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Abstract

In this paper, a statistical approach to static texture description is developed, which combines a local pattern coding

strategy with a robust global descriptor to achieve highly discriminative power, invariance to photometric transfor-

mation and strong robustness against geometric changes. Built upon the local binary patterns that are encoded at

multiple scales, a statistical descriptor, called pattern fractal spectrum, characterizes the self-similar behavior of the

local pattern distributions by calculating fractal dimension on each type of pattern. Compared with other fractal-based

approaches, the proposed descriptor is compact, highly distinctive and computationally efficient. We applied the

descriptor to texture classification. Our method has demonstrated excellent performance in comparison with state-of-

the-art approaches on four challenging benchmark datasets.
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1. Introduction

Visual texture, a powerful cue for characterizing scene structures that exhibit a high degree of similarity in their

image patterns, provides a rich semantic description for many computer vision tasks such as image understanding,

scene classification and visual retrieval. Although there is an abundant literature on texture description, developing

an effective and efficient texture descriptor remains a challenging problem. A desired texture descriptor should be

highly discriminative and robust to environmental changes, such as illumination changes, occlusions, non-rigid surface
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distortions and camera viewpoint changes. Meanwhile, the descriptor should be compact and computationally feasible

for real-world applications.

In the past, a number of approaches [1, 2, 3, 4, 5, 6, 7, 8, 9] for texture description have been proposed to achieve

robustness against environmental changes. The basic idea of these approaches is to compute a global description based

on some local texture features. One popular approach to local texture description is the so-called local binary pattern

(LBP) [10]. The LBP and its variants [11, 12, 13, 14, 15, 16] have been demonstrated effective in describing local

image patterns and classifying materials. However, the performance of the existing LBP-based methods in recognizing

random texture in real scene is very limited. The reason is that most of these methods use simple histogram-based

statistics to integrate local features. Such histogram-based statistics only count the number of elements and lose the

details of how the elements are spatially distributed.

One promising alternative to the histogram-based statistics is the fractal-based approach [17, 18, 19, 20, 21, 22]

that characterizes the spatial distribution of elements using fractal geometry. Many fractal-based approaches have

been successfully used in texture classification. However, in the existing approaches, often the features are highly

redundant. For instance, the gradient and Laplacian multi-fractal measurements used in [19, 23] would provide

similar information about edges, and the descriptor proposed in [18] is insufficiently compact (1218-dimensional).

Some approaches involve large-scale clustering (e.g., [17]) or some complex alignment stages (e.g., a tight frame

system is involved in [22]) and as a result, the computational cost becomes expensive.

In this paper, we are motivated to combine the power of the local pattern coding strategy and the global fractal

analysis. Built upon the local binary patterns of image, a practical fractal-based texture descriptor is developed.

An input image is first represented by local binary patterns, and then fractal dimension is computed on each type

of pattern and all the fractal dimensions are finally concatenated as a feature vector. Owing to the effective LBP-

based local representation, the proposed descriptor becomes compact. Meanwhile, benefitting from the robust fractal

analysis, the proposed approach enjoys both high discriminative power and robustness against many environmental

changes. We applied our descriptor to texture classification on four challenging benchmark datasets. The proposed

approach has exhibited excellent performance in both effectiveness and efficiency in comparison with state-of-the-art

approaches.

2



The remainder of this paper is organized as follows. Sec. 2 reviews related works on texture descriptor for texture

classification. Sec. 3 introduces some background knowledge about local binary patterns and fractal analysis. Sec. 4

is devoted to the proposed approach. The experimental evaluations are reported in Sec. 5 and the conclusion is drawn

in Sec. 6.

2. Related work

In this section, we first have a brief review on recent studies of texture classification that are most relevant to

our work. Secondly, some LBP-based approaches to texture classification are mentioned. Finally, we focus on the

fractal-based approaches.

Texture classification. Many modern texture classification approaches ([2, 5, 6, 24, 25, 26]) model texture patterns

using the statistics of spatial texton distribution. The basic idea is to extract local features through random sampling

or robust feature detection and construct a texton codebook by performing vector quantization on a set of randomly

selected local features. Then some statistical measurements (mostly histogram-based) are computed with the help

of the texton codebook. The seminal work can be traced back to the approach introduced by Julesz [27] and such

an approach has been studied by many other researchers (e.g., [28, 29]). The main advantage of such methods is

that the local feature descriptors have strong robustness to geometric and illumination changes, as well as partial

occlusions. One representative work is the texture representation approach proposed by Lazebnik et al. [30]. The

approach first characterizes the texture by clusters of elliptic regions, and the elliptic regions are then normalized to

circles for the invariance to affine transforms. Two types of descriptors, spin image and RIFT (Rotation Invariant

Feature Transform), are defined on each region. The resulting texture descriptor is the histogram of clusters of these

local descriptors, and different texture descriptors are compared using the earth mover’s distance [31]. This approach

was comprehensively evaluated in [26] and has demonstrated promising performance on the applications of texture

classification and retrieval on several benchmark datasets.

