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Abstract. In recent years, sparse coding has been used in a wide range of appli-
cations including classification and recognition. Different from many other ap-
plications, the sparsity pattern of features in many classification tasks are struc-
tured and constrained in some feasible domain. In this paper, we proposed a re-
weighted `2,1 norm based structured sparse coding method to exploit such struc-
tures in the context of classification and recognition. In the proposed method,
the dictionary is learned by imposing the class-specific structured sparsity on the
sparse codes associated with each category, which can bring noticeable improve-
ment on the discriminability of sparse codes. An alternating iterative algorithm is
presented for the proposed sparse coding scheme. We evaluated our method by
applying it to several image classification tasks. The experiments showed the im-
provement of the proposed structured sparse coding method over several existing
discriminative sparse coding methods on tested data sets.
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1 Introduction

In recent years, sparse model has been an important tool with a wide range of appli-
cations. Sparse modeling assumes that signals of interest can be succinctly expressed
under some suitable system in a linear manner. The elements used for expressing signals
are often referred as atoms and the collection of all such atoms is called a dictionary
for sparse modeling. The computational method for sparse modeling is called sparse
coding, which aims at finding a dictionary, as well as the sparse coefficients, from input
signals. This sparse scheme, which rigorously pursues the sparsity of the codes, works
quite well in image processing and restoration. However, it’s not enough to achieve
high discriminability for classification and recognition tasks without exploiting extra
structural information existing in signals. Given a data matrix X = [X1,X2, . . . ,XK ]
where Xk denotes the data from the K category, the optimal structure of the corre-
sponding sparse coefficient matrix C under an ideal semantic dictionary D for classifi-
cation is as follows:

C∗ ,


C[1] 0 · · · 0
0 C[2] · · · 0
...

...
. . .

...
0 0 · · · C[K]

 . (1)
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While some recent approaches have attempted to pursue structured sparsity of the
form (1) either explicitly or implicitly, the disadvantages of these approaches are ob-
vious. For example, the simultaneous low-rank and sparse constrains used in [35] are
implemented with nuclear norm and `1-norm, which would yield to bias solution as
`1-norm has heavier penalty on larger coefficients. Supervised sparse coding [34] do
not explicitly impose structures on sparse codes, which often results in sub-optimal
solutions. The explicit structured regularizations on sparse codes, including label con-
sistency [11] and group Lasso [32], require the form of structure to be predefined, which
is inflexible and is inaccurate when the size of dictionary is limited. This inspires us to
develop an effective structured sparse coding method for classification. Motivated by
the effectiveness of the reweighting scheme in compressed sensing [5], we develop a
reweighted `2,1 norm based method for structured sparse coding based classification,
which is able to automatically discover the underlying structures of training data and
obtain the sparsity patterns of the form (1).

In this paper, a reweighted `2,1 minimization model is constructed to exploit the
class-specific joint structured sparsity patterns existing in labeled data. The weights are
determined by the magnitude of sparse codes, which in turn forces the training samples
to select active atoms that can span the subspace of the corresponding class and thus
encourages the sparse codes to be of the form (1). An alternating iterative algorithm is
developed to solve the proposed model. Experimental results on face recognition, gen-
der classification, and scene classification have demonstrated the excellent performance
of our method in comparison with several existing representative dictionary learning
methods.

The proposed structured sparse coding approach enjoys several advantages. Firstly,
using reweighted `2,1 regularization in the proposed method is able to reduce the bias
on large coefficients, while the `2,1 regularization based methods [21] cannot omit such
a bias when dealing with classification tasks. Besides, the reweighting scheme updates
the weights according to the magnitude of the sparse codes, which is more flexible
compared to the standard weighting strategy proposed in [17, 25]. Secondly, compared
to the discriminative sparse coding methods [29, 34] for classification, the proposed
method is able to learn dictionaries by which distinct structured sparsity patterns can
be enforced on the sparse codes of samples from different classes. Finally, our method
could detect the subspace of data from each class spanned by atoms of the dictionary
which helps to enhance the performance of classification.

2 Related Work

Group sparsity is a widely-used structured sparsity which assumes that atoms are se-
lected by input signals in a group-wise manner instead of a singleton-wise one, see
e.g. [12, 13, 9, 28]. In the group sparsity setting, the coefficients are arranged into a pre-
determined set of groups, and the sparsity term penalizes the number of active groups.
In the past years, various types of group sparsity have been exploited, e.g., overlap-
ping groups [9], tree sparsity [13], and graph sparsity [2]. The group sparse coding has
been used in several classification tasks, e.g., real time object recognition system [24],
face recognition [10], and image classification [19, 33]. Instead of considering correla-
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tion between dictionary atoms, many approaches proposed to seek for the collaborative
structured sparsity by encoding the shared high-order information among related sam-
ples [21, 4]. For example, in [21], a `2,1-norm regularization is performed to select fea-
tures across all related samples with collaborative structured sparsity, i.e., each feature
either has small or large values for all data points at the same time. Recently there is a
growing interest in exploiting block structured sparsity [7, 6], i.e., sparse groups of fea-
tures for all related samples are jointly encoded. Elhamifar et.al. [7] explicitly impose
block structure on sparse codes for classification. Zhang et.al. [35] implicitly impose
block structure on sparse codes by using simultaneous low-rank and sparse constraint.

