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Abstract

Learning adaptive dictionaries for sparse coding has been the focus of latest research as it provides a promising

way to maximize the efficiency of sparse representation. In particular, learning discriminative dictionaries rather

than reconstructive ones has demonstrated significantly improved performance in pattern recognition. In this paper,

a powerful method is proposed for discriminative dictionary learning. During the dictionary learning process, we

enhance the discriminability of sparse codes by promoting hierarchical group sparsity and reducing linear prediction

error on sparse codes. With the employment of joint within-class collaborative hierarchical sparsity, our method is

able to learn adaptive dictionaries from labeled data for classification, which encourage coefficients to be sparse at

both group level and singleton level and thus enforce the separability of sparse codes. Benefiting from joint dictionary

and classifier learning, the discriminability of sparse codes is further strengthened. An efficient alternating iterative

scheme is presented to solve the proposed model. We applied our method to face recognition, object recognition and

scene classification. Experimental results have demonstrated the excellent performance of our method in comparison

with existing discriminative dictionary learning approaches.
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1. Introduction

In recent years, sparse representation has drawn much attention from the computer vision community and led to

state-of-the-art results in many computer vision tasks, e.g. image classification [1–4] and image restoration [5–8]. The

success of sparse representation based classification is attributed to the fact that high-dimensional image data from the

same class lie on a low-dimensional manifold and thus can be coded using a few representative elements (the so-called

atoms). The collection of such elements is often referred to as a dictionary.

The choice of dictionary is one of the fundamental considerations in employing sparse representation based mod-

els. While predefined dictionaries such as off-the-shelf bases like wavelets [5, 7] have been successfully applied to

sparse modeling in many signal processing applications, many reconstructive dictionary learning methods [9–12] have

shown that noticeable performance improvement can be obtained by learning adaptive dictionaries from data them-

selves. The learned reconstructive dictionaries are adapted to the underlying structures of data and hence are able to

improve the efficiency of sparse coding.

However, the reconstructive dictionaries often suffer from the insufficiency of discrimination in complex recog-

nition tasks. In fact, a dictionary becomes useful for sparsity-based recognition when it not only enjoys excellent

sparse-representational power but also has the ability to induce discriminative representation for samples from dif-

ferent categories. As a result, many discriminative dictionary learning methods [13–25] have been proposed to learn

both reconstructive and discriminative dictionaries for sparse coding.

In this paper, a powerful discriminative dictionary learning method is proposed for sparse coding based classifi-

cation. In the proposed method, we simultaneously learn a structured dictionary with hierarchical group sparsity and

train a linear classifier for classification. By promoting joint within-class collaborative hierarchical sparsity in sparse

codes, our method is able to learn dictionaries adapted to the underlying structures of data. The learned dictionaries

encourage samples from different categories to exhibit distinct hierarchical group sparsity patterns, making the sparse

codes more separable between classes. Meanwhile, benefiting from joint dictionary learning and classifier training,

the learned dictionaries are both reconstructive and discriminative. As a result, the discriminability of sparse codes

and the discrimination of active groups of dictionary atoms are further strengthened. Experimental results on face

recognition, object recognition and scene classification have demonstrated the excellent performance of our method
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in comparison with many state-of-the-art discriminative dictionary learning methods.

1.1. Related work

1.1.1. Discriminative dictionary learning

The techniques used in discriminative dictionary learning methods can be roughly categorized into two types,

which are detailed as follows:

Learning class-associated subdictionaries. In order to obtain discriminative dictionaries, many approaches (e.g. [15,

19, 20]) train class-associated subdictionaries using labeled data. The differences of these approaches lie in two as-

pects: the way of associating subdictionaries with class information and the regularization imposed on subdictionaries.

For instance, Yang et al. [23] proposed to associate each dictionary atom with a class label and encourage each input

signal to be well represented only by the dictionary atoms that share the same class label with the signal. In [20], the

class-specific subdictionaries dictionaries are encouraged to be independent of each other.

Integrating supervised learning. To enforce discriminability in sparse codes, many approaches incorporate classifier

training into the dictionary learning, i.e., the dictionary and classifier are jointly learned. The classification loss

functions vary in these methods, e.g., the softmax discriminative cost [15, 16], Fisher discrimination criterion [13, 23,

24, 26], linear predictive classification error [17, 22, 25], hinge loss [21, 27], and logistic loss [16, 28].

1.1.2. Structured sparse coding

While the standard sparsity induced by `0 norm or its convex relaxation `1 norm has been widely-used for sparse

coding, recent literature [29–43] seeks for some higher-level sparsity (often referred to as structured sparsity) to

encode higher-order information about the patterns of non-zero coefficients in sparse codes. The concept of structured

sparsity is first introduced in image restoration and the benefits of structured sparse coding have been confirmed both

theoretically and via numerous applications [33]. There are many types of structured sparsity, e.g., sparsity defined

on disjunct groups [38, 39] or overlapping groups [31], tree sparsity [34, 35, 43], and graph sparsity [30].

The structured sparsity is an effective tool to reveal the underlying structures of data. Thus, a few methods [40–43]

employ structured sparsity in dictionary learning for classification. In [43], Szlam et al. proposed a fast approximate

sparse coding algorithm that uses a tree structure for inference and applied it to build an accurate real time object
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recognition system. For face recognition, Jenatton et al. [41] proposed the so-called structured sparse PCA, in which

the sparsity patterns of all dictionary elements are structured and constrained in a pre-specified set of shapes. Al-

though impressive results have been achieved by these methods, there is still much room for the improvement of

discriminability in sparse codes.

1.2. Motivation and contributions

We illustrate our motivation by two examples. See Figure 1 for an illustration of the benefits of using hierarchical

group sparsity in document representation. Assume that we have multiple documents that are related to different

topics, e.g. political news and fashion magazines. The key words of the documents serve naturally as a good dictionary,

and thus each document can be represented by histogram of key words. Then we assign the dictionary atoms (i.e. key

words) into several groups, e.g. city-state nouns, fashion-related words, etc. The histogram of key words of a document

should be sparse because each only contains a tiny part of all the key words. This can be considered as the singleton-

level sparsity. Besides, each document can be efficiently represented by the words from a few specific groups, which

can be interpreted as group-level sparsity. Furthermore, documents from the same category would share the same

sparsity pattern at the group-level but not necessarily at the singleton-level. This naturally yields to the joint within-

class collaborative hierarchical sparse representation. Such a well-designed group sparsity is very effective and

efficient for classifying documents.