LBP-based approach. The concept of LBP is first introduced by Ojala et al. [10] and has been widely used as local

feature for texture description. In [12], multi-scale LBPs were used for texture classification. The texture description

is based on the joint distribution of the LBPs. Liao and Chung [13, 32] adapted the LBP coding strategy to the local
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dominant structures of texture by sorting the patterns according to their occurrence frequencies. The distribution of

the LBPs is characterized by the co-occurrence statistics. Guo et al.[14] proposed to weight the LBP histogram by

the local variance of the LBP codes. The weighted histogram is aligned to the principle orientation of image and

matched by exhaustive search. In [15], the magnitudes as well as the signs of local image differences are utilized

in the LBP coding strategy. The joint and hybrid distributions of the LBPs characterized by histogram are used for

texture recognition. To enhance the robustness to rotation, Fourier transform is applied to LBP histogram in [33]

and [16]. All of these methods have achieved satisfactory results on certain texture datasets, whereas their application

to more challenging texture recognition tasks is very limited.

Fractal-based approach. One main attractive property of the fractal-based approach is its ability of capturing the

self-similarities [1] of spatial distribution of textons, which is an essential characteristic of texture patterns. The early

works [34, 35, 36] describe texture mainly using fractal dimension or the parameters of certain fractal models. The

discriminative power of these methods is very limited. Recently, Xu et al. [19, 23] have made a progress in texture

classification, by applying multi-fractal spectrum (MFS) analysis to texture description. The MFS descriptor has

shown strong robustness to a wide range of geometrical changes, however, its robustness against photometric changes

is not guaranteed.

Ji et al. [20, 21] combined MFS with multi-resolution analysis in wavelet domain to further exploit the local

structures in texture. In their approach, multiple instances of the input image rotated by different angles are generated,

and the tensor wavelet coefficients of these instances are averaged to achieve robustness to image rotation. In addition,

a scale normalization scheme based on interest point detection is involved. Despite the impressive results achieved,

the high computational cost of this approach remains a problem.

One closely related work to ours is the approach proposed in [18], which generalizes MFS as a global fractal

dimension based descriptor combined with some local description. In their proposal, the local description is based on

the response to several well-designed templates. The template-based feature is able to reduce the sensitivity of the

original MFS to the photometric changes, but it is not scale-invariant. Thus, an extra scale alignment via multi-scale

representation under a redundant system is involved. In their latter work [22], a scale selection scheme for each pixel

is combined in order to further enhance the robustness. Although the classification performance of these approaches
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is impressive, the generated features are very redundant.

Finally, it should be mentioned that some approaches take fractal geometry as a local description instead of the

global characterization. For instance, Varma et al. [17] proposed to compute local fractal-related features for each

image patch. The local features are clustered as a texton dictionary for forming the texton histograms. The main

drawback of this approach is the high computational complexity and the instability resulting from the clustering.

3. Preliminaries

Before presenting the detailed description of our approach, we first give an introduction of two mathematical tools

upon which our approach is built.

3.1. Local Binary Patterns

There has been extensive literature on the LBP-based representation and applications. Interested readers can refer

to [37] for more details. The original LBP operator proposed by Ojala et al. [10] forms labels for image pixels by

thresholding the 3 × 3 neighborhood of each pixel with the center value and summing the resultant binary numbers

weighted by powers of two. To adapt the LBP operator to the neighborhoods of different sizes [12], a circular

symmetric neighborhood denoted by (P,R) is defined. Here P denotes the number of the sampling points and R

denotes the radius of the neighborhood. The pixel value of a sampling point is bi-linearly interpolated if the point

does not lie at the integer coordinates. See Figure 1 for an illustration of the circular symmetric neighborhood. The

modified operator, denoted by LBPP,R, can be written as

LBPP,R =

P−1∑
p=0

s(gp − gc) ∗ 2p, (1)

where s(x) is the sign function that is assigned the value 1 if x is positive and 0 if negative, gc is the gray value of the

center pixel and gp (p = 0, 1, ..., P − 1) is the gray value of the neighbors.

The operator LBPP,R is sensitive to image rotation. Hence, the rotation-invariant LBP operator [38], denoted by
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Figure 1: Circularly symmetric neighborhood used in LBPP,R. The red point denotes the center pixel gc and the blue points denote the sampling
points gp (p = 0, 1, ..., P − 1).

LBPri
P,R, is developed by circularly rotating each LBP binary code into its minimum value:

LBPri
P,R = min{ROR(LBPP,R, p) | p = 0, 1, ..., P − 1}, (2)

where ROR(x, p) performs a circular bit-wise right shift on x by p times. For instance, the bit sequences 10110000,

00101100 and 11000010 arise from different rotations of the same local pattern and they all correspond to the nor-

malized sequence 00001011.

