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Abstract

In this paper, a reduced-reference image quality assessment metric is proposed,
which measures the difference of the regularity of the phase congruency (PC)
between the reference image and the distorted image. The proposed model adopts
a three-stage approach. The PC of the image is first extracted, then the fractal
dimensions are computed on PC as the image features that characterize the image
structures from the view of the spatial distribution. Finally the image features are
pooled as the quality score using `1 distance. The proposed approach is evaluated
on seven public benchmark databases. Experimental results have demonstrated
the excellent performance of the proposed approach.
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1. Introduction

The quality of digital images is rarely perfect. Images are subject to distortions
during acquisition, compression, transmission, processing, and reproduction. To
maintain, control, and enhance the quality of images, it is important for image
acquisition, management, communication, and processing systems to be able to
identify and quantify image quality degradations. The development of effective
automatic image quality assessment systems is a necessary goal for this purpose.

Image quality assessment (IQA) methods can be categorized into subjective
and objective methods [1]. Subjective IQA directly gives image quality by human
subjects. This method, though reliable, is expensive and too slow for real-world
applications. So objective IQA has been desired, where the goal is to provide
computational models that can automatically predict perceptual image quality.

According to the availability of a reference image, objective IQA metrics can
be classified as full reference (FR), no-reference (NR) and reduced-reference (RR)
methods. FR-IQA [2, 3, 4, 5, 6] requires full access to an original reference image
that is assumed to have perfect quality. However, in many practical applications,
an IQA system does not have access to the reference image. Blind/NR-IQA [7, 8,
9] turns out to be a very difficult task, due to the varied image contents and the
individual distortion types, although human observers usually can effectively and
reliably assess the quality of distorted images without using any reference at all.
RR-IQA [10, 11, 12, 13, 14] strikes the balance of FR-IQA and NR-IQA and it
predicts the quality degradation of an image with only partial information about
the reference image. In this paper, the discussion is confined to RR-IQA methods.

As we know, on the way to RR-IQA metric, the key issue is feature detection
and extraction. Therefore, studying and exploiting the special properties of natural
images has been one of the most important tasks in RR-IQA. The current research
either depends on some statistic models of natural images (e.g., [14, 12, 15, 16]),
or relies on the histogram of local patterns in some transform domain (e.g., [17,
10, 18]). All of these methods lose the image spacial information and cannot
explicitly represent the image structural information. Although the change of the
number of image elements is certainly related to the varying of image quality, it is
insufficient to characterize the perception of human visual system (HVS) to visual
quality.

Motivated by the evidence presented in [19, 20, 21, 22, 23] that visually dis-
cernable features coincide with those points where the Fourier waves at different
frequencies have congruent phases, and the power law relationship for PC, which
can be characterized well by fractal analysis. In this paper, we propose a new
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approach to RR-IQA based on PC and fractal analysis.
The proposed approach, called Similarity of PC Regularity (SPCR), charac-

terizes the regularity of the PC. The PC of the image is first extracted. Then the
PC is characterized by fractal dimension as the image features. Finally these im-
age features are pooled as the quality score by computing `1 distance between the
features of the reference image and that of the distorted one. In our implementa-
tion, we have two versions of SPCR that defined on the intensity image and the
partial gradient image respectively. Our approach is evaluated on seven famous
benchmark IQA databases using five popular evaluation metrics. The competitive
results achieved demonstrate that our method performs on par with the state-of-
the-art approaches.

Actually, PC has already been used for IQA in the literature and and has shown
its power in several quality assessment studie[6, 24, 25, 26, 27]. In [6, 24, 25], PC
is used for FR-IQA; In [26, 27], PC is employed for NR-IQA. PC will be used in
the RR-IQA in this paper.

The rest of this paper is organized as follows: Section 2 is devoted to related
work. Section 3 gives a brief review on PC and fractal analysis, A detailed de-
scription of our proposed metric is given in Section 4. Experimental results and
analysis are presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

In recent years, a number of RR-IQA methods have been developed, we give
a brief review in this section.

In previous work, RR-IQA focuses on the specific types of image distortions,
these methods use image distortion modeling [18, 28] developed for specific ap-
plication environments. For instance, in [28], a hybrid image quality metric com-
bines five structural features: blocking, blur, edge-based image activity, gradient-
based image activity and intensity masking. The metric makes a similarity assess-
ment between the distorted image and the reference image to assess JPEG coded
images. However, these metrics suffer from bad performance when images with
different distortion types are tested together, because the models are built for each
distortion type respectively.

