[4, 10, 13, 16, 17]). There are three key components to con-
tour patch based approaches: the patch detector that aims
to find useful contour patches, the local descriptor that en-
codes the spatial distribution of edgels on the fragments into
local features, and the contour representation of the overal-
l contour or shape based on the spatial distribution of the
local features. In the existing approaches, often the detec-
tion of contour patches is limited to fairly clean curves (e.g.
[15]) that are sensitive to clutters. Some approaches detect
simple elements like circles (e.g. [9]), whose discriminative
power is weak, or represent shapes by the spatial distribu-
tion of local features and as a result, the stage of recogni-
tion becomes very complex (e.g. Hough like accumulators
are involved in recognition in [16, 17]) with limited appli-
cations. This inspires us to develop a new contour-based
detector with a trade-off between repeatability and discrim-
ination and a feature descriptor, which provides very dis-
criminative information of contours yet has a simple vector
form to be easily used for recognition.

In this paper, we present a new contour-based feature
based on the concept of torque. Torque, also called moment
of force, is a physical concept that measures the tenden-
cy of an object to rotate around its axis. The torque mea-
surement captures properties of the local shape structure of
contours in a patch. A patch detector locates patches of
largest/smallest torque value in a joint image-and-scale s-
pace. We call it the Maximal/Minimal Torque Patch (MTP)
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detector. The detected contour patches are then represented
by a descriptor, which samples torque values in the neigh-
borhood of the patch. It encodes the local variances of the
contour fragments inside the patch. We call it the Multi-
scale Torque (MST) descriptor.

The proposed contour feature was used for object recog-
nition and tested on the Caltech-101 dataset. The experi-
ments showed, using the contour cue as the only feature, our
proposed method noticeably outperformed other contour-
related features, and performed on a par with many exist-
ing methods using other types of cues. Combining it with
SIFT, the resulting contour feature noticeably improved the
classification performance of the SIFT-based approach.

1.1. Related work

There is an abundant literature on object recognition
and classification. In the paradigm of current approaches,
features are first extracted from images, and then these
features are integrated for recognition. The methods differ
in the choice of local features and the choice of integration.
Since this paper focuses on the development of local image
features, we only give a brief review on the integration of
local features, which is followed by a more detailed review
on image features.

Integrating extracted features for recognition. Early
works simply matched individual local features to a feature
pool collected from many known objects, e.g., Lowe [12]
used this technique originally on the well-known SIFT
feature. In recent years, the so-called bag-of-features
(BoF) representation (e.g. [11, 19, 18]) has emerged as
a powerful approach for integrating local features. The
basic idea of BoF is to represent an image as a histogram
with respect to a codebook built from the local features
of known images. There are many variations of the BoF
approach. Lazebnik et al. [11] proposed the so-called
spatial pyramid matching (SPM) technique, in which
an image is partitioned into increasingly finer spatial
sub-regions and histograms of local features are computed
from each sub-region. The SPM technique can effectively
avoid the loss of spatial information in the BoF approach.
To code an image more efficiently than in the simple vector
quantization (VQ) scheme, Yang et al. [19] proposed
an alternative soft and nonlinear coding scheme which
balances reconstruction accuracy and sparsity of coding.
Wang et al. [18] introduced a more general constraint
regarding the locality of codes and developed the so-called
locality-constraint local coding (LLC) scheme. Impressive
recognition results have been reported in [18] using SIFT
features. In this paper, we also adopt the LLC scheme for
integrating our proposed features for recognition.

Image features for object recognition. The SIFT feature
by Lowe [12] and its variations have been the most pop-

ular image features. SIFT captures the local structure of
edge orientations in the neighborhood of an interesting im-
age point, and has many attractive properties, including sig-
nificant discriminative power and robustness to many types
of environmental changes.