A further extension of LBP is to eliminate the patterns with frequent bitwise jumps in their binary codes, which

can reduce the sensitivity to noise. The jump frequency is measured by a uniformity measure U defined as

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|. (3)

The measure U counts the number of bitwise transitions from 0 to 1 or vice versa when the bit pattern is considered

circular. A local binary pattern is called uniform [12] if the uniformity measure on the pattern is at most two. The

corresponding uniform rotation-invariant LBP operator LBPriu2
P,R is defined as

LBPriu2
P,R =


LBPri

P,R, if U(LBPP,R) ≤ 2;

P + 1, otherwise.

(4)

The operator LBPriu2
P,R assigns a single label to all the non-uniform patterns, which benefits reducing the length of
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LBP-based feature and implementing a simple rotation-invariant descriptor. By using a look-up table, the calculation

of LBP riu2
P,R is very efficient. Note that there are many other LBP variants that have demonstrated better performance

in texture description. In this paper the LBP operator LBPriu2
P,R is employed for its simplicity. Our results show that

such a simple coding strategy is sufficient to perform well.

3.2. Fractal Analysis

The concept of fractal dimension which was first proposed by Mandelbrot [1] has been widely used in physics

and geophysics to capture self similarities in many real world phenomena. Based on the concept of “measurement at

scale δ”, fractal dimension summarizes the irregularity of a given point set E in the space by measuring its power law

behavior with respect to the scale δ:

m(δ) ∝ (
1

δ
)
q

, (5)

where m(δ) is some measurement of the given point set E at scale δ. For image, the measurement can be intensity,

gradients, or filter response, etc. The exponential quantity q is the so-called fractal dimension and denoted by dim(E).

One popular definition of the fractal dimension is the box-counting fractal dimension ([39]) defined as follows. Given

a `-dimensional point setQ, let the space R` be covered by a mesh of `-dimensional hypercubes with side length r (i.e.,

r-mesh `-dimensional hypercubes) and a counting function c(Q, r) is defined as the number of r-mesh `-dimensional

hypercubes that intersect Q. Then the box-counting fractal dimension dim(Q) is defined as

dim(Q) = lim
r→0

log c(Q, r)

− log r
. (6)

In practice, for a point set coming from an image of size m×m1, to approximate the process of r → 0, we estimate

the slope of log c(Q, r) for a side-length sequence, rn > rn+1 > · · · > rm > 0, (n < m), using the least squares

method. In our texture classification context, we define ri = m−i+1
m , i = n, n+ 1, . . . ,m.

In order to distinguish the objects with mixture of multiple fractal structures (e.g., the statistically self-similar

structures existing in texture), multi-fractal analysis extends the concept of fractal dimension to multi-fractal spectrum

1For simplicity, we assume that the image has equal length in each dimension, otherwise we can normalize it before calculating the fractal
dimension.
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(MFS). The basic idea of MFS is to compute fractal dimensions on the subsets of E and concatenate them as a vector

as follows,

MFS(E) = [dim(E(α1),dim(E(α2), ...,dim(E(αn)], (7)

where E(α) denotes the collection of points having the same attribute value α. The point partition on E is originally

based on the so-called Hölder exponent in [1] (or called density in [23]) that measures the local power-law behaviors

of the points. One extension of MFS ([18, 22]) is to use a different strategy to compute the attribute value α in (7)

instead of calculating Hölder exponent. By choosing a suitable strategy, the robustness of the MFS feature can be

improved. It should be mentioned that there are many other types of fractal dimension defined for the point sets. We

employed the box-counting fractal dimension in our implementation for its simplicity and computational efficiency.

4. Our proposed texture descriptor

Our proposed texture descriptor is built upon the multi-fractal analysis on the local image patterns. The local

patterns are first located and encoded by the LBP operator LBPriu2
P,R defined in (4), and then the multi-fractal analysis

using (7) is used to characterize the spatial distribution of the local image patterns. In other words, the proposed

descriptor can be viewed as the collection of multiple fractal dimensions extracted from the local binary patterns at

different scales. Thus we call it pattern fractal spectrum (PFS). The proposed approach is illustrated in Figure 2 In

the rest of this section, we will detail each step in the algorithm.

4.1. Multi-scale Local Binary Patterns Extraction

Our descriptor relies on the characterization of local structures in texture. The intensity variation of local structures

caused by illumination changes is very common in practice. In order to gain robustness to such global environmental

changes, the LBP coding strategy is employed in our descriptor. Its robustness against local illumination changes

has been demonstrated in many applications (see [12, 37] for more details). Viewpoint changes, image noises and

clutters may also cause significant variations to the local structures. Thus, we use the uniform rotation-invariant LBP

described in Sec. 3.1 to achieve rotational invariance and tolerance to noise. To further utilize the local structures at

different scales, we compute LBP maps from different scales.
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Figure 2: Flowchart of the proposed descriptor.