In the classification case, a natural and simple way is to use sparse coefficients as
features to train a classifier, see e.g. [29, 15]. However the obtained sparse code does not
have enough discriminative power for classification. Thus many researches proposed to
add additional discriminative constrains on the sparse codes during the sparse coding
process, e.g. the class separation criterion (e.g. Fisher discrimination criterion [31, 30]),
prediction loss (e.g.logistic loss [18] and linear predictive errors [34, 11]). Some ap-
proaches [22, 31, 36] partition a dictionary into multiple subdictionaries by associating
each atom with certain class labels, and then impose discrimination to sparse codes of
each subdictionary. Compared with our method, these approaches need to predefine the
block structure of the dictionary.

3 Our Method

In this section, an effective dictionary learning model for structured sparse coding which
induces structural sparsity on sparse codes with reweighted `2,1-norm is proposed. Also
an efficient alternating iterative algorithm is developed to solve the proposed model.

3.1 Problem Formulation

Let Y = [Y[1],Y[2], . . . ,Y[K]] denote a set of training samples from K categories,
where Y[k] denotes the training samples from k-th category. One natural way to obtain
class-specific structured sparsity patterns for samples from each category, is to construct
a structured sparse coding model as follows,

argmin
D∈X ,C

K∑
k=1

1

2
‖Y[k] −DC[k]‖2F + λ‖C[k]‖2,0, (2)

where
X = {D ∈ Rn×m : ‖dj‖2 = 1, 1 ≤ j ≤ m}

denotes the feasible set of dictionary D, which ensures that the atoms are appropriately
normalized. And C[k] is a sub-matrix of C collecting the sparse codes of signals from
the k-th category (i.e.the sparse coefficients corresponding to Y[k]).

However, solving the `2,0 norm related problem is a NP-hard problem. Thus we
relax the model (2) to a weighted `2,1 norm based structural sparse coding method as
follows:

argmin
D∈X ,C

K∑
k=1

1

2
‖Y[k] −DC[k]‖2F + λ‖C[k]‖wk;2,1, (3)
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where wk is a weight vector for k-th category, λ is a scalar controlling the weight
of the structured sparsity prior, and ‖ · ‖w;2,1 is the weighted `2,1-norm defined as
‖X‖w;2,1 =

∑
i=1 wi‖xi‖2. When all weights are set to have equal magnitude, the

minimization (3) turns to be a standard `2,1 minimization.
The choice of the weight matrix W is essential for classification, as the magnitude

of each weight Wi,k is able to decide how heavy penalty will be imposed on i-th row
of C[k] and thus has great influence on the quality of the resulting structural sparsity
pattern. When the optimal dictionary is given, if most samples from the k-th category
have significant responses to the i-th atom, the corresponding weight Wi,k should be
small, vice versa. However the optimal dictionary is unknown, thus a reweighted `2,1
minimization is presented as follows,

argmin
D∈X ,C,W

K∑
k=1

1

2
‖Y[k] −DC[k]‖2F + λ‖C[k]‖wk;2,1, (4)

where the reweighting scheme is employed to redefine the weights in each iteration of
the learning process, as described in Sec. 3.2. The minimization (4) can be viewed as a
relaxation of the `2,0 minimization problem.

The reweighting scheme employed in our method provides a tool to explore the re-
lationships between class-specific structured sparsity patterns and the weighed values,
which is able to provide high discriminative information. To be more specific, when
‖ci[k]‖2 is small, it implies that data from k-th category are not likely to fall into the
subspace spanned by i-th atom. Setting Wi,k large emphasizes the penalty on the corre-
sponding sparse coefficients, which moves the i-th atom away from the favorite list of
the samples from k-th category. On the other hand, when ‖ci[k]‖2 is large, it implies that
the data from the k-th category are likely to lie in the subspace spanned by i-th atom.
Setting Wi,k small would provide flexibility for the corresponding sparse coefficients,
which improves the adaptivity of i-th atom to the underlying structures of data from the
k-th category.