Now turn to the case of image classification, in which we do not have a good dictionary containing well-clustered

visual key words. Thus, it is necessary to learn a structured dictionary to obtain joint within-class collaborative hi-

erarchical sparse representation for image classification. See Figure 2 for the example. Suppose we have obtained

some low-level features (e.g. bag-of-words based on SIFT descriptors [44]) of multiple object images from different

categories. Such features on some objects (e.g. cats and leopards) are quite similar such that they are rarely linearly

separable in feature space. Then we need to pursue an ideal group-structured dictionary consisting of good atoms

(e.g. visual attributes), each of which could capture certain common properties across different categories, either se-

mantic (e.g. furry) or discriminative (e.g. cats have it but leopards do not). Once we get such a dictionary, collaborative

hierarchical group sparsity patterns can be obtained for each object category, just like the case in document represen-

tation. Such joint within-class collaborative hierarchical sparse representation is more separable for classification than
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the original feature. In Figure 2, active groups of two distinct categories could be very different, e.g. group 1 and 2 for

wild cat and group 3 and 4 for lotus. Two closely-related categories (e.g. cats and leopards) may have some overlap

group (e.g. group 1) but can still be distinguished.

In real-world applications, often the learned group-structured dictionary is insufficiently discriminative for clas-

sification. In particular, each active group is not guaranteed to be shared by few classes. In the case where active

groups are shared by a lot of classes, the discriminability of the structured sparse codes would dramatically decrease.

Thus, more discriminative information like classification feedback should be incorporated into structured dictionary

learning, which can improve the interclass discrimination of active atom groups and sparse codes.
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City-State Noun
Groups

White House
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Figure 1: Illustration of the benefits of using hierarchical group sparsity in document representation. Based on the key words of
documents, a group-structured dictionary can be constructed to represent each document as a histogram of key words. Documents
from the same category would share the same sparsity pattern at the group-level but not necessarily at the singleton-level, while
different categories correspond to distinct hierarchical group sparsity patterns. Such a well-designed group sparsity is very effective
and efficient for classification.

The arguments above inspire us to propose a discriminative structured dictionary learning approach for sparse

coding, which integrates hierarchical group sparsity promotion and classifier training into the dictionary learning

process. Compared with the traditional purely reconstructive dictionary learning methods, the learned dictionaries are

both reconstructive and discriminative. In comparison with the purely supervised dictionary learning methods like D-

KSVD [22], the dictionaries learned by our method can reveal the underlying structures of data and encourage distinct

hierarchical group sparsity patterns on sparse codes of samples from different categories. Compared to the purely

structured dictionary learning methods, our method is able to support the discrimination of active groups shared by
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Figure 2: Illustration of the benefits of using hierarchical group sparsity in image representation with a structured visual dictionary.
Low-level features of object images from different classes often fail to be linearly separable in feature space. In order to construct
high-level representations that are sufficiently discriminative for classification task, one need to learn a well-designed group-
structured dictionary consisting of good visual attributes. Given such a dictionary, collaborative hierarchical group sparsity patterns
can be obtained for each object category to improve image classification performance, just like the case in document representation.

different classes and produce discriminative sparse codes for classification. Experimental results on face recognition,

object recognition and scene classification have demonstrated the excellent performance of our method in comparison

with many state-of-the-art discriminative dictionary learning methods.

The rest of this paper is organized as follows. Section 2 is devoted to the preliminaries and background knowledges

on sparse representation and discriminative dictionary learning. Section 3 describes our method. Section 4 is for

experimental evaluation and results. Section 5 concludes the paper and discusses future work.

2. Preliminaries

We first give an introduction to the definitions and notations used in this paper. Bold upper letters are used for

matrices, bold lower letters for column vectors, regular lower letters for scalars, and calligraphic English alphabets

for sets. For example, y j denotes the j-th column of the matrix Y, yi denotes the i-th element of the vector y, and Yi, j

denotes the entry of Y at the i-th row and the j-th column. Besides, let y(ti) denote the ti-th element of a sequence

{y(t)}t∈N. Given a matrix Y ∈ Rn×p, a set of row indices G ⊆ {1, . . . , n} and a set of column indices P ⊆ {1, . . . , p},
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let Y[G] denote a sub-matrix of Y formed by taking rows from Y with indices G, and let Y(P) denote the sub-matrix of

Y formed by collecting columns from Y with indices P. For a matrix X, its Frobenious norm is defined as ‖X‖F =√∑
i, j |Xi, j|

2, its `0 norm is defined as the number of nonzero entries in X. Given a vector x, its `1 norm is defined as

‖x‖1 =
∑

j |x j|. Besides, IM denotes the M × M identity matrix.

2.1. Structured sparse coding

Let Y = [y1, . . . , yp] ∈ Rn×p be a set of input signals and D = [d1, . . . , dm] ∈ Rn×m denote a given dictionary.

Sparse coding is to find the sparse code ci of each signal yi with the dictionary D, which can be accomplished by

solving the following problem:

min
C∈Rm

‖Y − DC‖22 + λψ(C), (1)

where C = [c1, . . . , cp] is the sparse codes to pursue, ψ is a sparsity-inducing functional, and λ is a parameter that

balances the trade-off between sparsity and fidelity of the solution. A common choice of ψ is `0 norm or its convex

relaxation `1 norm. Both of `0 norm and `1 norm primarily encourage sparse solutions, regardless of the potential

structural relationships (e.g. spatial, temporal or hierarchical) existing among variables.

Inspired by the fact that often nonzero coefficients in sparse codes are not randomly distributed but have cer-

tain patterns, recent approaches [29–43] seek for new sparsity-inducing functionals which are capable of encoding

higher-order information about the patterns of non-zero coefficients. The resulting sparsity on sparse codes is called

structured sparsity. One simple but efficient method for structured sparse coding is the so-called collaborative hierar-

chical group Lasso (CHiLasso) method [36, 39], which induces both standard sparsity and group sparsity by solving

the following problem:

min
C∈Rm×p

‖Y − DC‖2F + λ1

∑
i

‖ci‖1 + λ2ψS(C), (2)

where S = {Gl}
|S|

l=1 is a set of groups generated by a partition of atom indices, Gl ⊆ {1, . . . ,m} is a subset of atoms

indices, and ψ is the group sparsity regularizer defined as

ψS(C) =
∑
G∈S

‖C[G]‖F , (3)
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where C[G] denotes the coefficients of C which correspond to the atoms with indices G. It can be seen from (3) that,

each sparse code ci is partitioned into several groups according to S, and the mixed `1/`2 norm is computed on the

grouped sparse codes to induce structured sparsity. Note that the group sparsity regularizer ψS(C) is not separable w.r.t

each signal, making the sparse coding procedure collaborative. When |S| = 1 and G1 = {1, . . . ,m}, it is easy to verify

that ψS(c) = ‖c‖1. As a generalization of `1-norm, ψS(c) encourages sparsity at group level instead of singleton level.