While SIFT is a texture feature, there also have been
approaches using contour as the main cue for recognition.
Belongie et al. [14] proposed the so-called shape context
descriptor, that encodes the distribution of edgels in a his-
togram in log-polar coordinate system, and used it on seg-
mented objects of simple shape. For recognizing objects in
real scene, Jurie and Schmid [9] proposed a scale-invariant
feature detector locating patches of local maximal saliency
measured by the local convexity estimated from the energy
and entropy of edgels. Then patches are described by the
spatial distribution of points in a thin annular neighborhood
of the circle. Fergus et al. [4] defined fragments of curve
segments bounded by the bi-tangent points and used them
in the constellation model for object retrieval. The descrip-
tor is created by using a probabilistic likelihood term. The
fragments used in these two methods either include only a
few types of shapes or are not sufficiently dense.

An alternative is learning-based approach. Kumar et
al. [10] proposed to learn contour fragments from video
sequences in a Bayesian pictorial structure model and ar-
ranged them for the recognition of deformable objects.
Shotton et al. [17] proposed to learn a fragment detector
from random rectangles sampled from training segmenta-
tion masks. Opelt et al. [16] explicitly constructed frag-
ments from a large fragment pool by simultaneously max-
imizing the occurrence in positive training and minimizing
the occurrence in negative training sets. All these learning-
based methods require very complex learning processes,
and the invariance of the adaptive detectors is not very im-
pressive.

Recently the contour grouping technique has emerged as
a promising approach for contour-based recognition. Zhu et
al. [21] proposed a set-to-set contour matching scheme for
object detection. In their approach, the contour fragments
are based on a bottom-up segmentation or contour group-
ing. Ferrari et al. [5] used groups of contour segments for
objection detection in which local shape features are formed
by chains of connected, roughly straight contour segments.

Finally, several approaches are proposed to combine
multiple types of features, including both contour and tex-
ture. Zhang et al. [20] defined a distance measure of im-
ages using shape and texture features, and the approach de-
veloped by Boiman et al. [1] combined color, SIFT, shape
context, and other descriptors for object classification.

2. Torque for image patches
In this section, we first give the definition of torque in

image space, then we discuss its implications for contour-



Figure 1. The torque defined in (1). The solid red point represents
the edge point, while o represents the center.

based recognition.

2.1. Definition of torque of edge points and image
patches

Torque is a physical measurement of the tendency of a
force to rotate an object around an axis. Let o denote the
center point, then for any point p in space, its torque, denot-
ed by ~t, is defined as follows,

−→
to (p) = −→op×

−→
f (p), (1)

where ~f(p) denotes the force vector, −→op denotes the arm
vector and × denotes the cross product operation. First,
the force vector of each image point p with non-zero image
gradients is defined as

−→
f (p) =

∇I(p)⊥

|∇I(p)|
, (2)

where ∇I(p) = (Ix, Iy, 0) denotes the gradient of p in the
image, and∇I(p)⊥ is the vector perpendicular to the image
gradient (and parallel to the edge) measured counterclock-
wise, such that the brighter side is on its right and the darker
side is on its left. | · | denotes the length of the vector. The
magnitude of torque for an edge point p with a pre-defined
center point o is defined as:

τo(p) = |−→op||
−→
f (p)| sin θ = |−→op| sin θ, (3)

where θ is the counterclockwise angular distance from the
arm vector to the force vector and is in the range from 0◦

to 360◦ degree. We emphasize here that the magnitude of
torque defined in (3) is not the same as the length of ~to(p).
It may take negative value. See Fig. 1 for an illustration of
the torque and its magnitude. It can be seen that the magni-
tude of τo(p) is determined by the relative position of pwith
respect to the center o and the direction of its force vector.

The torque of an image patch is defined as follows. For
a given patch P , let c denote the center of the patch. Then,
the torque of the patch P is defined as

~tc(P ) =
∑
p∈P

~tc(p). (4)

(a) µτ=0.785 (b) µτ=0.095

Figure 2. The torque magnitudes within a unit patch are calculated
for two different cases. The edgels forming a circle with radius
r = 1/2 in (a) result in a much larger µτ value than that of the
edgels in (b) generated as a uniform distribution. Different colors
of the edgels correspond to different orientations.