Recent work has concentrated on general-purpose RR-IQA methods. These
approaches are most base on natural image statistical model [12, 14, 15, 17] and
have achieved impressive results in RR-IQA. The basic idea of these methods is
to quantify the image quality by quantifying the disturbance to the image statis-
tics caused by the distortion. Wang et al.[14] modeled natural images using the
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marginal probability distributions of the coefficients in wavelet domain, and the
Kullback-Leibler distance (KLD) between two marginal distributions is used to
measure the image distortion. In order to model the perceptual sensitivity of bi-
ological vision, Li et al.[12] proposed the so-called divisive normalization trans-
formation (DNT) for image representation. The image statistic is based on the
Gaussian scale mixtures(GSM) model and the KLD is used to pool the features
to the final score. In [10], according to the distribution of wavelet coefficients,
geometric information is extracted for quality assessment. In [16], the general-
ized Gaussian density is employed to model the distribution of the discrete cosine
transform (DCT) coefficients. Xue et al.[15] employed the Weibull distribution
to describe the statistics of image gradient magnitude. In [13], the image qual-
ity is measured by the difference between the entropies of wavelet coefficients
of reference and distorted images. To adapt the SSIM[29] to RR-IQA, Rehman
et al.[2] combined the GSM-based statistics in a multi-scale and multi-orientation
DNT domain following the philosophy in the construction of SSIM. A regression-
by-discretization method is then applied to normalize the measure across image
distortion types. All of these methods are based on counting the difference of the
numbers of elements in two images, which lose the details of how the elements
are distributed.

Compared with statistical approaches, fractal dimension can encode spatial in-
formation in form of the geometrical distribution of the point sets[30]. Moreover,
it is well known that phase information provides the most significant informa-
tion within an image [31], and the PC is coincide with the visually discernable
features [19, 20, 21, 22, 23]. More recently, PC has successfully been used for
FR-IQA [6, 24, 25, 26, 27] and NR-IQA[6, 24, 25]. However, how to encode
phase information for RR-IQA is a challenge problem, to this end, in this paper
we attempt to incorporate PC and fractal analysis into the design of RR-IQA.

3. Preliminaries

Before presenting the detailed description of our approach, we first give an
introduction of two mathematical tools upon which our approach is built. We first
describe the definition of PC. Then we introduce fractal dimension which encodes
PC, which offers us the ability to precisely evaluate the visual information of
images.
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3.1. Phase Congruency
PC is first defined in [21] in term of the fourier series expansion of a signal at

location x:

PC(x) = max
θ∈[0,2π]

∑
nAncos(Φn(x)− Φ(x))∑

nAn
, (1)

whereAn is the amplitude of nth flourier component, and Φn(x) is the local phase
of fourier component, and Φ(x) is the mean average local phase. It should be
noted that PC is a real number within 0 ∼ 1. If all the Fourier components are
in the same phase at location x , PC(x) would be 1. If there is no coherence of
phase, PC(x) falls to a minimum of 0. PC provides a measure that is independent
of the overall magnitude of the signal making it invariant to variations in image
illumination and/or contrast.

PC is further modified and extended to two dimensions via the 2D log-Gabor
filters by Kovesi [32]. The Log-Gabor filters are defined in the frequency domain
using polar coordinates by the transfer functionH(f, θ) constructed as a following
product:

H(f, θ) = Hf ·Hθ, (2)

the radial component Hf controlling the bandwidth that the filter responds to,
and the angular component Hθ controlling the spatial orientation that the filter
responds to. The 2D Log-Gabor filters can be represented in a polar form as:

H(f, θ) = exp[− [log(f/f0)]
2

[2 log(σf/f0)]2
] · exp[−(θ − θ0)2

2σθ
], (3)

where f0 is the filter’s center frequency, and θ0 the filter’s direction. To obtain
constant shape ratio filters, the term σf/f0 must also be held constant for varying
f0 .

By modulating f0 and θj and convolving with the image, we get a set of re-
sponses at each point x as [en,θj(x), on,θj(x)]. The local amplitude on scale n
and orientation θj is An,θj(x) =

√
en,θj(x)2 + on,θj(x)2, and the local along ori-

entation θj is Eθj(x) =
√
Fθj(x)2 +Hθj(x)2, where Fθj(x) =

∑
n en,θj(x) and

Hθj(x) =
∑

n on,θj(x). The 2D PC at x is defined as

PC(x) =

∑
j Eθj(x)∑

n

∑
j An,θj(x) + ε

, (4)

where ε is a positive constant ensuring the numerical stability.
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In this work, the major reason to adopt the PC is that visually discernable fea-
tures of images coincide with PC [19, 20, 21, 22, 23], which provides convenience
for further feature extraction.

3.2. Fractal Analysis
Fractal analysis is introduced and developed by Mandelbrot [33] as a means

for describing and analyzing the properties of objects with irregular and complex
structure in nature. The characteristic property of fractals can be viewed as the ob-
jects with statistical self-similarity. The numerical quantification of self-similarity
is obtained by the fractal dimension. The fractal dimension d is a measure of a
given point set E in a certain measurement space m(·) by measuring its power
law behavior with respect to the scale δ:

mδ(E) ∝ δ−d,

wheremδ(E) is some measurement of the given point setE at scale δ. For images,
the measurement could be intensity, PC, etc.