By jointly employing `1 norm and ψS(c), the CHiLasso model (2) encourages sparsity both at group and singleton

level while allowing the input signals share the same sparsity patterns at the group level but not necessarily at singleton

level. Thus, the resulting structured sparsity is referred to as collaborative hierarchical group sparsity.

Solving the CHiLasso problem (2) is challenging. Two effective algorithms with guaranteed convergence to

global minimum have been proposed by Sprechmann et al. [36, 39]2. For brevity, these algorithms are summarized

in Appendix A.

2.2. Dictionary learning for classification

Learning an adaptive dictionary can improve the efficiency of sparse coding. The dictionary learning problem can

be generally formulated as follows:

min
D,C
‖Y − DC‖2F + λψ(C) + αφ(D), (4)

where α is a scalar controlling the contribution of φ(D), and φ(·) is the constraint on dictionary, e.g., indicator function

forcing each column of dictionary to be normalized with unit norm.3 The obtained sparse codes C can be directly used

as features for classification. But separating dictionary learning from classifier construction is not optimal as sparse

codes are not enforced to be discriminative for classification. One alternative is to combine dictionary learning and

classifier construction in a unified framework (e.g. [16, 17, 22, 27]), which can be formulated as follows:

min
D,W,C

‖Y − DC‖2F + λ
p∑

i=1

ψ(ci) + γ
p∑

i=1

χ(hi, f (ci,W)) + βω(W) + αφ(D), (5)

2In the experimental section, the performance of both the algorithms will be investigated.
3Such normalization constraint on the norm of each atom is often required in dictionary learning methods. For brevity, we omit this unit norm

constraint in the following sections if unnecessary.
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where W ∈ RN×m denotes the classifier parameters, χ is the loss functional of classification (see Section 1.1 for some

examples), ω is the regularization functional on W that determines the type of the classifier, β is a scalar controlling

the contribution of ω, N is the total number of categories of training samples, and hi ∈ {1, . . . ,N} is the label of

training sample yi.

3. Our method

In this section, we propose a discriminative dictionary learning model based on joint within-class collaborative

hierarchical sparse representation. Hierarchical group sparsity promotion and classifier training are integrated into the

dictionary learning process. With the employment of joint within-class collaborative hierarchical sparse coding, our

method is able to learn dictionaries which encourage signals from the same category to share the same hierarchical

group sparsity pattern. Besides, benefiting from joint dictionary learning and classifier training, discriminability of

sparse codes is further strengthened. Then an alternating iterative scheme is presented for solving the proposed model.

3.1. Problem formulation

As mentioned in Section 1, correlation of data from the same category can be efficiently encoded with collaborative

hierarchical group sparsity, i.e., sparsity at both singleton-level and group-level. Thus we can train a useful dictionary

by inducing collaborative hierarchical sparse representation within each category of signals during dictionary learning.

But in this way the interclass discrimination cannot be obtained, as similar categories may still have the potential to

share the same active groups. In order to further enhance discriminability of the sparse codes, the training of a multi-

class linear classifier is integrated into the dictionary learning process. Finally, we construct an effective dictionary

learning models follows. Let L = {P1, . . . ,PN} denote the group partition of signals with Pk ⊆ {1, . . . , p} as a

subset of signal indices corresponding to kth category, S = {G1, . . . ,G|S|} denote the group partition of atom indices

satisfying
⋃|S|

l=1 Gl = {1, . . . ,m} and ∀l , j, Gl ∩ G j = ∅, and H = [h1, . . . , hp] ∈ RN×p denote the binary labels of

training samples with hi = [0, 0, . . . , 1, . . . , 0] ∈ RN as the binary label vector of sample yi. Then our model, called

Collaborative HIerarchicaL Discriminative Dictionary Learning (CHILD-DL), is defined as

arg min
D,W,C

1
2
‖Y − DC‖2F + λ1

p∑
i=1

‖ci‖1 + λ2

N∑
k=1

ψS(C(Pk)) +
γ

2
‖H −WC‖2F , (6)
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where λ1, λ2, γ are the scalars controlling the relative contribution of each term, C(Pk) is a submatrix of C that contains

the sparse codes of signals from the k-th category, and W is a multi-class linear classifier to be learned.4

In the CHILD-DL model (6), the joint within-class collaborative hierarchical group sparsity induced by λ1
∑p

i=1 ‖ci‖1+

λ2
∑N

k=1 ψS(C(Pk)) adapts the learned dictionary to the underlying structures of input signals and enforces signals from

the same category to share the same hierarchical sparsity patterns. This enhances the separability of the sparse codes

associated with different signal categories and benefits the improvement of classification performance. On the other

hand, reducing the classification error of sparse codes according to ‖H −WC‖2F can not only help to enhance discrim-

inability of sparse codes, but also encourage signals from different categories to use distinct active groups, making the

collaborative hierarchical group sparse representation more useful in classification.

3.2. Optimization

Solving the minimization problem of (6) is nontrivial. Intuitively, we need to alternately estimate the unknown

variables one at a time. To make the optimization procedure more efficient, we propose to update the dictionary D

and classifier W simultaneously, which is similar to schemes used in [22, 25]. For this purpose, we rewrite (6) as

arg min
D,W,C

1
2
‖X − UC‖2F + λ1

p∑
i=1

‖ci‖1 + λ2

N∑
k=1

ψS(C(Pk)), s.t. ∀ j, ‖u j‖2 = 1, (7)

where X =
 Y
√
γH

 and U = [u1, . . . ,um] =

 D
√
γW

.
Then we find the optimal solutions for U and C in (7) with an alternating iteration scheme. Such a scheme divides

the minimization problem into several simpler ones in each iteration. The iteration stops until either of the following

stopping criteria is satisfied: (1) the change of objective functional are small enough; (2) the maximum iteration

number has been reached.