Given an image I , we obtain a sequence of LBP code maps J1, J2, . . . , JN using the LBP operator LBPriu2
P,R on I

with a series of parameters {(Pi, Ri)}Ni=1. In details, Ji is a label image generated by computing LBPriu2
Pi,Ri

on I . The

parameter Pi defines coding neighborhood shape, and Ri determines the size of coding neighborhood and also the

scale of encoded patterns. The code maps generated with different values of P can capture various local structures of

interest in texture. By using multiple values of R, the multi-scale analysis is applied to I . Note that for digital image,

larger R would result in more freedom in choosing P . Our experiment showed that, only a few values of R and P are

able to characterize the rich structures of texture and achieve excellent performance. Due to the nature of the operator

LBPriu2
P,R , the set {Ji} defined above is invariant to image rotation and to any monotonic transformation in grayscale.

Figure 3 (a) gives an illustration of the multi-scale LBP maps generated using the parameters (8, 3), (4, 2) and

(4, 1). It can be seen that each LBP code encodes different image structures and the LBP code maps across scales are

able to capture different structures of the texture image, e.g., the (8, 3) and (4, 1) cases. Sometimes several LBP code

maps at different scales might be similar, e.g., the (4, 2) and (4, 1) cases, but the slightly different information provided

by such code maps might still be discriminative for recognizing different textures. Thus, by choosing appropriate

multi-scale parameters, the resulted features can achieve the balance of distinction and compactness.

In fact, determining the scale and radius parameters (P,R) in multi-scale LBP coding scheme is not difficult, and

we recommend the setting as follows. The scales (Rs) are defined as a series of integers which start from 1 and is
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increased by a factor of 1.5, which is very common for multi-scale representation. To obtain a compact representation,

only four scales are used. The sampling number P in each scale is set to be 4, 8 ,or 16, according to magnitude of the

scale. Because more freedom is allowed in larger scale, multiple P s can be considered when the scale R is large. The

corresponding configurations of the multi-scale LBP parameters (P,R) are (4, 1), (16, 2), (16, 3), (8, 5) and (16, 5).

1 1

(a) Multi-scale LBP code maps (b) Pixel classification

Figure 3: Binary images generated from the LBPriu2
P,R coding. (a) The multi-scale LBP binary images are generated from a texture image (the upper

left). Images in the first two rows (except the upper-left one) correspond to the LBP scale parameters (8, 3). Images in the third row correspond to
the LBP scale parameters (4, 2), and images in the fourth row correspond to the LBP scale parameters (4, 1). Here we omit the binary images of the
nonuniform patterns. (b) The LBP binary images (the last four columns) are generated from four texture images (the first column) of different types.
The binary images correspond to the LBP scale parameter (16, 5). The code values of the columns of the binary images are 0,1,6,7 respectively.

4.2. Multi-fractal analysis on image patterns

As described in the previous section, the calculated multi-scale LBP code maps {Ji}Ni=1 can well encode the local

structures of textures and provide many effective local descriptions. The next step is to integrate the local descriptions

into a distinct global description in a statistical manner. In order to characterize the spatial distribution of the LBPs

at each scale, multi-fractal analysis is applied by computing multiple fractal dimensions on each LBP code map. The

main reason we apply multi-fractal analysis is that it has the capability of capturing the self-similarities of the texture

patterns and the robustness against global geometric changes (see [19] for more details).

To apply multi-fractal analysis using (7), a point set partition scheme is required. For each LBP code map, we

define the attribute value α in (7) as the LBP code of the corresponding pixel. Thus, for each possible LBP code

(attribute value α), we can obtain a binary image on one LBP code map by setting the pixel to 1 if it is of that code,

and 0 otherwise. In other words, multiple binary images {Bi,j , j = 1, ..., Pi + 2} are generated from each code map
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Ji as follows:

Bi,j(x, y) =


1, if Ji(x, y) = j;

0, otherwise.

(8)

Each binary image represents the locations of the image patterns of the same type. See Figure 3 (b) for an illustration

of the binary images obtained from the LBP code maps. From the figure we can find that, the binary images corre-

sponding to the same LBP code value exhibit different spatial distributions and hence can well distinguish the local

structures of different texture.
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Figure 4: The 70-dimensional PFS descriptors computed on three types of texture. (a) Each type of texture contains four sample images. (b) The
corresponding 70-dimensional PFS vectors.

To characterize the distribution of image patterns of the same type, the box-counting fractal dimension defined in

(6) is computed on each binary images Bi,j . By concatenating all the fractal dimensions corresponding to the same
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LBP code map, we obtain the MFS vector on each LBP code map Ji using (7):

MFS(Ji) = [dim(Bi,1),dim(Bi,2), ...,dim(Bi,Pi+2)]. (9)

Finally we define our PFS descriptor as

PFS =
⊎
i

MFS(Ji), i = 1, ..., N, (10)

where
⊎

denotes the operation of vector concatenation. The PFS descriptor can well capture the irregularity of the

spatial distribution of the image patterns.