Notice that all ~tc(p) are parallel to each other since they are
perpendicular to the image plane. Thus, the magnitude of
~tc(P ), denoted by τc(P ), can be expressed as

τc(P ) =
∑
p∈P

τc(p). (5)

In other words, the magnitude of the torque of a patch is
the sum of the magnitudes of torque of all points inside the
patch. To achieve independence to patch size, we normalize
to obtain :

µτ (P ) =
1

2

τc(P )

area(P )
. (6)

In the remainder of this paper, we refer to µτ (P ) as the
torque magnitude of the patch P .

2.2. Discussion of the torque magnitude

Next we discuss how the torque magnitude µτ is related
to the contours in the image patch P and how it can benefit
a contour-based recognition.

First, the value of µτ will be larger when the edges in
the patch tend to be in the order, regular and enclosed. On
the contrary, if the edge segments are randomly distributed
all over the patch, µτ will be very small. This is exactly
parallel to what happens in mechanics. In order to rotate
an object around an axis more efficiently, the force should
be applied uniformly along the tangent direction of the ro-
tation trajectory. See Fig. 2 for a comparison of the torque
magnitude in two different patterns. Thus, µτ measures the
orderliness of edges in a patch.

Second, the value µτ gives us some information on the
relative size of the contour to the patch and its position with-
in the patch. The larger the value of µτ , the tighter the
patch boundaries will enclose the contour. A patch with
large absolute value of µτ is likely to include convex con-
tours. Thus, the torque magnitude µτ can be used to infer
the existence of convex contours in the patch.

Lastly, according to our definition of the orientation of an
edge, a contour that encloses a bright patch on dark back-



ground will have positive magnitude of torque, while a con-
tour corresponding to a dark patch on bright background
will have negative magnitude of torque. In summary, the
measurement µτ defined in (6) implicates several attractive
properties which describe the contours in image patches.

3. Contour related features using torque
3.1. MTP detector

As discussed in previous sections, the torque magnitude
µτ is dependent on how tight the boundaries of a patches
enclose regular salient contours. Thus, based on the value
of µτ , we propose a local contour detector for finding local
patches with regular contours. We define a patch as a max-
imal/minimal torque patch if its torque magnitude takes a
maxima/minima among the torque magnitudes of all patch-
es of multiple sizes but with the same center and is maxi-
mum/minimum among the spatial neighbors. We call this
patch detector the MTP patch detector. A threshold is set to
discard unreliable MTP patches resulting from low contrast
regions. An outline of the algorithm is given in Alg. 1 and
illustrated in Fig. 3.

Algorithm 1 Maximal/Minimal Torque Patch (MTP) De-
tector
Input: an image

1. Torque calculation of patches. The image is parti-
tioned into multiple patches of different sizes, and the
torque magnitude of each patch is calculated using (6).

2. Extrema detection. For each candidate patch, lo-
cate the candidate MTP patch whose torque magni-
tude takes the extreme value (maxima or minima) in
its spatial-and-scale neighborhood.

3. Patch thresholding. Remove those patches from the
set of all candidate MTP patches whose torque magni-
tudes are below some pre-defined threshold.

Output: The MTP patch setR.

The MTP detector is inherently translation-invariant as
it is based on the local coordinate system of a patch. The
MTP detector is also scale-invariant. Note that either the
amount of edgels (forces) or the length of arms of forces
are proportional to the scale of the patch. Thus, the torque
magnitude of a patch in (5) is proportional to the area of
the patch, and the normalized torque magnitude of a patch
in (6) is independent of the scale of the contour. To achieve
robustness to rotation and affine transforms, 45 degree patch
and rectangular patch can be considered.

Some examples of local contour patches detected by the
MTP detector are shown in Fig. 4, in which both square
patches and rectangular patches are employed. For clarity,

we only show part of the detected patches. It is noted that
there are two types of MTP patches based on the sign of the
torque magnitude: one with the positive value of µτ called
bright patch; the other with negative value of µτ called dark
patch. These two types of patches are complementary to
each other. If a concave contour cannot be detected by dark
patches, it is very likely to be detected by its neighboring re-
gion as a bright patch. The odd columns and even columns
in Fig. 4 illustrate this phenomena. Using complementary
bright and dark patches allows us to locate most of the local
patches with meaningful local contour information.