4Similar in spirit to the D-KSVD and LC-KSVD methods [22, 25], instead of using explicit regularization in the model, we implicitly control
the energy of W in the optimization procedure followed by a renormalization stage.
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3.2.1. Class-wise collaborative hierarchical group sparse approximation

At the beginning of the (` + 1) iteration, with dictionary U(`) fixed, the update of the structured sparse codes C is

as follows:

C(`+1) = arg min
C

1
2
‖X − U(`)C‖2F + λ1

p∑
i=1

‖ci‖1 + λ2

N∑
k=1

ψS(C(Pk)), (8)

which is group separable and can be decomposed into N independent subproblems:

C(`+1)
(Pk) = arg min

C∈Rm×|Pk |

1
2
‖X(Pk) − U(`)C‖2F + λ1

∑
i∈Pk

‖ci‖1 + λ2ψS(C). (9)

This is actually the CHiLasso problem (2) and can be solved by the algorithms proposed in [36, 39]. Interested readers

can refer to Appendix A5 or the original literature for more details.

3.2.2. Dictionary refinement via projected gradient descent

With fixed C(`+1) from the previous step, the dictionary U is updated as follows:

U(`+1) = arg min
U

1
2
‖X − UC(`+1)‖2F s.t. ∀ j, ‖u j‖2 = 1. (10)

By applying the projected gradient descent method, we update U(`+1) = [u(`+1)
1 , · · · ,u(`+1)

m ] column by column as

follows:

u(`+1)
j ∈ arg min

‖u j‖2=1

1
2
‖u j − s(`)

j ‖2, j = 1, · · · ,m, (11)

where

s(`)
j = u(`)

j −
1
µ`j
∇u j Q(C(`+1), Ũ(`)

j ), (12)

where µ`j is the step size, Q(C,U) = 1
2 ‖X −UC‖2F and Ũ(`)

j = [u(`+1)
1 , · · · ,u(`+1)

j−1 ,u(`)
j ,u

(`)
j+1, · · · ,u

(`)
m ]. By direct calcula-

tion, the problem of (11) has a closed-form solution

u(`+1)
j = s(`)

j /‖s
(`)
j ‖2. (13)

5Two algorithms are mentioned in Appendix A. In Section 4, the performance of both the algorithms will be tested and compared.
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3.3. Classification strategy

By the above algorithm we can obtain the solution Ū in (7), which is column-wise normalized and can be directly

decomposed into D̄ and W̄. Then the final learned dictionary D and classifier W are computed by renormalization:

D = {d1, d2, · · · , dm} =

{
d̄1

‖d̄1‖2
,

d̄2

‖d̄2‖2
, · · · ,

d̄m

‖d̄m‖2

}
;

W = {w1,w2, · · · ,wm} =

{
w̄1

‖d̄1‖2
,

w̄2

‖d̄2‖2
, · · · ,

w̄m

‖d̄m‖2

}
.

(14)

Given a test sample ytest, we compute the sparse code ctest as follows:

ctest = arg min
c∈Rm

‖ytest − Dc‖22 + λ1‖c‖1 + λ2ψS(c), (15)

which is a special case of the CHiLasso model (2). Once ctest is computed, the learned linear classifier W is applied

to ctest to generate a label prediction vector ltest on ytest by

ltest =Wctest. (16)

For the values of ltest are unnecessarily binary, the final label of ytest is set to be the index which corresponding to the

largest element of of ltest.

3.4. Initialization and configuration

In our implementation, the initial dictionary D(0) is generated by random sampling of training data. More precisely,

a certain number of samples from each category are randomly picked up and combined as one group of the dictionary.

The sparse codes C(0) is initialized by solving

arg min
C
‖Y − DC‖2F , s.t. ∀i, ‖ci‖0 ≤ T, (17)
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which is solved by the OMP algorithm6 [45]. Then the multi-class linear classifier W is initialized by

W(0) = arg min
W

γ

2
‖H −WC(0)‖2F +

β

2
‖W‖2F , (18)

which is the ridge regression with explicit solution

W(0) = HC(0)>
(
C(0)C(0)> +

β

γ
Im

)−1

. (19)

4. Experiments

We evaluate the both the effectiveness and efficiency of our CHILD-DL method by applying it to face recognition

on the Extended YaleB dataset [46] and the AR face dataset [47], object recognition on the Caltech-101 dataset [48],

and scene classification on the Scene-15 dataset [49]. The evaluation protocols are consistent with [25], including the

experimental setup and the employed image features,7 which is detailed in the following subsections.

4.1. Experimental configuration

4.1.1. Methods for comparison

The methods for comparison mainly include K-SVD [10], D-KSVD [22], LC-KSVD [25], SRC [1], FDDL [23],

and LLC [3].8 The SRC method is implemented with two different dictionary sizes: (1) the original version denoted

by SRC that stacks all the training samples as a dictionary; (2) the reduced version denoted by SRC* whose dictionary

size is the same as ours. As there are two algorithms for solving the subproblem defined in (9), we derive two CHILD-

DL methods, which is denoted by CHILD-DL-A and CHILD-DL-B respectively. In the experiments, we compared

these two methods to distinguish which one is better.

Besides, to demonstrate the necessity to jointly learn dictionary and classifier in our method, we implemented

a baseline method denoted by Baseline for comparison. The baseline method separates the dictionary learning and

6In our experiments we found that using pseudo-inverse solution of arg minC ‖Y − D(0)C‖2F instead for the initialization has almost no influence
on the classification results.

7All the data for the experiments are provided by Jiang et al. and available on the website: http://www.umiacs.umd.edu/˜zhuolin/
projectlcksvd.html

8In [25], two versions of LC-KSVD are presented. Here we select the improved version with better performance reported. The parameter setting
and results of all these compared methods are consistent with [25].
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classifier training as follows: (1) Setting γ = 0 in (7), we learn a dictionary D without training W and also the sparse

codes C on all training samples; (2) The sparse codes C and the label matrix H are used to train a multi-class linear

classifier via ridge regression; (3) The test stage is done via (15) and (16).

Considering the randomness in partitioning training and testing sets, we run all experiments 10 times and report

the averages as well as the standard deviations of the prediction accuracies. For other compared methods, we only

report the standard deviations where available.

4.1.2. Parameter setting

The parameters of CHILD-DL include the regularization parameters, the dictionary size, and the configuration

of groups. The setting of these parameters on each dataset is summarized in Table 1. Note that the CHILD-DL-A,

CHILD-DL-B and Baseline methods are using the same parameter setting.

Regularization parameters. The choice of regularization parameters in our model (7), like λ1, λ2 and γ, depends

on the application and data. In all experiments, if no specific instructions mentioned, we use fivefold cross validation

to find the parameters of the proposed model that give the best results while avoiding over-fitting. We also tested the

effects of regularization parameter selection, which is detailed in Section 4.2.

