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Abstract By assuming that images of interest can be sparsely modelled by some
transform, the sparsity-based regularization has been one promising approach for
solving many ill-posed inverse problems in image recovery. One often-used type
of systems for sparsifying images is wavelet tight frames, which can efficiently
exploit the sparse nature of local intensity variations of images. However, existing
wavelet frame systems lack the capability of exploiting another important image
prior, i.e., the self-recursion of local image structures in both spatial and scale
domain. Such a self-recursion prior of image structures has led to many powerful
non-local image restoration schemes with impressive performance. This paper aims
at developing a scheme for constructing a non-local wavelet frame or wavelet tight
frame that is adaptive to the input image. The proposed multi-scale non-local
wavelet frame allows the resulting regularization simultaneously exploits both the
sparse prior of local variations of image intensity and the global self-recursion prior
of image structures in spatial domain and across scales. Based on the proposed
construction scheme, a powerful regularization method is developed for solving
image deconvolution problem. The experiments showed that the results from the
proposed regularization method are compared favorably against that from several
popular image restoration methods.

Keywords non-local scheme · `1-norm minimization · image restoration · wavelet
frames
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1 Introduction

Most image restoration tasks are about recovering a high-quality image from its
partial and noisy measurement. The measurement is often modeled by a linear
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operator A ∈ RM×N applied to the input image:

g = Af + n, (1)

where f ∈ RN denotes the image for recovery, g ∈ RM denotes the available
measurement of f and n ∈ RM denotes the measurement noise. For image noise
removal, the matrix A is an identity matrix. For image de-blurring, the matrix
A represents a convolution process by a low-pass filter that blurs images. Most
of these image recovery problems are ill-posed inverse linear problems in which
straightforward solutions in term of matrix inversion lead to useless solutions dom-
inated by noise. To solve these ill-posed image restoration problems, certain prior
information of the image of interest is needed to regularize the recovery process. In
recent years, the sparsity-based prior has been playing a very important role in the
recent development of effective image restoration algorithms. The sparsity-based
image prior assumes that the image of interest is compressible in some transform
domain, that is, most of the important information of the image can be kept by
using few transform coefficients. Thus, the image recovery process can be regu-
larized by minimizing the functional that prompts the sparsity of the solution in
the transform domain. One such convex sparsity promoting functional is the `1
norm of transform coefficients of the solution. Clearly, the effectiveness of these
sparsity-based regularization methods is highly dependent on how efficiently the
chosen transform can sparsify images of interest.

In the last few decades, the orthonormal wavelet bases [1,2] have been widely
used in many image processing tasks. For image recovery, redundant over-complete
systems are often more preferred, as it is empirically observed that the results from
over-complete systems tend to be more visually appealing with less artifacts. In
recent years, as a generalization of orthonormal wavelet bases, wavelet tight frames

[3,4,5] have been used to sparsify images of interest in many applications. Many
types of wavelet tight frames have been proposed and are applied in various image
restoration tasks. For example, shift-invariant wavelet system for image de-noising
[6], curvelet [7] and its applications in image de-noising and de-blurring [8,9],
bandlet [10] for image approximation and compression [11], framelet [3,4] and its
applications in many image restoration tasks including in-painting, deblurring and
etc (see e.g. [12,5,13,14]). It is noted that the widely used total variation [15] based
variational methods are deeply connected with the `1 norm based regularization
under spline framelets. By choosing parameters properly, the analysis approach
using spline frames [5] indeed can be viewed as a sophisticated discretization of
variational methods involving the total variation penalties (see [16] for more de-
tails). The construction of these tight frames relies on certain functional assump-
tions of images which sometimes are invalid for the particular types of images,
an alternative approach is then to adaptively choose the redundant system opti-
mized for the input image. Several adaptive schemes have been developed in recent
years for sparsely modelling images. For example, the K-SVD method [17] learns
an over-complete system (frame) from the input image, and the data-driven tight
frame construction method [18] constructs a shift-invariant tight frame adaptive
to the input image.