There are many techniques to estimate the fractal dimension of image surface.
One popular approach is the so-called differential box counting (DBC) method,
which has the advantage of efficiency, accuracy and generality [34]. The DBC
method considers an image I(x, y) of sizeM×M as a 3D point set {(x, y, z)|z =
I(x, y)}, where (x, y) denotes the 2D position and z denotes the gray level of the
image. Suppose the image is scaled down to a size s × s, where s is an integer
and 1 < s ≤M/2. Let r = s/M . The (x, y) space is partitioned into grids of size
s × s. A column of boxes of size s × s × h are placed on each grid respectively,
where h denotes the height of a single box. We generally set the values of h and
s to satisfy G/h = M/s, where G is the total number of gray levels. Suppose the
minimum gray value and the maximum gray value in the (i, j)th grid fall in the
kth box and the lth box respectively, we compute the contribution nr(i, j) in the
(i, j)th grid as follows,

nr(i, j) = l − k + 1. (5)

Summing contributions from all grids, we have

Nr =
∑
i,j

nr(i, j), (6)

where Nr is counted for different values of r. Then the DBC fractal dimension is
defined as

dDBC = lim
r→0

log(Nr)

− log r
. (7)
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Figure 1: Log-log plot of box number versus box scale for PC. The upper row shows the
PC of the reference image in Figure 3(with horizontal, vertical derivative domain and
intensity domain). The bottom row shows the corresponding log-log fittings.

In practice, dDBC can be estimated from the least squares linear fitting in the
log(Nr)-log(1/r) coordinates system.

It is noted that there are many other techniques to estimate the fractal dimen-
sion of image surface, such as “interpolation method”[35] and MLE[36], et al..
We found that the final results using different methods are almost similar for im-
age quality assessment. The reason that we select DBC is that it is simple, quick
and achieves satisfactory result.

In this work, fractal analysis is adopted to encode the PC. The advantages of
employed fractal analysis are as follows:

First, fractal dimension has a strong correlation with HVS [37]. Second, com-
pared with statistical approaches, fractal dimension can encode spatial informa-
tion in form of the geometrical distribution of the point sets[30].

As we known, intensity images of most natural surfaces are isotropic frac-
tals [37]. To demonstrate that PC of the image can also be characterized by the
fractal model, we plot the behaviors of PC by log-log fitting in Figure 1. It can be
seen that the PC do behave according to some power law.
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Figure 2: Illustration for the SPCR index computation.

4. Similarity of PC Regularity

In this section, we present the proposed SPCR approach. The outline of our
approach is illustrated in Figure 2. There are two stages in our approach. In
the first stage, the image features based on fractal analysis are computed. In the
second stage, the features are pooled into a single index measure using `1 distance.
In the rest of this section, we will give the details of each stage.

4.1. Feature Extraction Based on Fractal Analysis
Given an image I , we first compute some measurement m(·) on I to extract

the low-level vision features m(I). The measurement can be the intensity mea-
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Table 1: Partial Derivatives of f(x) Using Operators

Operator ∇x ∇y

Scharr 1
16

 3 0 −3
10 0 −10
3 0 −3

 ∗ f(x) 1
16

 3 10 3
0 0 0
−3 −10 −3

 ∗ f(x)

Sobel 1
4

1 0 −1
2 0 −2
1 0 −1

 ∗ f(x) 1
4

 1 2 1
0 0 0
−1 −2 −1

 ∗ f(x)

Prewitt 1
3

1 0 −1
1 0 −1
1 0 −1

 ∗ f(x) 1
3

 1 1 1
0 0 0
−1 −1 −1

 ∗ f(x)

surement mint, the gradient measurement mgrad that are defined as follows,

mint(I) = I, (8)

mgrad(I) = ∇I, (9)

where ∇ is the partial derivative operator (here we adopt the Scharr gradient op-
erator listed in Table. 1. By using other operators such as the Sobel and Prewitt
operators, the proposed method will have similar results). By using these two
measurements, our approach can capture different structures of natural images
from different aspects. In practice, using image gradient to design IQA mod-
els [38, 6, 39, 40] is popular since it can effectively capture image local struc-
tures, to which the HVS is highly sensitive. The most commonly encountered
image distortions, such as noise corruption, blur and compression artifacts, will
lead to highly visible structural changes in the gradient domain.

Next, in order to capture the visually discernable features, PC is run on m(I),
resulting in PC on image intensity domain and partial derivative domain. Fi-
nally, we extract features from the PC via fractal analysis. In our implementa-
tion, we compute the DBC fractal dimension on each PC using (7) denoted by
SPCR(including SPCRint and SPCRscharr ) as follows,

SPCR int(I) = {dDBC(PCI(m(I)))}, (10)
SPCR scharr(I) = {dDBC(PC∇x(m(I))), dDBC(PC∇y(m(I)))}. (11)
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Figure 3: Reference image and five distorted images with different types of distortion in
the LIVE dataset (JPEG2000, JPEG, WHITE NOISE, GBLUR, FAST FADDING respec-
tively).
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Figure 4: The SPCR features of the images shown in Figure 3. The variable α denotes the
index of the horizontal, vertical derivative domain and intensity domain, f(α) denotes the
fractal dimension respectively.
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As we known, features used by RR-IQA should be sensitive to various image
distortions. Figure 3 shows a reference image and five distorted images with dif-
ferent types of distortion in the LIVE database [41], and their corresponding SPCR
features are demonstrated in Figure 4. One can see that the different types of dis-
tortions result in the different SPCR. Thus, SPCR can reflect the global changes
of the image structures caused by different types of distortion, but its ability is
limited to reflect the local distortion. Hence, we modify our SPCR method to
adapt the local distortion case as follows. A given image is first divided into non-
overlapped sub-images, and then the original SPCR features are computed on each
subimage and concatenated as output. In other words, the modified SPCR features
are defined as