Dictionary size. As shown in [23, 50], the larger the dictionary size is, the better the performance of the dictionary

learning methods can be achieved. To have a fair comparison in all the experiments, the dictionary size of all the

compared methods mentioned above except SRC are set to be the same as [25].

Group configuration. The configuration of groups S is another key factor in our method. Although the configuration

of groups are independent of the signal categories, it is natural to expect that signals from different categories could

use distinct groups in the context of classification. For simplicity, we set |S| to be equal to the number of categories N.

The set of groups S is set to satisfy the following three conditions: (1)
⋃N

i=1 Gi = {1, . . . ,m}; (2) ∀i , j, Gi ∩G j = ∅;

(3) ∀k, |Gk | = r = m/N. Although we do not employ group overlap here,9 different categories are still allowed to

share atoms during the dictionary learning process. The number of active groups shared by signals from the same

category is implicitly determined by the scalars λ1, λ2 and γ.

9It is worth mentioning that our model is not restricted to such a simple group assignment scheme.
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Table 1: Detailed parameter setting of CHILD-DL on each dataset.

Dataset λ1 λ2 γ No. of training samples per class m r

Extended YaleB 0.02 0.02 5 32 570 15
AR face 0.02 0.02 0.05 20 500 5

Caltech-101 0.008 0.006 0.01

5 510 5
10 1020 10
15 1530 15
20 2040 20
25 2550 25
30 3060 30

Scene-15 0.02 0.02 2 100 450 30

4.2. Recognition on the extended YaleB dataset

The Extended YaleB dataset [46] contains 2, 414 images of 38 human frontal faces under about 64 illumination

conditions and expressions, as shown in Figure 3 (a). There are about 64 images for each person. The original images

were cropped to 192× 168 pixels. Each face image is projected into a 504-dimensional feature vector using a random

matrix of zero-mean normal distribution [22]. We randomly select half of the images for training and the other half

for testing in each class.

1

1

(a) Extended YaleB (b) AR face

Figure 3: Some samples of two face datasets for evaluation. (a) The extended YaleB dataset; (b) The AR face dataset.

The experimental results are summarized in Table 2. We can see that CHILD-DL achieved very competitive

results among all the compared methods. The CHILD-DL-B method performed better than the baseline method and

the CHILD-DL-A method. The CHILD-DL-B method outperformed many state-of-the-art approaches except FDDL

and SRC. But note that the performance of the SRC method degrades dramatically when using dictionary of the same

size as ours (see SRC*). Although our method performed worse than the FDDL method, it can be seen in Section 4.6
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that our method is more efficient compared with the FDDL method.

The sparsity regularization parameters λ1 and λ2 as well as the discrimination regularization parameter γ are

determined by fivefold cross validation. To analyze the parameter sensitivity of our method, we conduct a test on

the Extended YaleB dataset by adjusting the regularization parameters λ1 and γ while fixing ratio between λ2 and

λ1
10. The effects of parameter selection are shown in Figure 4. We can observe that good performance is achieved at

λ1 = 0.02 and γ = 5.

Table 2: The performance of the compared methods (recognition accuracy in %) on the Extended YaleB dataset.

Method Accuracy Method Accuracy

K-SVD [10] 93.10 SRC* [1] 80.50
D-KSVD [22] 94.10 SRC [1] 97.20

LLC [3] 90.70 LC-KSVD [25] 95.00
FDDL [23] 98.07 ± 0.40 Baseline 94.62 ± 0.92

CHILD-DL-A 95.53 ± 0.60 CHILD-DL-B 97.17 ± 0.66
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Figure 4: Effects of parameter selection of λ1 and γ on the recognition accuracy (%) on the extended YaleB dataset.

10We fix the ratio between λ2 and λ1 as 1 and test the CHILD-DL-B algorithm.
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4.3. Recognition on the AR face dataset

The AR face dataset [47] consists of over 4000 frontal images from 126 individuals. For each individual, 26

pictures were taken in tow separate sessions. The main characteristic of the AR dataset is that it includes frontal views

of faces with different facial expressions, lighting and occlusion conditions, as shown in Figure 3 (b). Same as the

standard evaluation procedure from [22], we use a subset of the dataset consisting of 2, 600 images from 50 male

subjects and 50 female subjects. For each person, twenty images are randomly picked up for training and the rest for

testing. Each face image is cropped to 165 × 120 and then projected onto a 540-dimensional feature vector.

The experimental results are summarized in Table 3. Similar to what happened on the YaleB dataset, CHILD-DL

outperformed the baseline method and several state-of-the-art approaches including K-SVD, D-KSVD, LLC and LC-

KSVD, but did not perform as well as the FDDL and SRC methods. The CHILD-DL-A method is slightly better than

the CHILD-DL-B method in this case.

Table 3: The performance of the compared methods (recognition accuracy in %) on the AR face dataset.

Method Accuracy Method Accuracy

K-SVD [10] 86.50 SRC* [1] 66.50
D-KSVD [22] 88.80 SRC [1] 97.50

LLC [3] 88.70 LC-KSVD [25] 93.70
FDDL [23] 97.45 ± 0.65 Baseline 88.23 ± 1.27

CHILD-DL-A 95.40 ± 0.62 CHILD-DL-B 95.31 ± 0.73

4.4. Recognition on the Caltech-101 dataset

The Caltech-101 dataset [48] is a large dataset, which contains 8677 images in 101 object categories with different

shapes and appearances and 467 images selected from an additional background category. The number of images per

category varies greatly from 31 to 800. Some sample images selected from the caltech101 dataset are illustrated in

Figure 5 (a). As recommended in [25], the spatial pyramid features [49] based on SIFT descriptors are extracted and

the dimension of each feature is further reduced to be 3000 via PCA.

Following the experimental settings in [25], we randomly pick up 5, 10, 15, 20, 25 and 30 samples per category

for training the dictionary as well as the classifier, and test on the remaining samples. The dictionary size of our

method is set proportional to the size of training set per category, as shown in Table 1. Besides the compared methods
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1

(a) Caltech-101 (b) Scene-15

Figure 5: Some samples from (a) the Caltech-101 dataset; (b) the Scene-15 dataset.

used in the above face recognition, the reported results of other state-of-the-art approaches [2, 17, 49, 51–55] are also

involved for comparison.