The elements of the wavelet frames discussed above are all locally supported in
spatial domain. Then, for each image pixel, the related wavelet frame coefficients
measure local image gradients of different degrees in its local neighborhood. In
other words, the sparsity prior of images under an existing wavelet frame system
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only refers to the sparse nature of local variations of image intensity. Thus, we
may call the existing wavelet frame based regularization and total variation (TV)
based regularization a local approach. The local approach works well on cartoon-
type regions of the image, but leaves plenty of room for improvement on textural
regions. An alternative approach is the non-local approach which relates many
image pixels that may be far away in spatial domain. The non-local approach is
built on one observation often seen in natural images: image structures of small
image regions tend to repeat themselves in spatial domain. Such a prior is non-local
in the sense that image pixels from far way may be related to each other. There are
two types of non-local schemes proposed to use such a non-local prior. One is the so-
called non-local mean first introduced in [19] for image de-noising and extended to
solve other inverse problems in image processing; see e.g. [20,21,22,23]. The non-
local mean approach introduces a non-local operator, e.g. a weighted averaging
filter, in the variational model to explore the spatial redundancy. Another is the
patch-based approach which groups the similar patches together followed by a
collaboratively filtering; see e.g. [24,25,26,27]. One well-known approach is the
BM3D method for image de-noising [24] and image deconvolution [25].

The local approaches and the non-local approaches discussed above both have
their own advantages and disadvantages. For solving linear inverse problems in im-
age recovery, most local approaches can be expressed by a variational formulation.
Their performances are also stable and consistent over many types of images, par-
ticularly for images dominated by cartoon-type image structures such as medical
images. However, these local approaches do not work very effectively for natural
images with complex texture regions, as the local variations of these regions are
not sparse. The non-local mean approach addressed such a weakness by intro-
ducing a non-local operator in the variational formulation, which leads to better
performance than local approaches. However, the performance of the non-local
mean approaches is still not comparable to that of some patch-based non-local ap-
proaches, e.g. the BM3D method. The performance of some patch-based non-local
methods are very impressive in image de-noising and image deconvolution. By
applying a 3D filter on the stack of matched image patches, the BM3D method
considered both the local sparsity prior of image intensity and the global self-
recursion prior of image structures. However, it did not introduce the mechanism
to deal with the images which lack self-recursive image structures, such as finger-
print images or medical images. Thus, by wrongly imposing global similarity prior
on image patches, the BM3D method is likely to yield poor results for these type
of images.

Aiming at having the best of both local and non-local approaches, this pa-
per proposed a scheme of constructing non-local wavelet frames (or tight frames)
adaptive to the input image, which will allow the resulting sparsity-based regu-
larization simultaneously to exploit three image priors: (i) sparsity prior of local
intensity variations; (ii) self-recurrence prior of local image structures in spatial
domain; and (iii) self-recurrence prior of local image structures across scales. The
main differences between our proposed approach and the existing approaches are
summarized as follows.

(i) In contrast to existing wavelet frames, the proposed non-local wavelet frame
is composed of the concatenation of a multi-scale frame (or tight frame) with
non-local elements and a multi-scale tight frame with localized elements. Such
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a frame can facilitate the effective usage of all three image priors mentioned
above. Built upon the proposed construction scheme of non-local wavelet
frames, a variational image recovery model is developed to exploit the sparsity
prior of local variations and the self-recurrence of local image structures in
spatial domain and across multiple scales.

(ii) Different from the non-local mean methods, the proposed method utilized
the global similarity prior in a way that is essentially the same as patch-
based methods. As a result, the better performance than the non-local mean
methods is observed in experiments.

(iii) Different from the existing patch-based methods (e.g. [24,25,26,27]), the pro-
posed variational formulation works for general image restoration problems,
and is adaptive to the images with or without strong self-recursion prior. In
addition, the non-local component in the proposed frame is built on multi-
scale wavelet tight frames. The inherent multi-scale property of wavelet tight
frames allows the usage of the self-recurrence prior of local image structures
across scales, which leads to further performance improvement for image re-
covery.

The rest of the paper is organized as follows. In Section 2, we give a brief review
on frames, wavelet frames, tight frames, local and non-local image restoration
schemes . The main results are presented in Section 3. Section 4 is devoted to the
experimental evaluation of the proposed image recovery method.