SPCRint(I) =
⊎
i

dDBC(Pi(PCintensity(m(I)))), (12)

SPCRscharr(I) =
⊎
i

dDBC(Pi(PCscharr(m(I)))), (13)

where Pi denotes the operator that extracts the ith subimage and
⊎

denotes the
concatenation of all the values into a vector. In the rest of this paper, we refer
SPCR feature as the modified version.

4.2. Similarity Index of PC Regularity
Once the SPCR features of the perfect image Ip and the distorted image Id

have been obtained, we compute our SPCR measure (SPCRM) by calculating the
`1 distance of the two feature vectors as follows,

SPCRMint(Ip, Id) = ||SPCRint(Ip)− SPCRint(Id)||1, (14)
SPCRMscharr(Ip, Id) = ||SPCRscharr(Ip)− SPCRscharr(Id)||1. (15)

Due to the nature of the SPCR feature, the SPCRM value measures the difference
between the distorted image and the perfect image in the meaning of the regularity
of the local spatial distribution of the image structures.

To verify the effectiveness of the SPCRM, we compute the SPCRM of the
reference image in Figure 3 with different distortions, which are blurring(with
smoothing window), additive Gaussian noise(with zero-mean and the changing
variance), JPEG compression(with the changing compression rate), salt-pepper
noise(with the changing density), and speckle noise(with the changing density).
Figure 5(1–5) shows the reference images with different types of distortions and
the metric prediction trends to the corresponding image, respectively. In the light
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Table 2: Details of Seven Benchmark Databases

Database Reference Img Distorted Img Distortion Types

TID2008 25 1700 17
CSIQ 30 866 6
LIVE 29 779 5
IVC 10 185 4
MICT 14 168 2
WIQ 7 80 1
A57 3 54 6

of the fact that an IQA metric can be viewed as a excellent metric as long as
the metric monotonously changes with distortion increasing. What’s more, from
Figure 5, it is found that the proposed framework prediction trends to rise when the
degree of the distortion is increasing. It is consistent well with the tendency of the
decreasing image quality in fact. So the results demonstrate the rationality of the
proposed framework. We do the same experiment using the 29 original images in
the LIVE database. The average of all SPCRM is shown in Figure 5(6–10), which
gives a similar conclusion.

5. Experiment

5.1. Benchmark Datasets and Test Methodology
There are seven public benchmark databases widely used in the IQA com-

munity, including the TID2008 database [42], the CSIQ database [43], the LIVE
database [41], the IVC database [44], the MICT database [45], the WIQ database
[46] and the Cornel A57 database [47]. All of them are used for the evaluation of
our method. The important information of these seven databases, in terms of the
number of reference images, the number of distorted images, and the number of
quality distortion types is summarized in Table 2.

For quantifying the performance of our approach, we employ five popular
criteria, including the Pearson linear correlation coefficient(PLCC), the Spearman
rank-order correlation coefficient(SROCC), the Kendall rank-order correlation co-
efficient(KROCC), the root mean square error(RMSE) and the mean absolute er-
ror(MAE). The PLCC, RMSE and MAE metrics are used to measure the predic-
tion accuracy, while the SROCC and KROCC metrics are used to measure the
monotonicity. These performance criteria except KROCC are recommended by
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Figure 5: Rationality and Sensitivity of SPCRM, (1)–(5) SPCRM of reference image in
Figure 3 with blured, Gaussian noise contaminated, JPEG compressed, salt-pepper noise
contaminated and speckle noise contaminated; (6)–(10) Average SPCRM of reference
images in LIVE with blured, Gaussian noise contaminated, JPEG compressed, salt-pepper
noise contaminated and speckle noise contaminated.
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video quality experts group [48]. A desirable objective RR-IQA measure is ex-
pected to have high values of the SROCC, KROCC and PLCC metrics, and mean-
while have low values of the RMSE and MAE metrics. Before computing all the
metrics, a regression analysis is required to provide a nonlinear mapping between
the objective scores and the subjective mean opinion scores (MOS). In our setting,
we used the following mapping function [49], which is a logistic function with an
added linear term, constrained to be monotonic,

f(x) = β1(
1

2
− 1

1 + exp(β2(x− β3))
) + β4x+ β5, (16)

where βi, i = 1, 2, . . . , 5 are the parameters to be fitted by logistic regression,
which are determined by minimizing the sum of squared differences between the
mapped objective scores and the subjective ratings.