Note that the length of the MFS vector of Ji varies with the parameter (Pi, Ri). By the definition of the LBP

operator LBPriu2
P,R , the length of the vector MFS(Ji) is (Pi + 2). Thus, the total length of the proposed feature

PFS(I) is
∑N

i=1(Pi + 2). According to parameters setting mentioned in Section 4.1, our method finally generates a

70-dimensional texture descriptor. See Figure 4 for an illustration of the 70-dimensional PFS descriptor. It can be

observed that the proposed PFS descriptor has strong discriminative power as well as robustness against viewpoint

changes.

5. Experimental evaluation

We evaluated the proposed texture descriptor by applying it to texture classification. The evaluation was conducted

on four public texture datasets, including the UMD dataset [40], the UIUC dataset [41], the KTH-TIPS dataset [42],

and the ALOT dataset [43]. The reason to choose these datasets is that all of them are challenging and have been used

in the evaluation of many state-of-the-art texture classification methods. The details of these datasets are summarized

in Table 1. The sample images of these four datasets can be referred to Figures 6, 7, 9 respectively.

We computed a 70-dimensional PFS feature for each image, using the multi-scale LBP parameters recommended

in Section 4.1. The side-length sequence {ri} used in the calculation of the box-counting fractal dimension is {2, 3,

4, 5, 6}. The features of the images are directly sent to a classifier for training and testing. The classifier used in our

classification experiment is the support vector machine (SVM) with the RBF kernel, which have been used in many
12



Table 1: Details of four texture datasetsTable 1: Details of four texture datasets

Dataset Num. of images Num. of classes Resolution Scale change Illumination condition

UMD 1000 25 1280 × 900 significant uncontrolled
UIUC 1000 25 640 × 480 significant uncontrolled

KTH-TIPS 810 10 200 × 200 medium controlled
ALOT 25000 250 1536 × 1024 significant controlled

by Pontil et al. [44] with the 1-vs-all classification strategy adopted. The cost factor of the SVM was set as the number

of images in the dataset. The kernel parameter was determined by the standard cross-validation within the range of

[0.25, 0.50]. The classification accuracy is employed as the evaluation criterion, which is defined as the percentage of

the samples that can be correctly classified in the dataset.

Due to the implementation complexity of many existing methods and required parameter tune-up for optimal

performance, we compare our methods against those which either have the code available online, or have classification

results reported on the tested datasets. To have a fair comparison, we only refer the results generated by the same

classifier (SVM with RBF kernel) as we used. Note that the applications of the existing LBP-based methods are

mostly on regular textures. As a result, we mainly focus on the comparison with the fractal-based approaches with

state-of-the-art results.

5.1. Classification on the UMD dataset and the UIUC dataset

The UMD dataset and the UIUC dataset have been widely used in many previous studies [17, 19, 22, 23, 26].

These two datasets both have 1000 images from 25 different classes. We followed the experimental configuration

of [21], which is also used in [19, 22]. The training set was selected as a random subset composed of 20 samples of

the class, and all remaining images were used as the test set. The reported classification accuracy is the average over

200 random subsets. Five existing methods are selected for comparison:

• The (H+L)(S+R) method [30], characterizes texture by the histogram of self-adapting affine-invariant regions.

• The VG-fractal method [17], uses the local density function of various image measurements to produce a 13-

dimensional local descriptor. The texture descriptor is the histogram of clusters of these local descriptors.
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• The MFS method [23], applies multi-fractal analysis on image intensity, image gradient and image Laplacian

respectively. The texture descriptor is obtained by combining the resulted MFS vectors.

• The OTF method [22], combines multi-fractal analysis with multi-scale local orientation histogram. A scale

alignment strategy using wavelet tight frame decomposition is involved.

• The WMFS method, proposed in [20] and improved in [21], applies multi-fractal analysis on two complemen-

tary wavelet pyramids of image. The wavelet-based MFS is computed on the 16 instances of the original image

rotated by different angles and averaged. A scale normalization based on interest point detection is involved.

Table 2: Classification accuracies (%) on the UMD dataset and the UIUC dataset.
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Table 2: Classification accuracies (%) on the UMD dataset and the UIUC dataset.

Dataset VG-fractal [17] MFS [23] (H+L)(S+R) [30] OTF [22] WMFS [21] PFS

UMD 96.36 93.93 96.95 98.84 98.68 99.38
UIUC 92.31 92.74 97.02 98.14 98.60 97.92
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Figure 5: Confusion matrices by the PFS descriptor on the UIUC and UMD datasets.