See Table 4 for the performance comparison. We can see that both the CHILD-DL-A and CHILD-DL-B methods

performed better than the baseline method and each has its own advantages in cases with certain number of training

samples per category. Besides, CHILD-DL outperformed many competitive supervised dictionary learning methods

and some other state-of-the-art approaches, while achieving accuracy comparable to FDDL and LC-KSVD.

Table 4: Recognition results (classification accuracy in %) using spatial pyramid features on the Caltech-101 Dataset.

Method
Number of training samples

5 10 15 20 25 30
Malik et al. [51] 45.60 54.80 59.05 ± 0.56 62.00 - 66.23 ± 0.48

Lazebnik et al. [49] - - 56.40 - - 64.60 ± 0.80
Griffin [52] 44.20 54.50 59.00 63.30 65.80 67.60
Irani [53] - - 65.00 ± 1.14 - - 70.40

Grauman [54] - - 61.00 - - 69.60
Pham [17] - - 42.00 ± 1.00 - - -

Xu et al. [56] 53.60 64.01 69.15 72.40 74.52 76.22
Yang et al. [2] - - 67.00 ± 0.45 - - 73.20 ± 0.54

LLC [3] 51.15 59.77 65.43 67.74 70.16 73.44
SRC [1] 48.80 60.10 64.90 67.70 69.20 70.70

K-SVD [10] 49.80 59.80 65.20 68.70 71.00 73.20
D-KSVD [22] 49.60 59.50 65.10 68.60 71.10 73.00

FDDL [23] 53.87 ± 0.57 63.27 ± 0.59 67.61 ± 0.51 70.65 ± 0.48 71.94 ± 0.49 73.21 ± 0.46
LC-KSVD [25] 54.00 63.10 67.70 70.50 72.30 73.60

Baseline 52.78 ± 1.12 62.95 ± 0.92 67.53 ± 0.85 70.33 ± 0.76 72.13 ± 0.81 73.41 ± 0.73
CHILD-DL-A 54.14 ± 0.62 63.35 ± 0.63 68.09 ± 0.65 70.82 ± 0.58 72.61 ± 0.56 73.69 ± 0.55
CHILD-DL-B 54.22 ± 0.73 63.39 ± 0.69 67.94 ± 0.68 70.73 ± 0.46 72.74 ± 0.56 73.58 ± 0.63
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4.5. Recognition on the Scene-15 dataset

The Scene-15 dataset introduced in [49] contains a wide range of outdoor and indoor scenes. The scene categories

include bedroom, suburb, industrial, kitchen, living room, coast, forest, highway, inside cite, mountain, open country,

street, tall building, office and store. See Figure 5 (b) for the sample images per category. The number of images per

category varies from 210 to 410, and the resolution of each image is about 250× 300. Similar to the feature extraction

process on the Caltech-101 dataset, the spatial pyramid features [49] based on SIFT descriptors are extracted and the

dimension of each feature is further reduced to be 3000 via PCA.

Following the experimental settings recommended in [25], we randomly select 100 images per category as training

data and use the rest as test data. Besides the methods used in the above face recognition experiments, several state-

of-the-art scene classification approaches [2, 21, 49, 57, 58] with available results are included for comparison.

The experimental results on Scene-15 dataset is are listed in Table 5. It can be seen that the CHILD-DL-B method

is slightly better than the FDDL method and achieved the best average recognition accuracy among all the compared

methods.

Table 5: The performance of the compared methods (recognition accuracy in %) on the Scene-15 dataset.

Method Accuracy Method Accuracy

Lazebnik et al. [49] 81.40 ± 0.50 LLC [3] 89.20
Yang et al. [2] 80.28 ± 0.93 SRC [1] 91.80

Boureau et al. [57] 84.30 ± 0.50 LC-KSVD [25] 92.90
Gao et al. [58] 89.75 ± 0.50 FDDL [23] 98.35 ± 0.21
Lian et al. [21] 86.43 ± 0.41 Baseline 95.82 ± 0.50
K-SVD [10] 86.70 CHILD-DL-A 96.42 ± 0.51

D-KSVD [22] 89.10 CHILD-DL-B 98.72 ± 0.24

4.6. Efficiency

In order to evaluate the complexity of our method, we compare the computational efficiency of several tested

methods above, in terms of the average running time on the Extended YaleB dataset during the training phase and the

testing stage. More specifically, for each tested method, both the average training time per iteration during dictionary

learning and the average test time for an test image during classification are reported. To have a fair comparison, all

the tested methods are implemented under the same computational environment. The software environment is the
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MATLAB 2014a platform run on the Windows 8 operating system, and the hardware platform is a laptop computer

with Intel Dual-Core i7-2640M 2.8GHz CPU and 8GB memory.

From Table 6, it can be seen that CHILD-DL is much better than the FDDL method in terms of computational

time, but worse than D-KSVD, LC-KSVD and SRC methods. It can be also seen that CHILD-DL-B is much faster

than CHILD-DL-A, especially in terms of training time.

Table 6: Training time (seconds per iteration) and test time (milliseconds) of several dictionary learning methods on the Extended
YaleB dataset.

Running time D-KSVD [22] LC-KSVD [25] SRC [1] FDDL [23] CHILD-DL-A CHILD-DL-B

Training (s) 0.86 1.68 - 471.92 355.58 10.37
Test (ms) 0.35 0.37 48.41 2523.72 286.94 226.02

5. Conclusions

Learning discriminative sparse representations from labeled data has drawn much interest in computer vision com-

munity. In order to obtain efficient representations with structured sparsity and strong discriminability for image clas-

sification, we introduced the concept of collaborative hierarchical group sparsity and the integration of classification

feedback into discriminative dictionary learning. Our dictionary learning model is constructed by combining recon-

struction error, joint within-class hierarchical group sparsity and linear prediction error into a unified minimization

framework. Benefiting from using the joint within-class collaborative hierarchical sparsity, our method encourages

signals from the same category to share the same hierarchical sparsity patterns, which promotes the separability of the

sparse codes associated with different signal categories. The discriminability of sparse codes is further strengthened

by joint dictionary construction and classifier learning. An efficient alternating iterative scheme is developed to solve

the proposed model. Our method is applied to image classification by simultaneously learning dictionary, sparse rep-

resentation and classifier from image features. We applied our method to face recognition, object classification and

scene recognition. The experimental results have demonstrated the excellent performance of our method. In future,

we would like to investigate higher-level structured sparsity for discriminative dictionary learning.
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[5] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic press, 1999.

[6] Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions

on Image Processing, 15(12):3736–3745, 2006.