For evaluating the performance of our approach, we compare our approach
with four representative and competitive RR-IQA metrics, including the WNISM [3],
the HWD2 [10], the RR-SSIM [2] and the RRED [13]. Furthermore, we also com-
pare our RR-IQA method with five FR-IQA approaches, including the FSIM [6],
the IW-SSIM [50], the VIF [4], the SSIM [29] and the PSNR. Not all of these
approaches have been evaluated all the datasets we use. We only refer the results
that are available. To further understand the behavior of our RR-IQA approach, we
also compare the performance of our SPCRM method on three largest databases
(TID2008, CSIQ and LIVE) with respect to each image distortion type.

5.2. Implementation of SPCRM
It should be noted that the SPCRM will be most effective if used on the ap-

propriate scale, while it depends on both the image resolution and the viewing
distance and hence is difficult to be obtained. In our implementation, we follow
the empirical scale proposed by [51] and normalized all the images to 256×256. In
Table 3, We compare the SROCC scores with non-normalization and normaliza-
tion (normalized to 256×256 and normalized to 128×128) on the CSIQ database
whose raw image size is 512× 512, one can clearly see that empirical scale does
effect the performance of proposed approach. After normalization, SPCRM uses
less data of the reference image and achieves higher prediction accuracy.

The block size is one parameter in the proposed SPCRM approach, which is
used to compute block-wise DBC fractal dimension and also determines the fea-
ture length. In the literature, two strategies are often used in the parameterization
process. One is to choose the parameters depending on how well the resulting
model fits the physiological or psychophysical data, e.g.[10]. The other strategy
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Table 3: SROCC Values vs the Size of Image on CSIQ Database

Database 512× 512 256× 256 128× 128

CSIQ 0.8110 0.9410 0.8909
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Figure 6: The performance of SPCRM in terms of SROCC vs. size of block on the three
databases(TID2008,CSIQ and LIVE).

is to train the parameters to optimize performance in terms of predicting subjec-
tive ratings, e.g.[6]. We adopt the second strategy. More precisely, we tuned the
parameter based on TID2008, CSIQ and LIVE databases. Figure 6 shows the
performance of our method with respect to different sizes of block. As we can
see, the performance of SPCRM SCHARR increases as size of blocks decreases,
while SPCRM INT is relatively stable.

In our proposed metrics SPCRM, the gradient needs to be calculated. To this
end, three commonly used gradient operators listed in Table 1 are examined. The
selection criterion is that the gradient operator leading to a higher SROCC would
be selected. The SROCC values obtained by the three gradient operators on the
LIVE database are listed in Table 4, from which we can see that the Scharr oper-
ator could achieve slightly better performance than the other two. Thus, in all of
the following experiments, the Scharr operator is used to calculate the gradient in
SPCRM.

Table 4: SROCC Values Using Three Gradient Operators

Database Scharr Sobel Prewitt

LIVE 0.9444 0.9439 0.9441
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Table 5: Performance Comparison on Seven Benchmark Databases(img.size* is the image size
after normalization)
DataBase Criteria SPCRM-SCHARR SPCRM-INT RRED [13] SPCRM-SCHARR SPCRM-INT RR-SSIM [2] HWD2 [10] WNISM [3] FSIM[6] IW-SSIM[50] VIF[4] SSIM[29] PSNR

Type RR RR RR RR RR RR RR RR FR FR FR FR FR

Length img.size*/32 img.size*/64 img.size/36 32 16 36 18 16 img.size img.size img.size img.size img.size

TID
2008

PLCC 0.8509 0.8132 0.8255 0.7403 0.7560 0.7231 N/A 0.5891 0.8738 0.8579 0.8084 0.7732 0.5734
SROCC 0.8325 0.7921 0.8237 0.7567 0.7539 0.7231 N/A 0.5119 0.8805 0.8559 0.7491 0.7749 0.5531
KROCC 0.6448 0.5967 0.6346 0.5506 0.5500 0.7231 N/A 0.3589 0.6946 0.6636 0.5860 0.5768 0.4027
RMSE 0.7050 0.7809 0.7573 0.9021 0.8784 0.7231 N/A 1.0843 0.6525 0.6895 0.7899 0.8511 1.0994
MAE 0.5434 0.6099 0.5641 0.6979 0.6902 0.7231 N/A 0.8666 0.4926 0.5276 0.6000 0.6547 0.8327

CSIQ

PLCC 0.9464 0.8341 0.9121 0.8906 0.8076 0.8426 N/A 0.7124 0.9120 0.9144 0.9277 0.8613 0.8000
SROCC 0.9410 0.7728 0.9184 0.8889 0.7557 0.8527 N/A 0.7431 0.9242 0.9213 0.9195 0.8756 0.8058
KROCC 0.7848 0.5894 0.7429 0.7097 0.5663 0.6540 N/A 0.5457 0.7567 0.7529 0.7537 0.6907 0.6084
RMSE 0.0848 0.1448 0.1077 0.1194 0.1548 0.1413 N/A 0.1842 0.1077 0.1063 0.0980 0.1334 0.1575
MAE 0.0659 0.1162 0.0820 0.0902 0.1240 0.1092 N/A 0.1492 0.0797 0.0801 0.0743 0.0991 0.1195