The experimental results of the tested methods on the two datasets are summarized in Table 2. On the UMD

dataset, our method performed the best. On the UIUC dataset, our approach outperformed several state-of-the-art

methods including the (H+L)(S+R), VG-fractal and MFS method, but did not perform as well as the OTF and WMF

method. Nevertheless, the result of our method is still competitive because it is only slightly worse than the OTF

method. The classification accuracies achieved by the PFS descriptor for individual class on both datasets are shown

in Figure 6 (a) and (b) respectively. It can be seen that more than one half of the classes on the UMD dataset can be

100% correctly classified. On the UIUC dataset, the worst cases happened in the classes C25 and C14. To summarize
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Figure 6: Classification accuracy (%) by the PFS descriptor on the UMD and UIUC datasets.

the misclassification rates between each two classes, the confusion matrices of our method and the WMFS method

are shown in Figure 5.

5.2. Classification on the KTH-TIPS dataset

The KTH-TIPS dataset is a well-collected dataset devoted to the research on texture recognition. For each class

of the dataset, totally 81 images were captured from the same material using a combination of nine scales, three poses

and three illumination conditions. Some sample images from the dataset are shown in Figure 7. Two experiments

were conducted on the KTH-TIPS dataset. The first one is the general texture classification similar to that on the

UMD dataset in Section 5.1. The second one is the scale-specified and illumination-specified classification, which

can evaluate the robustness against the scale and illumination changes.

5.2.1. General texture classification

On the KTH-TIPS dataset, we followed the experiment setup in [26]. The training set was selected as a random

subset composed of 40 samples from each class, and all remaining images were used as the test set. The average

accuracy is reported over 100 runs. To keep consistency with the result of [21], the variance of the classification
15



1

aluminium foil brown bread corduroy cotton cracker scale 1 scale 5 scale 9

linen orange peel sandpaper sponge styrofoam frontal 45◦ from top 45◦ from side

Figure 7: Sample images from the KTH-TIPS texture dataset. The first five columns show the samples from different classes. The remaining
columns show the samples from the class cotton with different scale changes (the upper row) and illumination changes (the bottom row).

accuracies over runs is also reported. The methods for comparison include the aforementioned (H+L)(S+R) and

WMFS methods. Besides, two approaches are involved:

• Hayman et al.’s method [7], describes texture image using filter bank responses.

• Zhang et al.’s method [26], is an extension of the (H+L)(S+R) method.

Table 3 summarizes the classification accuracies of the tested methods on the KTH-TIPS dataset. It can be seen

that our method performed the best among all the tested methods. To summarize the misclassification rates between

each two classes, the confusion matrices of our method and the WMFS method are shown in Figure 8. Our method

performed the worst in dealing with classes linen and cotton, and these two classes were misclassified as each other

with relatively high rates. The main reason is that both the classes contain the samples with similar patterns, which

are difficult to be distinguished by the LBPriu2
P,R coding. Note that the class cotton is also the worst one for the WMFS

method due to the large variance existing in the class over scales (see the three images on the upper right of Figure 7).

From Figure 8 it can be also seen that the confusion matrix of the WMFS method is denser than that of our method.

One reason is that the WMFS descriptor emphasizes more on the invariance to changes and hence loses some degree

of the distinction between classes. By contrast, our method can better strike the tradeoff between the invariance and

the distinction.
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Table 3: Classification accuracies (%) on the KTH-TIPS dataset.Table 3: Classification accuracies (%) on the KTH-TIPS dataset.

Method Hayman et al. [7] (H+L)(S+R) [30] Zhang et al. [26] WMFS [21] PFS

Accuracy (%) 94.80 ± 1.20 91.30 ± 1.40 96.10 ± 1.20 96.54 ± 1.07 97.35 ± 1.25
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Figure 8: Confusion matrices on the KTH-TIPS dataset.

5.2.2. Scale-specified and illumination-specified texture classification

A well-designed experimental protocol was proposed in [24], with the purpose of investigating the behavior of the

descriptor according to the scale and illumination change. The basic idea is to train the classifier using the samples

from the several scales/illumintion conditions and then classify the samples from other scales/illumintion conditions.

There are two parts of the experimental protocol:

• The scale-specified classification, in which images from one, three and five scales are used for training respec-

tively. The details of the scale selection can be referred to Table 4. We compare our method with the MR8

method evaluated in [24] as well as the aforementioned WMFS method.

• The illumination-specified classification, in which one illumination condition was fixed in training and two

other conditions were used in testing. The three illumination conditions differ in the direction of the light. See

Table 5 for the details. Since the result of the MR8 method on the illumination-specified classification is not

available, we only compare our method with the aforementioned WMFS method.
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Figure 8: Confusion matrices on the KTH-TIPS dataset.

5.2.2. Scale-specified and illumination-specified texture classification

A well-designed experimental protocol was proposed in [24], with the purpose of investigating the behavior of the

descriptor according to the scale and illumination change. The basic idea is to train the classifier using the samples

from the several scales/illumintion conditions and then classify the samples from other scales/illumintion conditions.

There are two parts of the experimental protocol:

• The scale-specified classification, in which images from one, three and five scales are used for training respec-

tively. The details of the scale selection can be referred to Table 4. We compare our method with the MR8

method evaluated in [24] as well as the aforementioned WMFS method.