[7] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen. Blind motion deblurring from a single image using sparse approximation. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 104–111. IEEE, 2009.

[8] Jian-Feng Cai, Hui Ji, Zuowei Shen, and Gui-Bo Ye. Data-driven tight frame construction and image denoising. Applied and Computational

Harmonic Analysis, 2013.

[9] Kjersti Engan, Sven Ole Aase, and JH Husoy. Frame based signal compression using method of optimal directions (mod). In Proceedings of

IEEE Conference on International Symposium on Circuits and Systems, volume 4, pages 1–4. IEEE, 1999.

[10] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation.

IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

[11] Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 34(4):791–804, 2012.

[12] Chenglong Bao, Hui Ji, Yuhui Quan, and Zuowei Shen. l0 norm based dictionary learning by proximal methods with global convergence. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 3858–3865, 2014.

[13] Ke Huang and Selin Aviyente. Sparse representation for signal classification. In Advances in Neural Information Processing Systems, pages

609–616, 2006.

[14] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning: Transfer learning from unlabeled data.

In Proceedings of International Conference on Machine Learning, pages 759–766. ACM, 2007.

[15] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman. Discriminative learned dictionaries for local image

analysis. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

21



[16] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, et al. Supervised dictionary learning. In Advances in Neural

Information Processing Systems, volume 21, pages 1033–1040, 2008.

[17] Duc-Son Pham and Svetha Venkatesh. Joint learning and dictionary construction for pattern recognition. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[18] Koray Kavukcuoglu, M Ranzato, Rob Fergus, and Yann LeCun. Learning invariant features through topographic filter maps. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, pages 1605–1612. IEEE, 2009.

[19] Wei Zhang, Akshat Surve, Xiaoli Fern, and Thomas Dietterich. Learning non-redundant codebooks for classifying complex objects. In

Proceedings of International Conference on Machine Learning, pages 1241–1248. ACM, 2009.

[20] Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro. Classification and clustering via dictionary learning with structured incoherence

and shared features. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 3501–3508. IEEE, 2010.

[21] Xiao-Chen Lian, Zhiwei Li, Bao-Liang Lu, and Lei Zhang. Max-margin dictionary learning for multiclass image categorization. In Proceed-

ings of European Conference on Computer Vision, pages 157–170. Springer, 2010.

[22] Qiang Zhang and Baoxin Li. Discriminative julien mairal k-svd for dictionary learning in face recognition. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 2691–2698. IEEE, 2010.

[23] Meng Yang, David Zhang, and Xiangchu Feng. Fisher discrimination dictionary learning for sparse representation. In Proceedings of IEEE

International Conference on Computer Vision, pages 543–550. IEEE, 2011.

[24] Ning Zhou, Yi Shen, Jinye Peng, and Jianping Fan. Learning inter-related visual dictionary for object recognition. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 3490–3497. IEEE, 2012.

[25] Zhuolin Jiang, Zhe Lin, and L Davis. Label consistent k-svd: Learning a discriminative dictionary for recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(11):2651–2664, 2013.

[26] Meng Yang, Dengxin Dai, Lilin Shen, and Luc Van Gool. Latent dictionary learning for sparse representation based classification. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 4138–4145. IEEE, 2014.

[27] Jianchao Yang, Kai Yu, and Thomas Huang. Supervised translation-invariant sparse coding. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 3517–3524. IEEE, 2010.

[28] Xiao-Chen Lian, Zhiwei Li, Changhu Wang, Bao-Liang Lu, and Lei Zhang. Probabilistic models for supervised dictionary learning. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 2305–2312. IEEE, 2010.

[29] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 68(1):49–67, 2006.

[30] Francis R Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing

Systems, pages 105–112, 2009.

[31] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with overlap and graph lasso. In Proceedings of International

Conference on Machine Learning, pages 433–440. ACM, 2009.

[32] Karim Lounici, Massimiliano Pontil, Alexandre B Tsybakov, and Sara Van De Geer. Taking advantage of sparsity in multi-task learning. In

22



Proceedings of Computational Learning Theory Conference, 2009.

[33] Junzhou Huang, Tong Zhang, et al. The benefit of group sparsity. The Annals of Statistics, 38(4):1978–2004, 2010.

[34] Seyoung Kim and Eric P Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In Proceedings of International

Conference on Machine Learning, pages 543–550, 2010.

[35] Jun Liu and Jieping Ye. Moreau-yosida regularization for grouped tree structure learning. In Advances in Neural Information Processing

Systems, volume 23, pages 1459–1467, 2010.

[36] Pablo Sprechmann, Ignacio Ramirez, Guillermo Sapiro, and Yonina Eldar. Collaborative hierarchical sparse modeling. In Proceedings of

Conference on Information Sciences and Systems, pages 1–6. IEEE, 2010.

[37] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. The Journal of Machine Learning Research, 12:3371–

3412, 2011.

[38] Rodolphe Jenatton, Jean-Yves Audibert, and Francis Bach. Structured variable selection with sparsity-inducing norms. The Journal of

Machine Learning Research, 12:2777–2824, 2011.

[39] Pablo Sprechmann, Ignacio Ramirez, Guillermo Sapiro, and Yonina C Eldar. C-hilasso: A collaborative hierarchical sparse modeling frame-

work. IEEE Transactions on Signal Processing, 59(9):4183–4198, 2011.

[40] Angshul Majumdar and Rabab K Ward. Classification via group sparsity promoting regularization. In Proceedings of IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 861–864. IEEE, 2009.

[41] Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse principal component analysis. arXiv preprint arXiv:0909.1440,

2009.

[42] Kevin Rosenblum, Lihi Zelnik-Manor, and Yonina Eldar. Dictionary optimization for block-sparse representations. In AAAI Fall 2010

Symposium on Manifold Learning, pages 50–58, 2010.

[43] Arthur Szlam, Karol Gregor, and Yann LeCun. Fast approximations to structured sparse coding and applications to object classification. In

Proceedings of European Conference on Computer Vision, pages 200–213. Springer, 2012.

[44] David G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110, 2004.

[45] Yagyensh Chandra Pati, Ramin Rezaiifar, and PS Krishnaprasad. Orthogonal matching pursuit: Recursive function approximation with

applications to wavelet decomposition. In Proceedings of Asilomar Conference on Signals, Systems and Computers, pages 40–44. IEEE,

1993.

[46] Athinodoros S. Georghiades, Peter N. Belhumeur, and David Kriegman. From few to many: Illumination cone models for face recognition

under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001.