LIVE

PLCC 0.9412 0.8871 0.9385 0.9097 0.8733 0.9194 0.9624 0.7365 0.9597 0.9522 0.9604 0.9449 0.8723
SROCC 0.9444 0.8886 0.9429 0.9131 0.8732 0.9129 0.9418 0.7472 0.9634 0.9567 0.9636 0.9479 0.8756
KROCC 0.7909 0.7020 0.7888 0.7392 0.6831 0.7349 N/A 0.5577 0.8337 0.8175 0.8282 0.7963 0.6865
RMSE 9.2300 12.6094 9.4317 11.3450 13.3087 11.3026 6.3657 18.4814 7.6780 8.3473 7.6137 8.9455 13.3597
MAE 7.1328 9.9588 7.2976 8.7882 10.3555 9.1889 4.8445 14.6352 5.9468 6.4702 6.1070 6.9325 10.5093

IVC

PLCC 0.9294 0.8449 0.9050 0.8252 0.7080 0.8177 N/A 0.5311 0.9376 0.9231 0.9028 0.9119 0.7196
SROCC 0.9225 0.8447 0.8987 0.8186 0.7018 0.8154 N/A 0.4114 0.9262 0.9125 0.8964 0.9018 0.6884
KROCC 0.7530 0.6501 0.7175 0.6256 0.5121 0.6164 N/A 0.2907 0.7564 0.7339 0.7158 0.7223 0.5218
RMSE 0.4498 0.6518 0.5183 0.6881 0.8604 0.7014 N/A 1.0322 0.4236 0.4686 0.5239 0.4999 0.8460
MAE 0.3542 0.5192 0.3971 0.5188 0.6997 0.5619 N/A 0.8550 0.3388 0.3694 0.4104 0.3777 0.6677

MICT

PLCC 0.8885 0.8166 0.8272 0.7954 0.6541 0.8051 N/A 0.6542 0.9078 0.9248 0.9138 0.8887 0.6429
SROCC 0.8831 0.8054 0.8228 0.8074 0.6475 0.8003 N/A 0.6322 0.9059 0.9202 0.9077 0.8794 0.6132
KROCC 0.6997 0.6116 0.6306 0.6099 0.4673 0.6090 N/A 0.4570 0.7302 0.7537 0.7315 0.6939 0.4443
RMSE 0.5742 0.7224 0.7033 0.7586 0.9466 0.7423 N/A 0.9464 0.5248 0.4761 0.5084 0.5738 0.9585
MAE 0.4352 0.5436 0.5465 0.6269 0.7432 0.5648 N/A 0.7742 0.4021 0.3677 0.4038 0.4386 0.7761

A57

PLCC 0.9478 0.8813 0.8547 0.6558 0.8282 0.7044 N/A 0.5125 0.9393 0.9034 0.6915 0.8017 0.7073
SROCC 0.9398 0.8627 0.8399 0.6538 0.7839 0.7301 N/A 0.3140 0.9181 0.8709 0.6223 0.8066 0.6189
KROCC 0.8077 0.6902 0.6483 0.4818 0.5825 0.5345 N/A 0.2210 0.7639 0.6842 0.4589 0.6058 0.4309
RMSE 0.0784 0.1162 0.1276 0.1856 0.1377 0.1744 N/A 0.2317 0.0844 0.1054 0.1784 0.1469 0.1737
MAE 0.0597 0.0900 0.1051 0.1457 0.1041 0.1433 N/A 0.1971 0.0721 0.0892 0.1329 0.1209 0.1417

WIQ

PLCC 0.8954 0.8781 0.8367 0.7933 0.7943 N/A N/A 0.3401 0.8546 0.8329 0.7605 0.7980 0.7939
SROCC 0.8846 0.8587 0.7626 0.7500 0.7769 N/A N/A 0.2156 0.8006 0.7865 0.6918 0.7261 0.6257
KROCC 0.7146 0.6728 0.5864 0.5689 0.5702 N/A N/A 0.1561 0.6215 0.6038 0.5246 0.5569 0.4626
RMSE 10.1981 10.9614 12.5448 13.9473 13.9160 N/A N/A 21.5404 11.8949 12.6765 14.8731 13.8046 14.1381
MAE 7.7062 8.6875 9.8095 11.1770 11.3315 N/A N/A 16.9682 9.0496 9.9121 12.2465 10.9873 11.2027

Weighted
Average

PLCC 0.8986 0.8369 0.8714 0.8151 0.7865 0.7995 N/A 0.6407 0.9050 0.8960 0.8728 0.8407 0.7020
SROCC 0.8889 0.8129 0.8584 0.8220 0.7723 0.7996 N/A 0.6034 0.9094 0.8955 0.8423 0.8430 0.6874
KROCC 0.7175 0.6226 0.6784 0.6305 0.5762 0.6061 N/A 0.4364 0.7409 0.7215 0.6827 0.6593 0.5161