3.2. Fast computation of the torque

The MTP detector requires the calculation of µτ at ev-
ery position and for multiple patch sizes (Step 1 in Alg. 1),
which is time-consuming if computed straight-forward.
Here we give another derivation of the torque of a patch
(defined in (5)), such that the so-called integral image tech-
nique [3] can be applied to significantly speed up the com-
putation. The basic idea is to pre-compute the force vectors
and the torque values τo with respect to a fixed point, denot-
ed as o :

{~f(p); τo(p)}p∈Ω,
where Ω denotes the image domain. We set o to be the left
top corner of the image. Let ~tc(P ) denote the torque of
patch P centered at the point c, as defined in (4). Then, we
can rewrite ~tc(P ) as

~tc(P ) =
∑
p∈P

−→cp×
−→
f (p)

=
∑
p∈P

(−→co +−→op)×
−→
f (p) (7)

= −→co ×
−→
f (P ) + ~to(P ),

where
−→
f (P ) =

∑
p∈P
−→
f (p) is the sum of forces in the

patch P , and ~to(P ) is the torque of P with respect to the
original point o.

Notice that we can pre-compute
−→
f (p) and ~to(p) for all

N pixels in the image in O(N) time. Once they are pre-
computed,

−→
f (P ) and ~to(P ) can be calculated for any patch

P inO(1) time by integral images [3]. After ~tc(P ) is calcu-
lated using (7) for all patches, the torque magnitude µτ (P )
of the patch P , defined in (6), can be obtained easily.

3.3. MST descriptor

For a given contour patch, we propose a torque-based
descriptor to describe the density and variance of the local
edge structure in a multi-scale manner. We call it the Multi-
scale Torque (MST) descriptor. The basic procedure is as
follows. For a given patch we consider all patches having
an overlap with the patch along the eight axes at discrete s-
pace intervals as shown in Fig. 5 (a). The MST descriptor is



(a) Edge extraction (b) Torque magnitudes (c) Finding extrema (d) Locating patches

Figure 3. Outline of the MTP detector. From left to right: (a) The original image and its edge extraction. Different colors represent the
corresponding orientations of the edgels. (b) The torque magnitudes at every point at multiple patch sizes are computed. (c) Extremal
torque magnitudes are detected. (d) The corresponding contour patches are localized.

Figure 4. Examples of applying the MTP detector on four object categories in the Caltech-101 dataset. For each object category two
samples are shown, and for each sample the two types of patches are detected. The odd columns show the dark patches while the even
columns show the bright ones. The colors of the patches denote their size. Note, that for clarity not all of the detected patches are shown.



the concatenation of the torque magnitudes of these patch-
es. To keep the number of selected patches the same for all
patches, we sample the torque magnitudes with an adapted
step size according to the patch size. To achieve rotation
invariance, the patch is rotated such that its x-axis becomes
the direction closest in direction to the vector pointing from
the center to the centroid of the edges inside the patch. This
can be done by circular shift. The outline of the MST de-
scriptor is illustrated in Fig. 5.

4. Experiments
4.1. Implementation details

In order to evaluate the contour feature for object recog-
nition, we followed the bag of features (BoF) representation
paradigm. The basic procedure is as follows. The MST fea-
tures from all the images are clustered as a codebook using
the K-Means algorithm and are represented as codes via the
LLC coding scheme [18]. Then each image is represented
as a normalized histogram with respect to its codes using the
SPM pooling technique [11]. The reason for using the LLC
scheme is that it works well with simple linear classifiers,
and there exists an approximated version for fast computa-
tion ([18]). The SPM pooling technique is used, because
it showed good performance in many recent state-of-the-art
image classification systems (e.g., [11, 18, 19]). The details
of our image representation are as follows:

Feature extraction. Each image is converted to a collection
of local contour features, i.e., we compute the MST descrip-
tor on each patch extracted by the MTP detector. Taking
account of efficiency and effectiveness, we use square and
rectangular patches of fixed aspect ratios, rotated by 0 and
45 degree.

Codebook generation. For each image in the training set,
we cluster its contour features to build a codebook. The
bright and dark MTP patches are coded in two codebooks,
which are processed separately.