[47] Aleix M Martinez. The ar face database. CVC Technical Report, 24, 1998.

[48] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach

tested on 101 object categories. 2004.

[49] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene

categories. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 2169–2178. IEEE, 2006.

23



[50] Zhuolin Jiang, Zhe Lin, and Larry S Davis. Learning a discriminative dictionary for sparse coding via label consistent k-svd. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, pages 1697–1704. IEEE, 2011.

[51] Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. Svm-knn: Discriminative nearest neighbor classification for visual

category recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 2126–2136. IEEE,

2006.

[52] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

[53] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor based image classification. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[54] Prateek Jain, Brian Kulis, and Kristen Grauman. Fast image search for learned metrics. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[55] Jan C van Gemert, Jan-Mark Geusebroek, Cor J Veenman, and Arnold WM Smeulders. Kernel codebooks for scene categorization. In

Proceedings of European Conference on Computer Vision, pages 696–709. Springer, 2008.

[56] Yong Xu, Yuhui Quan, Zhuming Zhang, Hui Ji, C Fermuller, Morimichi Nishigaki, and Daniel Dementhon. Contour-based recognition. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 3402–3409. IEEE, 2012.

[57] Y-L Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning mid-level features for recognition. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 2559–2566. IEEE, 2010.

[58] Shenghua Gao, Ivor Waihung Tsang, Liang-Tien Chia, and Peilin Zhao. Local features are not lonely–laplacian sparse coding for image

classification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 3555–3561. IEEE, 2010.

[59] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, 1989.

[60] Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. Sparse reconstruction by separable approximation. IEEE Transactions on

Signal Processing, 57(7):2479–2493, 2009.

Appendix A. Numerical solvers for CHiLasso

Two Effective solvers for the ChiLasso problem (2) have been proposed by Sprechman et al.in [36] and [39]. We

denote these two solvers as ChiLasso-Solver-A and ChiLasso-Solver-B respectively.

ChiLasso-Solver-A [36]. The basic idea of ChiLasso-Solver-A is to use ADMOM [59] iterations to divide the overall

sparse coding problem into two subproblems: (1) breaking the multi-signal case into p single-signal `1 regressions;

(2) treating the multi-signal case as a single group Lasso-like problem. For this purpose, we rewrite the ChiLasso
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problem (2) as a constrained optimization model

arg min
C
‖Y − DC‖2F + λ1

∑
i

‖ci‖1 + λ2ψS(B) s.t. C = B. (A.1)

Then the ADMOM iterations for solving (A.1) are given as follows:

C(t+1) = arg min
C

1
2
‖Y − DC‖2F + λ1

∑
i

‖ci‖1 + Tr(C>P(t)) +
θ

2
‖B(t) − C‖2F ; (A.2)

B(t+1) = arg min
B

θ

2
‖B − C(t+1)‖2F + Tr(B>P(t)) + λ2ψS(B); (A.3)

P(t+1) = P(t) + θ(C(t+1) − B(t+1)). (A.4)

The problem of (A.2) is signal-signal separable and thus can be solved by updating C column by column, i.e.

c(t+1)
i = arg min

c

1
2
‖yi − Dc‖22 + λ1‖ci‖1 + p>i c +

θ

2
‖b(t)

i − c‖22, (A.5)

which can be solved by applying SpaRSA [60]. The problem of (A.3) is group separable and thus can be separated

into |S| optimization problems in vectorial form as follows:

arg min
f

λ2‖ f‖2 − q> f +
θ

2
‖z − f‖22, (A.6)

where f , z and q are column vectors by concatenating the columns of B(Pk), C(t+1)
(Pk) and P(t)

(Pk) respectively. This

minimization problem can be solved by simple vectorial thresholding, i.e.,

f =


max{0,‖z+θq‖2−λ2}

θ‖z+θq‖2 (z + θq) if ‖z + θq‖2 > 0

0 if ‖z + θq‖2 = 0

. (A.7)

ChiLasso-Solver-B [39]. In [39], the SpaRSA framework is employed to generate a sequence of iterates {C(t)}t∈N,
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which converges to the solution of (2) under certain conditions. At each iteration, C(t+1) is obtained by solving:

min
Z

1
2
‖Z − V(t)‖22 +

λ1

α(t)

∑
i

‖zi‖1 +
λ2

α(t)ψG(Z), (A.8)

where V(t) = [v(t)
1 , . . . , v

(t)
p ] is defined a matrix with its ith column given by v(t)

i = c(t)
i −

1
α(t) DT (Dc(t)

i − yi), and {α(t)}t∈N

is some sequence of parameters with α(t) ∈ R+ which determine the convergence conditions about the algorithm. In

the aforementioned formulation, all terms in the cost function can be group separable. Thus, the problem of (A.8) can

be solved independently for each group, that is

C(t+1)
(Pk) = arg min

Z

1
2
‖Z − V(t)

(Pk)‖
2
F +

λ1

α(t)

∑
i

‖zi‖1 +
λ2

α(t) ‖Z‖F . (A.9)

The sub-gradient of (A.9) for the case where the optimum Z∗ , 0 is inspected as V(t)
(Pk) − (1 + λ2

α(t)‖Z∗‖F
)Z∗ ∈

λ1
α(t) ∂‖Z∗‖1. It can be observed that each element of (1 + λ2

α(t)‖Z∗‖F
)Z∗ is the solution of the well known scalar soft

thresholding operator. We can set G = T λ1
α(t)

(V(t)
(Pk)), where Tλ(X) denotes the matrix obtained when applying the soft-

thresholding operator with parameter λ to each element of X. From the information above, it can be easily inferred

that ‖Z∗‖2F =
‖Z∗‖2F

(‖Z∗‖F+
λ2
α(t) )2
‖G‖2F and then obtain ‖Z∗‖F = ‖G‖F − λ2

α(t) . Since all terms are positive, this can only hold as

‖G‖F > λ2
α(t) , which shows a vectorial thresholding condition on the solution Z∗ in terms of ‖G‖F . It’s easy to show

that ‖G‖F < λ2
α(t) is a sufficient condition for Z∗ = 0.

Therefore, the corresponding closed-form solution for each subproblem (A.9) is given by

C(t+1)
(Pk) =


max{0,‖G‖F−

λ2
α(t) }

‖G‖F G if ‖G‖F > 0

0 if ‖G‖F = 0

. (A.10)

This ChiLasso-Solver-B provides such solution in closed-form, requiring just two thresholding, both linear in the

dimension of Y.
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