Direct
Average

PLCC 0.9142 0.8508 0.8714 0.8015 0.7745 0.8021 N/A 0.5823 0.9121 0.8542 0.8522 0.8542 0.7299
SROCC 0.9068 0.8321 0.8584 0.7984 0.7561 0.8054 N/A 0.5108 0.9027 0.8446 0.8215 0.8446 0.6830
KROCC 0.7422 0.6447 0.6784 0.6122 0.5616 0.6121 N/A 0.3696 0.7367 0.6632 0.6570 0.6632 0.5082

5.3. Performance Comparison
The experimental results of the proposed SPCRM and the compared approaches

on seven benchmark databases are listed in Table 5. The FR-IQA indices which
perform the best on each database are marked in boldface and RR-IQA indices
are marked underlined. To provide an overall indication of the comparative per-
formance of the different schemes, Table 5 also gives the average PLCC, SROCC,
and KROCC results over seven databases, where the average values are computed
in two cases [2]. In the first case, the correlation scores are directly averaged,
whereas in the second case, different weights are assigned to the databases de-
pending on the number of the distorted images in each database (refer to Table
2).

From Table 5 it can be seen that the proposed SPCRM SCHARR approach
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Figure 7: Scatter plots of predicted quality scores against the subjective quality scores
(DMOS) by representative RR-IQA models on the CSIQ database. The six types of dis-
tortions are represented by different shaped colors.

outperforms other RR-IQA methods on all databases except some evaluation cri-
teria on LIVE database. In order to further demonstrate the effectiveness of the
proposed metric, SPCRM SCHARR is also compared with the overall indication
of the FR-IQA schemes, one can see that the SPCRM SCHARR performs the best
or close to the best on average no matter what kind of averaging is used and what
the evaluation criterion is. This further confirms that the proposed RR-IQA metric
outperforms the state-of-the-art RR-IQA metrics.

For visualization, we show the scatter plots of predicted quality scores against
subjective DMOS scores for two representative RR-IQA models (RRED and WNISM)
on the CSIQ database, which has six types of distortions (AWN, JPEG, JPEG2000,
PGN, GB and CTD) in Figure 7. One can observe that for SPCRM INT, the dis-
tribution of predicted scores on the CTD distortion deviates much from the dis-
tributions on other types of distortions, degrading its overall performance. Table
5 and Table 6 show that WNISM performs well on the single distortion type but
not very well on the whole databases. This is mainly because WNISM does not
predict the image’s quality consistently across different distortion types on entire
database, as can also be observed from the scatter plots with CSIQ database in
Figure 7.
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Table 6: Performance of SPCRM with Respect to Individual Distortion Type on the TID2008,
CSIQ, and LIVE Databases(img.size* is the image size after normalization)

DataBase Distortion Type SPCRM-SCHARR SPCRM-INT RRED [13] SPCRM-SCHARR SPCRM-INT RR-SSIM [2] HWD2 [10] WNISM [3]

Length img.size*/32 img.size*/64 img.size/36 32 16 36 16 18

TID2008

Additive Gaussian noise 0.8145 0.6717 0.8203 0.6294 0.6385 N/A N/A 0.6037
Noise in color comp. 0.7995 0.6225 0.8502 0.6189 0.5496 N/A N/A 0.6076
Spatially corr. noise 0.8296 0.6957 0.8417 0.6546 0.6396 N/A N/A 0.6008
Masked noise 0.7601 0.5865 0.8325 0.6336 0.5734 N/A N/A 0.6311
High frequency noise 0.8826 0.7925 0.9088 0.7749 0.7882 N/A N/A 0.7064
Impulse noise 0.6755 0.5560 0.7407 0.5598 0.5943 N/A N/A 0.5922
Quantization noise 0.8551 0.7895 0.8308 0.7435 0.7608 N/A N/A 0.6096
Gaussian blur 0.9195 0.8784 0.9573 0.8714 0.8386 N/A N/A 0.8723
Image denoising 0.9480 0.9133 0.9493 0.8746 0.8823 N/A N/A 0.8582
JPEG compression 0.9166 0.8807 0.9333 0.8729 0.8231 N/A N/A 0.8246
JPEG2000 compression 0.9592 0.9480 0.9681 0.9298 0.9204 N/A N/A 0.9344
JPEG trans. error 0.8867 0.8525 0.8704 0.8689 0.8023 N/A N/A 0.8774
JPEG2000 trans. error 0.8476 0.7602 0.7421 0.7880 0.7247 N/A N/A 0.6889
Non ecc. patt. noise 0.8190 0.8423 0.7127 0.6693 0.6781 N/A N/A 0.4293
Local block-wise dist. 0.8489 0.7533 0.8243 0.7811 0.6519 N/A N/A 0.6071
Mean shift 0.7144 0.4331 0.5378 0.7478 0.4769 N/A N/A 0.3204
Contrast change 0.0759 0.5903 0.5424 0.3148 0.5699 N/A N/A 0.7042