Image representation. Given an image, its features (de-
scriptors) are quantized as codes w.r.t. the codebook using
LLC (in practice we use its approximated version), in which
each descriptor is projected into its local-coordinate system
using the locality constraint. Multiple codes are integrated
via SPM and max pooling as a normalized histogram. This
histogram is the feature vector of the image.

Training stage. Once each image is represented as a vector,
numerous learning-based approaches can be used to train a
classifier (e.g., KNN, SVM). A plain SVM is used as the
classifier in our implementation.

4.2. Classification on the Caltech-101 dataset

We evaluated the performance of our proposed feature
for object classification on the widely used Caltech-101

object dataset.

Configuration. Caltech-101 [2] is a large dataset with
8677 images from 101 object categories with different
shapes and appearances, and with 467 images from an
additional background category. The number of images
per category varies greatly from 31 to 800. We follow
the experimental configuration suggested by the original
dataset, and also used in [20, 7, 18]. Images were resized
to a maximum of 300*300 gray-scale pixels with preserved
aspect ratio. For each category, 5, 10, 15, 20, 25 and 30
images were randomly picked for training, and no more
than 50 images were randomly picked for testing from
the remaining images. Performance was measured using
average classification accuracy over all classes.

Methods for comparison. First we compared our features
to the other two state-of-the-art contour-related features for
which source codes are available, the kAS feature [5] and
the extended shape context in [1]. Note that these two fea-
tures were originally designed for matching, not for recog-
nition. To eliminate the effect of the image representation
framework on recognition performance, we ran all three
contour-related features on the same BoF-based image rep-
resentation framework. In the comparison the two methods
are denoted “kAS + BoF” and “Boiman shape + BoF”, re-
spectively.

We also compared our methods to other recognition
methods using different types of cues, specifically the
methods: [20, 11, 7, 1, 8, 6, 19, 18]. Furthermore, we
combined our proposed feature with the popular SIFT
feature to see how much additional improvement can
be gained by adding the proposed contour feature to the
classic texture-based approach. Specifically, we added our
proposed feature into the SIFT-based method by Wang et
al. [18], denoted as “Ours+SIFT.

Parameter setting. For the MTP detector we set the patch
threshold to 0.3. During detection, we employed square
patches and four types of rectangular patches, whose aspect
ratios were 1:

√
2, 1:2,

√
2:1 and 2:1 respectively. The scales

of the patches were defined as a series of integers from 1/50
to 4/5 of the image size, increasing by a factor of 3

√
2. For

the MST descriptor, we used 3 scales: the current scale of
the described patch and one neighbor scale above and be-
low. We sampled 15 torque magnitudes along each axis at
each scale, resulting in a 363-dim (3 × 8 × 15 + 3 = 363)
descriptor. For codebook generation, the codebook size was
fixed at 2048. For the approximated version of LLC, we set
our parameters the same as in [18]. In the SPM pooling, we
employed 4× 4, 2× 2 and 1× 1 sub-regions.

The implementation of the extended shape context and
kAS was as follows. For the extended shape context, we
computed a 192-dim (8 angular bins multiply 3 radius bins
multiply 8 edge orientation bins) descriptor for each patch.



(a) An MTP patch (b) Torque magnitudes (c) Multi-scale sampling (d) Orientation alignment

Figure 5. Outline of the MST descriptor. From left to right: (a) An interesting patch is detected by the MTP detector. (b) The torque
magnitudes of the patches centered at points inside the detected patch are computed. (c) The torque magnitudes are down-sampled along 8
directions at several scales. The sampled values are collected and concatenated as the local feature of the MTP patch. (d) The orientation
of the feature is aligned by circular-shifting.

5 10 15 20 25 30
kAS + BoF 24.47 31.80 35.86 38.64 40.64 41.99

Boiman shape + BoF 40.48 49.43 54.56 57.59 59.92 61.54
Dense patch + MST 37.67 47.62 52.75 56.59 58.82 60.61
Ours (MTP + MST) 48.17 57.65 62.33 65.32 67.39 68.97

Table 1. Classification accuracy for methods using single contour feature on the Caltech-101 dataset.