3.2 The Proposed Iterative Algorithm

It is nontrivial to solve the minimization (3). In this section an alternating iterative algo-
rithm is proposed to separate the minimization into several simpler ones. The iteration
stops until either of the following stopping criteria is satisfied: (a) the change of objec-
tive function is small enough; (b) the maximum iteration number has been reached. The
learned dictionary and the obtained weight matrix are then used to code the test samples
and the label prediction for each test sample is based on its corresponding class-specific
representation residuals.
Sparse Approximation. Given dictionary D(t) and the weight matrix W (t), the
sparse coefficients C = [C[1], . . . ,C[K]]are calculated as follows:

C(t+1) = argmin
C

K∑
k=1

1

2
‖Y[k] −DC[k]‖2F +

K∑
k=1

λ‖C[k]‖w(t)
k ;2,1

, (5)
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which is separable and can be decomposed into K independent subproblems:

C
(t+1)
[k] = argmin

C
‖Y[k] −DC‖2F + λ‖C‖

w
(t)
k ;2,1

, ∀k. (6)

The reweighted `2,1 minimization (6) is solved via the accelerated proximal gradient
algorithm [23].
Dictionary Update. Given the sparse codes C(t+1), the dictionary D is updated as
follows:

D(t+1) = argmin
D∈X

1

2
‖Y −DC(t+1)‖2F , (7)

where D(t+1) = [d
(t+1)
1 , · · · ,d(t+1)

m ] is updated atom by atom via the projected gradi-
ent descent [16]; see [3] for the details.
Weight Refinement. Given the sparse codes C(t+1), based on the discussion in Sec. 3.1,
we can calculate the weights as follows,

Wi,k =
1

‖ci,(t+1)
[k] ‖2 + ε

, ∀i, k, (8)

followed by a `1 normalization on each weight vector corresponding to each category:

wk =
µwk

‖wk‖1
, ∀k, (9)

where µ is a constant implemented according to the dictionary size and ε is a sufficiently
small positive parameter for stability.

3.3 Classification Process

Once the learning process is finished, for each category, we can construct a subset of
atoms from the learned dictionary D by measuring the joint sparse representations of
related samples. Being associated with class-specific structured sparsity patterns, these
subsets of atoms can be used for classifying test samples. For k-th category, the corre-
sponding subset of atoms is defined as D[k] = {di | ‖ci[k]‖2 > 0, 1 ≤ i ≤ m}. Then
for each k, the sparse codes c[k] of a test signal y, is obtained by solving the following
minimization:

c[k] = argmin
c

1

2
‖y −D[k]c‖22 + α‖c‖1, (10)

where α is a parameter that balances the trade-off between sparsity and fidelity of the
solution. The problem (10) is also solved by the accelerated proximal gradient algo-
rithm [23]. Then y is classified to be the class with the minimum prediction error:

identity(y) = argmin
k

1

2
‖y −D[k]c[k]‖22 + α‖c[k]‖1. (11)
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4 Experiment

The performance of the proposed method is demonstrated with several classification
tasks, including face recognition, gender classification and scene classification. We
compared our method with several state-of-the-art dictionary learning approaches, in-
cluding Discriminative K-SVD (D-KSVD) [34], Label Consistent K-SVD (LC-KSVD) [11],
Sparse Representation based Classifier (SRC) [27], Dictionary Learning with Structure
Incoherence (DLSI) [22], dictionary learning with COmmonality and PARticularity
(COPAR) [14], Joint Dictionary Learning (JDL) [36], Fisher Discrimination Dictio-
nary Learning (FDDL) [31], Latent Dictionary Learning (LDL) [30]. Only the results
available in the literature are reported.

To verify the effectiveness of the proposed reweighting scheme, a baseline method
(denoted by Baseline) is implemented for comparison, which is based on the standard
`2,1 minimization. The training stage of the baseline method runs similarly to that of
the proposed approach except all the weight are set to be the same constant. The classi-
fication stage of the baseline method is the same as which described in Section 3.3. The
parameters of the baseline method are set to be the same as ours.

4.1 Implementation Details

Parameter setting. There are five parameters in our approach, i.e., the dictionary size
m, the regularization parameters λ and α, the reweighting parameters µ and ε. In all the
experiments, if no specific instructions mentioned, a five-fold cross validation scheme
is used to find λ and α. To have a fair comparison, if no specific instructions mentioned,
the dictionary sizes of all the compared methods mentioned above are set to be the same
as [11, 30]. Besides, the parameter µ is set equal to m for simplicity and ε is set to be a
small positive real number (for example 10−6).
Initialization. The initial dictionary D(0) is generated by sampling from training data.
More precisely, we randomly select a certain number of samples from each category as
the dictionary atoms. For the initialization of the weight matrix W , we set Wi,k equal
to 0.5 if the i-th initial atom is taken from the k-th category and 1 otherwise.
Computational time. To demonstrate the scalability of our method, the proposed method
is tested on two datasets of different sizes, the average training time and test time for
Ext.YaleB of 504 dimension is 4s and 43s respectively, and for Scene-15 of dimension
3000 is 126s and 111s.