CSIQ

Additive Gaussian noise 0.9193 0.7645 0.9353 0.8137 0.7760 N/A N/A 0.8188
JPEG compression 0.9555 0.9238 0.9521 0.9179 0.9089 N/A N/A 0.8955
JPEG2000 compression 0.9578 0.9086 0.9628 0.8820 0.8873 N/A N/A 0.9405
Additive pink noise 0.9232 0.8193 0.9362 0.8423 0.7952 N/A N/A 0.8002
Gaussian blur 0.9690 0.9399 0.9634 0.9530 0.9314 N/A N/A 0.9144
Contrast change 0.9238 0.4443 0.9383 0.9014 0.4245 N/A N/A 0.9122

LIVE

JPEG2000 compression 0.9568 0.9023 0.9580 0.9273 0.8960 N/A 0.9362 0.9330
JPEG compression 0.9747 0.9328 0.9760 0.9444 0.9217 N/A 0.9543 0.9204
Additive Gaussian noise 0.9734 0.9213 0.9678 0.9273 0.9341 0.9642 0.9321 0.8701
Gaussian blur 0.9590 0.9172 0.9678 0.9401 0.9022 0.8692 0.8282 0.9145
JPEG2000 trans. error 0.9277 0.90501 0.9427 0.8861 0.8936 0.9137 0.9386 0.9227

5.4. Performance Comparison on Individual Distortion Types
Good overall performance does not necessarily mean good performance for in-

dividual distortion types. To examine how the proposed SPCRM method behaves
on different distortion types, we show the performance of the SPCR features on
each type of the TID2008, CSIQ and LIVE databases in Table 6. For easier com-
parison, only the SROCC values are listed. SROCC is chosen because it is suitable
for measuring a small number of data points and its value will not be affected by
an unsuccessful monotonic nonlinear mapping. There are a total of 28 groups of
distorted images in the three databases. We use boldface font to highlight the best
model in each group. One can see that RRED is marked 19 times, followed by
SPCRM SCHARR, which is only 8 times. However, SPCRM SCHARR is better
than RRED in terms of overall performance on the three databases.

Generally speaking, performing well on specific types of distortions does not
guarantee that an IQA model will perform well on the whole database with a broad
spectrum of distortion types. A good IQA model should also predict the image
quality consistently across different types of distortions. Referring to the scatter
plots in Figure 7, it can be seen that the scatter plot of SPCRM SCHARR is more
concentrated across different groups of distortion types. For example, its points
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Table 7: Time Cost of Each Metric
Model SPCRM SCHARR SPCRM INT RRED [13] RR-SSIM [2] HWD2 [10] WNISM [3] FSIM[6] IW-SSIM[50] VIF[4] SSIM[29] PSNR

Type RR RR RR RR RR RR FR FR FR FR FR

Time (seconds) 3.05 1.53 2.86 N/A N/A 6.49 1.89 2.24 5.16 0.13 0.01

corresponding to JPEG, PGN and CTD distortions are very close to each other.
However, the points corresponding to JPEG, PGN and CTD for RRED are rela-
tively far from each other. This explains why some RR-IQA models perform well
for many individual types of distortions but they do not perform well on the entire
databases; that is, these IQA models behave rather differently on different types
of distortions, which can be attributed to the different ranges of quality scores for
those distortion types.

Furthermore, it should be noted that the SPCRM has some difficulty to predict
the quality of the images with distortions caused by mean value shift or contrast
change. The reason is that PC is dimensionless measure and is independent of the
image illumination or contrast as discussed in 3.1 .

5.5. Evaluation of Running Speed
We also evaluate the running speed of each selected IQA index. The test

is performed on a Dell Inspiron INSP1440 PC embedded with an Intel T6600
processor and 2GB RAM. The software platform is Matlab R2011b. The size
of the test image is 768 × 512. All the MATLAB source codes were obtained
from the original authors. Table 7 shows the running time of the 11 IQA models.
Clearly, SPCRM INT is much faster than WNISM, RRED, SPCRM SCHARR
and RR-SSIM(according to [2], WNISM is about 2 times faster than RR-SSIM ),
SPCRM SCHARR approach is about the same time as the RRED approach and
about half time as the WNISM approach. More precisely, the huge complexity
of WNISM, RRED and RR-SSIM mainly comes from the highly overcomplete
steerable pyramid decomposition. Computation of PC is the main reason for the
complexity of SPCRM. According to the Table7, the computational complexity
of our approach is acceptable.

6. Conclusion

Since the quality of an image not only depends on the content of the image
but also the perception ability of human. Based on the fact that visually discern-
able features coincide with those points where the Fourier waves at different fre-
quencies have congruent phases. In this paper, we have proposed a new RR-IQA
scheme based on PC.
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For characterizing the distortion of image content, many traditional reduced
reference image quality assessment approaches are proposed based on counting
and comparing the numbers of local elements of the reference image and the dis-
torted image. Such approaches may lose the details of the spatial distribution of
the image elements. To overcome this problem, the regularity of spatial arrange-
ment is accounted in this paper. Fractal analysis is employed to characterize the
difference of the PC distributions in intensity and partial derivative domain be-
tween the reference image and the distorted image.

To demonstrate the power of the proposed approach, seven public benchmark
databases and five performance metrics are involved for evaluation. Our approach
performs on a par with other state-of-the-art approaches. In the future, we will
study the application of our approach to video quality assessment.
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