In KAS, we used k=1,2,3,4, resulting in 4 types of descrip-
tors. Each descriptor was represented as a feature vector
and then the vectors were concatenated. Considering the
low dimension of the kAS descriptor, we reduced the code-
book size to 64 for 1AS and 1024 for the remainders.

4.3. Results and discussion

As discussed in Sec. 3.2, since we use integral images,
the computation is very efficient. The average running time
for MTP and MST implemented purely in matlab is about
11 seconds for one image in Caltech-101 on a PC with 1.6
GHZ Intel CPU.

The experimental results for three contour feature based
methods are reported in Table 1. As can be seen, our
approach outperformed the other two contour-related fea-
tures under the same BoF image representation frame-
work. This result is not surprising, considering the fact that
these contour-related features were designed originally for
matching and not for recognition.

To see the power the MST descriptor, we also extracted
the MST descriptor from patches densely located at every
6th pixel in the image using patches of 7 scales. The result
(denoted as ’Dense patch + MST’) is also shown in Table 1.
Clearly, when using the MST descriptor directly without

the elaborate selection by the MTP detector, the recogni-
tion performance declines. Even so, it still performed a par
with other state-of-the-art contour features.

Referring to the results of comparison to other feature
descriptors in Table 2, it can be seen that our approach out-
performs several state-of-the-art methods, including [20],
[11], [7] and [6], but did not perform as well as [1], [8], [6]
and [19]. This result is also not surprising to us since the
contour cue is only one of many visual cues for recogni-
tion. There is a large diversity of images in the Caltech-101
dataset, and a significant amount of images have significant
texture content, not used in our contour-based feature. One
single visual cue apparently is not sufficient to characterize
all types of images in the Caltech-101 dataset. In compari-
son, [1, 8, 6, 19] use SIFT-based features and thus efficiently
utilize the texture information and salient image points for
recognition.

To evaluate whether our proposed contour-related fea-
ture can improve existing recognition methods, we com-
bined our contour-based feature with the texture-related
SIFT feature in a straightforward way. The implementation
of the SIFT feature followed that of [18], and we combined
the two features by concatenating them into a single vec-
tor and weighing them 1:2 (ours v.s. SIFT). This weighting



5 10 15 20 25 30
Zhang et al. [20] 46.6 55.80 59.10 60.20 - 66.20

Lazebnik et al. [11] - - 56.40 - - 64.60
Griffin et al. [7] 44.20 54.50 59.00 63.30 65.80 67.60
Boiman et al. [1] - - 65.00 - - 70.40

Jain et al. [8] - - 61.00 - - 69.10
Gemert et al. [6] - - - - - 64.16
Yang et al. [19] - - 67.00 - - 73.20
Wang et al. [18] 51.15 59.77 65.43 67.74 70.16 73.44

Ours 48.17 57.65 62.33 65.32 67.39 68.97
Ours + SIFT 53.60 64.01 69.15 72.40 74.52 76.22

Table 2. Classification accuracy for different methods on the Caltech-101 dataset.

scheme was chosen because our feature vector is 2 times as
long as the SIFT vector. We refer to it as “Ours+SIFT ”. It
can be seen that there is an additional 2.45%−4.66% accu-
racy gain over the best results of other methods with respect
to different sizes of the training set. The results demonstrate
that our proposed contour-based feature does capture mean-
ingful information of object contour and is a useful addition
to object recognition. It is noted that a better performance
(72.8% when using 15 for training) is reported in [1]. How-
ever, this approach is based on multiple features including
SIFT, simple luminance, color, extended shape context and
the self-similarity descriptor, while our result is based on
two types of features only.

5. Conclusion
In this paper we proposed a new contour-based feature

coding scheme for object recognition. It includes a contour
patch detector (MTP patch detector) and a contour feature
descriptor (MST descriptor). We evaluated the scheme on
the Caltech-101 dataset, and the results showed its perfor-
mance to be on a par with many other methods when using
it as a single cue. When used in combination with the SIFT-
based feature, it provides a more effective image representa-
tion that outperformed other methods in object recognition.
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