• The illumination-specified classification, in which one illumination condition was fixed in training and two

other conditions were used in testing. The three illumination conditions differ in the direction of the light. See

Table 5 for the details. Since the result of the MR8 method on the illumination-specified classification is not

available, we only compare our method with the aforementioned WMFS method.
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Table 4: Classification accuracies (%) on the KTH-TIPS dataset. Experiments were conducted using for training (a) the central scale and 3 views
per material (1 scale); (b) 3 equally spaced scales and 3 views per scale per material (3 scales); (c) 5 equally spaced scales and 3 views per scale
per material (5 scales). The test set consisted of all the views of the remaining scales.

Table 4: Classification accuracies (%) on the KTH-TIPS dataset. Experiments were conducted using for training (a) the central scale and 3 views
per material (1 scale); (b) 3 equally spaced scales and 3 views per scale per material (3 scales); (c) 5 equally spaced scales and 3 views per scale
per material (5 scales). The test set consisted of all the views of the remaining scales.

Material (a) One scale (b) Three scales (c) Five scales
MR8 [24] WMFS [21] PFS MR8 [24] WMFS [21] PFS MR8 [24] WMFS [21] PFS

aluminium foil 88.89 93.06 93.06 96.29 100 100 100 100 100
brown bread 54.17 68.06 88.89 74.07 75.93 100 91.67 94.44 100

corduroy 61.11 88.89 75.00 74.07 83.33 100 86.11 100 100
cotton 34.72 27.78 6.94 55.56 51.67 42.41 77.78 87.50 86.11
cracker 79.17 56.94 75.00 92.59 90.93 97.59 94.44 88.89 100
linen 41.67 38.89 22.22 70.37 92.41 70.09 91.67 100 91.67

orange peel 41.67 77.78 45.83 57.40 82.78 98.15 80.55 100 97.22
sandpaper 75.00 69.44 68.06 74.07 77.78 91.57 83.33 86.39 97.22

sponge 77.78 88.89 63.89 92.59 96.30 100 100 94.44 100
styrofoam 79.17 75.00 72.22 96.29 90.74 92.59 100 97.22 97.22

average 63.33 68.47 61.11 78.33 84.19 89.24 90.56 94.89 96.94

Table 5: Classification accuracies (%) on the KTH-TIPS dataset. Experiments were conducted using for training when the illumination direction is
(a) frontal ; (b) 45◦from top; (c) 45◦from side. The test set consisted of all the views of the remaining illumination conditions.

Material (a) Frontal (b) 45◦from top (c) 45◦from side
WMFS [21] PFS WMFS [21] PFS WMFS [21] PFS

aluminium foil 100 100 98.15 100 85.09 94.54
brown bread 33.33 100 82.87 96.30 16.02 62.96

corduroy 94.44 59.17 35.46 50.00 51.76 68.80
cotton 48.15 73.61 57.41 38.89 69.26 62.69
cracker 61.30 100 72.69 92.59 63.06 86.48
linen 98.15 81.48 81.94 100 85.28 75.93

orange peel 90.74 100 100 100 85.19 90.74
sandpaper 46.20 91.20 70.37 100 27.78 90.09

sponge 48.15 100 76.39 100 90.74 100
styrofoam 51.85 88.89 66.67 96.30 87.04 98.15

average 67.23 89.44 74.19 87.41 66.12 83.04

The experimental result of the scale-specified classification is listed in Table 4. It can be seen that our method

performed the best in the cases of using three scales and five scales, but it did not perform better than the MR8 and

WMFS methods when using one scale. Particularly, the performance of our method was very bad in the class cotton

and poor in the class linen. We found that these two classes were likely to be misclassified as each other. This is

similar to what happened in Section 5.2.2. Table 5 summarizes the experimental result of the illumination-specified

classification. We can see that our method significantly outperformed the WMFS method. This does not surprise us
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because our method is very robust against the illumination changes due to the invariance of the LBP coding to any

monotonic transformation in grayscale.

5.3. Classification on the ALOT dataset

The ALOT dataset is a large-scale dataset with high-resolution colorful texture images (see Figure 9). To speed up

the computation, the images were converted to grayscale version and downsampled by half before feature extraction.

We followed the experimental configuration of [21]. The training size for each class was set to be 5,10,15,...,50 and

the corresponding classification accuracies are calculated respectively. The reported classification accuracies are the

averages over 2000 runs. As there are only a few experimental results available on the ALOT dataset, we focus on the

comparisons with three fractal-based methods with published results. These methods are the aforementioned MFS,

OTF and WMFS methods.

1

Figure 9: Sample images from the ALOT dataset [43].
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Figure 10: Classification accuracy (%) vs. number of training samples for the ALOT dataset.