4.2 Face Recognition

We demonstrate the effectiveness of our method in face recognition using the Extended
YaleB dataset [8], which contains 2, 414 images of 38 human frontal faces under 64
illumination conditions and expressions. The original images were cropped to 192×168
pixels. As done in [34], each face image is projected into a 504-dimensional feature
vector using a random matrix of zero-mean normal distribution. The dataset is randomly
split into two halves. One half is used for training and the other half is used for testing.
See Figure 1 for some examples.
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1

1

Samples of Ext. YaleB dataset Samples of AR face dataset

Fig. 1: Some sample images from dataset YaleB (left) and AR face (right)

The parameters used in this experiment are set as follows: m = 570, λ = 0.01 and
α = 0.002. We repeated the training and testing processes 10 times with different ran-
dom splits of the training and testing samples to calculate the average recognition accu-
racies. The experimental results of all competing methods are summarized in Table 1.
Note that the dictionary size of SRC is the same as the number of training samples,
so we compare SRC with the same dictionary size as ours(denoted SRC∗). It can be
seen that our approach is competitive among all the compared methods. The proposed
outperformed the baseline method and many state-of-the-art approaches except SRC.
But note that the performance of the SRC method degrades dramatically when using
dictionaries of the same size as ours.

Table 1: Recognition accuracies (%) of the compared methods on the Ext. YaleB dataset.

KSVD [1] SRC [27] D-KSVD [34] LC-KSVD [11] LLC [26] SRC∗ Baseline Our method

93.10 97.20 94.10 95.00 90.70 80.50 84.63 94.52

4.3 Gender Classification

We conducted gender classification on the AR face database [20] with the same exper-
imental setting as [31]. We first chose a non-occluded subset (14 samples per subject)
from the AR face database, which consists of 50 males and 50 females, to conduct the
experiments. Some sample images are shown in Figure 1. Images of the first 25 males
and 25 females were used for testing. Each image is reduced to a 300-dimensional fea-
ture vector by PCA.

As there are only two classes and each class has enough training samples, we set
the dictionary size relatively small (m = 50). The parameters λ and α are set to be
0.06 and 0.003 respectively. As shown in table 2 that our approach outperformed all
the tested methods excepted LDL [30]. Although the recognition accuracy of LDL is
slightly better than ours, our approach use a dictionary with smaller size than LDL.
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Moreover, our method does not involve any discrimination term explicitly and thus has
lower computational complexity than LDL.

Table 2: Classification accuracies (%) of the compared methods on the AR database.

DLSI [22] COPAR [14] JDL [36] FDDL [31] LDL [30] Baseline Ours

93.70 93.00 91.00 93.70 95.00 93.13 94.00

4.4 Scene Classification
Our method was applied to scene classification and evaluated on the Scene-15 dataset [15].
The Scene-15 dataset contains 15 scene categories, the number of images per category
varies from 210 to 410, and the resolution of each image is about 250 × 300. See Fig-
ure 2 for the sample images per category from the dataset.

1

bedroom CALsuburb industrial kitchen livingroom

MITcoast MITforest MIThighway MITinsidecity MITmountain

MITopencountry MITstreet MITtallbuilding PARoffice store

Fig. 2: Example images from the Scene-15 dataset.

The 3000-dimensional SIFT-based spatial pyramid features [15] extracted from the
images are used as the input of all the compared methods. Same as the standard ex-
perimental protocol used in [15], for each category 100 images are randomly picked
up for training and the rest for testing. The parameters m, λ and α are set to be 450,
0.05 and 0.003 respectively. Considering the randomness in the training and testing
processes, we run all the experiments 10 times and report the average prediction accu-
racies. As shown in Table 3, our approach outperformed all the tested methods except
FDDL [31], however the training and test time of FDDL is 20 times slower than ours.
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Table 3: Classification accuracies (%) on the Scene-15 dataset.

LLC [26] SRC [27] KSVD [1] D-KSVD [34] LC-KSVD [11] FDDL [31] Baseline Ours

89.20 91.80 86.70 89.10 92.90 98.35 96.62 97.94

5 Summary

A novel dictionary learning approach for structured sparse coding is presented in this
paper. Different from existing supervised dictionary learning methods, we proposed a
reweighted `2,1 minimization algorithm to exploit class-specific structured sparsity pat-
terns for signals from each category, which brings benefits to dealing with multi-class
classification problem. In the learning process, the dictionary is well adapted to the
subspace of training data with a reweighting scheme, which strengthens its discrim-
inability. An efficient alternating iterative scheme is developed to solve the proposed
model. We applied our method to several classification tasks. The experimental results
demonstrated the competitive performance of our method in comparison with some
latest dictionary learning methods. In future, we would like to develop an effective al-
gorithm to solve `2,0 minimization problem together with the convergence analysis.
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