2 Preliminaries and previous work

2.1 Wavelet frames, tight frames and image recovery

We first present here some basics of frames and tight frames in a Hilbert space H.
Interested readers are referred to [4,5,28] for more details. Let Z denote the set
of all integers, ZM denote the integer set {1, 2 . . . ,M}, and let Z2 denote the set
of all 2D integers. Let 〈·, ·〉 and ‖ · ‖ denote the usual inner product and norm of
a Hilbert space H. A sequence {φn}n∈Z ⊂ H is a frame for H if there exist two
positive constants a and b such that

a‖f‖22 ≤
∑
n∈Z
|〈φn, f〉|2 ≤ b‖f‖22, ∀ f ∈ H.

A frame {φn}n∈Z is called a tight frame for H when a = b = 1. There are two
operators associated with a given frame {φn}n∈Z: the analysis operator W defined
by

W : f ∈ H −→ {〈f, φn〉} ∈ `2(Z)

and its adjoint operator W ∗, also called the synthesis operator, defined by

W ∗ : {an} ∈ `2(Z) −→
∑
n

anφn ∈ H.

The concatenation of these two operators forms a so-called frame operator S =
W ∗W given by

S : f ∈ H −→
∑
n∈Z
〈f, φn〉φn.
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Thus, a sequence {φn} ⊂ H forms a frame if and only if aI ≤ S ≤ bI and it forms a
tight frame if and only if S = I, where I : H −→ H is the identical operator. Frame
can be viewed as a generalization of Riesz Basis and tight frame is a redundant
system that generalizes orthonormal basis. Indeed, a given tight frame {φn}n∈Z
has the same perfect reconstruction property as orthonormal basis:

f =
∑
n∈Z
〈f, φn〉φn, ∀ f ∈ H, (2)

and it becomes an orthonormal basis if ‖φn‖ = 1 for all φn.
Wavelet tight frames are arguably the most often used frames in signal/image

processing. A wavelet tight frame for L2(R) is a system formed by the shifts and
dilations of a finite set of generators Ψ = {ψ1, . . . , ψm} ⊂ L2(R):

X(Ψ) = {2j/2ψ`(2j · −k), 1 ≤ ` ≤ m, j ∈ Z, k ∈ Z}.

Framelets are the wavelet tight frames constructed via multi-resolution analysis.
The construction of framelets starts with a scaling function φ with φ̂(0) = 1 that
satisfies the following refinable equation φ̂(2·) = â0φ̂, where φ̂ is the Fourier trans-
form of φ, and â0 is a 2π-periodic trigonometric polynomial

â0(ω) :=
∑
k∈Z

a0(k)e−ikω

with â0(0) = 1. Then the generators {ψ1, . . . , ψm} is defined by ψ̂` = â`φ̂, 1 ≤
` ≤ m. The so-called Unitary Extension Principle ([3]) states that X(Ψ) forms a
tight frame provided that φ ∈ L2(R) and

m∑
`=0

â`(ω)â`(ω + πγ) = δγ , γ = 0, 1. (3)

For instance, the linear B-spline framelet often used in image recovery (see e.g. [12,
29]) has two generators and the associated masks {a0, a1, a2} are

a0 =
1

4
[1, 2, 1]; a1 =

√
2

4
[1, 0,−1]; a2 =

1

4
[−1, 2,−1]. (4)

The framelet system for L2(R2) can be obtained by taking the tensor product of
univariate framelets. In the discrete setting, for a given frame {φn}Mn=1 ⊂ RN , the
matrix representation of the associated analysis operator is W = (φ1, φ2, . . . , φM )>

and the synthesis operator is its transpose W>. Clearly, {φn}Mn=1 forms a frame
for RN if and only if W>W is non-singular and it forms a tight frame if and only
if W>W = IN , where IN is the N-by-N identical matrix.

The wavelet tight frame for RN can be constructed from the masks associ-
ated with the framelets for the space of continuum. For simplicity, only L-level
un-decimal wavelet tight frame system for RN is introduced. Let a0 denote the
mask associated with the scaling function and {a1, a2, . . . , am} denote the masks

associated with other framelets. Then, the low-pass filter a
(`)
0 at level ` is define as

a
(`)
0 = a↓10 ∗ a

↓2
0 ∗ · · · ∗ a

↓
2`−1

0 . (5)
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where ∗ denotes the discrete convolution operator and

a
↓
2`

k == [. . . , ak(−2),

2`−1︷ ︸︸ ︷
0, . . . , 0, ak(−1),

2`−1︷ ︸︸ ︷
0, . . . , 0, ak(0),

2`−1︷ ︸︸ ︷
0, . . . , 0, ak(1),

2`−1︷ ︸︸ ︷
0, . . . , 0, ak(2), . . .],

for k ∈ Z. Then, for the level ` = 1, . . . , L − 1, the corresponding filter set is

{a(`)k }
m
k=1 where

a
(`)
k = a

(`−1)
0 ∗ a↓2`k . (6)

For the L-th level, the filters are {a(L)
k }

m
k=1 ∪ a

(L)
0 .