The experimental results on the ALOT dataset are plotted as curves in Figure 10. It can be seen that the accuracy

curves of the OTF method and the WMFS method are not stable with two intersections. One reason for such instability

19



is that the OTF and WMFS methods are insufficiently robust to all kinds of significant environmental changes con-

tained in images of the ALOT dataset. Thus, the performance of these two methods will be affected when the training

set is not big enough to cover the samples with unfavorable environmental changes. Unlike the WMFS method, our

method still performed stably well on the large-size dataset and achieved the best accuracies through all the training

sizes. This demonstrates that our method has the discriminative ability as well as the robustness against a wide range

of environmental changes.

5.4. Efficiency

Our descriptor has demonstrated its discriminative power by achieving the best performance among the compared

methods on the UMD, KTH-TIPS and ALOT datasets and the competitive result on the UIUC dataset. We emphasize

that our descriptor is not only highly distinct, but also compact and computationally efficient. To demonstrate this, we

compare the feature length and the computational time of our approach with other two top fractal-based approaches,

i.e., the OTF method and the WMFS method. To have a fair comparison, all the tested methods is implemented in

MATLAB. The software environment is the MATLAB 2012b platform run on the Windows 7 operating system, and

the hardware platform is a desktop computer with Intel Core i7 quad-core 3.5GHz CPU and 8GB memory. We run

the codes on the aforementioned four benchmark datasets and report the average running time over images on each

dataset respectively.

Table 6: Comparison on the feature length (dim) and the running time (s).
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Figure 10: Classification accuracy (%) vs. number of training samples for the ALOT dataset.

5.4. Efficiency

Our descriptor has demonstrated its discriminative power by achieving the best performance among the compared

methods on the UMD, KTH-TIPS and ALOT datasets and the competitive result on the UIUC dataset. We emphasize

that our descriptor is not only highly distinct, but also compact and computationally efficient. To demonstrate this, we

compare the feature length and the computational time of our approach with other two top fractal-based approaches,

i.e., the OTF method and the WMFS method. To have a fair comparison, all the tested methods is implemented in

MATLAB. The software environment is the MATLAB 2012b platform run on the Windows 7 operating system, and

the hardware platform is a desktop computer with Intel Core i7 quad-core 3.5GHz CPU and 8GB memory. We run

the codes on the aforementioned four benchmark datasets and report the average running time over images on each

dataset respectively.

Table 6: Comparison on the feature length (dim) and the running time (s).

Method Feature length
Running time (s) per image on

KTH-TIPS UIUC UMD ALOT
(200 × 200) (640 × 480) (1280 × 900) (1536 × 1024)

WMFS [22] 1218 1.53 7.46 29.60 36.01
OTF [21] 338 1.51 6.32 25.40 30.59

PFS 70 1.51 2.34 5.70 6.82

The result is listed in Table 6. It can be seen that our approach achieved both the shortest feature length and the

20

The result is listed in Table 6. It can be seen that our approach achieved both the shortest feature length and the

lowest computational cost among all the compared methods. It can be also seen that as the image size increases, the

running time of the OTF and WMFS methods grow rapidly. In contrast, with reasonably increasing computational

cost, our method demonstrates its scalable capability of processing large-scale visual data (e.g., high-resolution images
20



and high-definition videos). It should be mentioned that the OTF method requires more than 4GB memory when the

image size is over 900× 900, while our method only requires memory less than 2GB. Furthermore, benefitting from

the compact and short feature, our classification process is also very efficient. The running time for each trial is about

0.12 seconds with 25 classes. Finally it is worth noting that our proposed approach does not require feature detection

and clustering. Thus a large image size does not impose much computational burden on the computation of the PFS

descriptor.

6. Summary and Conclusions

In this paper, a statistical texture descriptor is proposed, which applies the global fractal analysis to the local binary

image patterns. The proposed descriptor has strong robustness to both local and global illumination changes and is

robust to many geometric changes. Locally, robustness against image rotation, illumination changes and geometric

variations is achieved by using the LBP coding strategy. The LBP also provides a compact representation for our

descriptor. Globally, the multi-fractal analysis is employed to obtain further robustness against global environmental

changes. The multi-fractal analysis is also very efficient in characterizing the strong multi-scale power law relation-

ship in natural texture patterns, which makes our descriptor highly discriminative. Compared with other fractal-based

approaches that have achieved impressive results, our approach is computationally efficient as it avoids any complex

alignment stages, interest point detection, texton generation and cross-bin comparisons. Four challenging public tex-

ture datasets are used for evaluating the proposed descriptor. Our approach outperform other fractal-based approaches

on three datasets and is competitive on the other. In addition, the feature length of our descriptor is the shortest among

all the methods for comparison.

The LBP coding strategy used in our approach is very classical and simple. We believe that by using other LBP

variants with improved robustness, our descriptor can achieve better performance. In future research, we would like to

investigate how to utilize the joint spatial distribution of the LBPs in our framework and how to apply our descriptor

to scene understanding.
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