For a given filter a of finite length, let the N-by-N matrix, denoted by Sa, be
the Toeplitz-plus-Hankel matrix that represents the convolution operator by the
mask a under Neumann boundary condition (see [30]). Then, the analysis operator
of a L-level discrete wavelet tight frame can be expressed as

W = [W>1 ,W
>
2 , ...,W

>
L ]>, (7)

where W` denotes the `-th level analysis operator defined by

W` = [S>
a
(`)
1

,S>
a
(`)
2

, . . . ,S>
a
(`)
m

]>, ` = 1, 2, . . . , L− 1, (8)

and WL = [S>
a
(L)
1

,S>
a
(L)
2

, . . . ,S>
a
(L)
m
,S>
a
(L)
0

]>. The rows of W forms a multi-level tight

frame for RN and its transpose W> is the synthesis operator. The perfect recon-
struction property of tight frame in matrix representation can be expressed as
W>W = IN .

Image restoration is about solving the ill-posed linear system (1) with some
additional regularization on the solution. There are several approaches for wavelet
frame based regularization, namely the synthesis based approach, the analysis
based approach and the balanced approach; see [31,5] for more details. Here we
focus on the analysis based approach which solves (1) via solving the following
minimization model:

argmin
f

1

2
||g −Af ||22 + ||diag(λ)Wf ||1, (9)

where W is the analysis operator of some discrete wavelet frame system, and λ is
the weighting vector. In order to successfully recover the image of interest from
(1) via solving (9), the image of interest should have a good sparse approximation
under the discrete wavelet frame system. Many efficient algorithms have been
developed in recent years to solve (9), e.g. the split Bregman iteration method [32,
33].

2.2 Related non-local image restoration schemes

There has been an abundant research literature on the non-local methods for
various image restoration tasks. In this section, we will only discuss the most
related work. The basic idea of most non-local methods in image processing is
to recover the degraded pixel using other similar pixels. The non-local means
(NLM) method is first introduced by Buades et al. [19] for image de-noising. In
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the continuous setting, the non-local means method introduces a neighborhood
de-noising filter applied to the image:

NLf (x) := (

∫
Ω

ωf (x, y)dy)−1

∫
Ω

ωf (x, y)f(y)dy. (10)

where f is the reference image and ωf is the weight function given by

ωf (x, y) = exp(−Gσ ∗ |f(x+ ·)− f(y + ·)|2(0)

h2
),

where Gσ is the Gaussian kernel with s.t.d. σ and h is the filtering parameter
associated with the noise level. It is seen that the weights are significant only
when the patch around y is similar to the corresponding patch around x. As a
result, the self-similarity of image patches are used for noise reduction. The non-
local means method is extended in [22] to address more general image restoration
problems such as image deconvolution:

argminf
λ

2

∫
Ω

(k ∗ f − g)2 +

∫
Ω

∫
Ω

√
(f(x)− f(y))2ωf (x, y)dydx. (11)

The regularization term in the above minimization clearly is a generalization of
the TV based regularization by applying a neighborhood de-noising filter on TV
measures.

A representative patch-based non-local scheme is the BM3D method [24,25].
The basic steps of the BM3D de-noising method [24] are as follows. First, similar
image blocks are grouped and stacked in a 3D array based on the sum-of-squares
distance function between different image patches. Then a collaborative filtering
is carried out on each 3D image stack to suppress noise. For example, a shrink-
age in 3D transform domain such as wavelet shrinkage or Wiener filtering. The
de-noised image is then synthesized from the de-noised patches after inverting 3D
transform. The result is then further refined by iteratively doing the patch group-
ing and collaboratively filtering. For image deconvolution, the BM3D deblurring
method [25] takes a two-step approach. (i) The first step is to estimate an initial
de-blurred result using the regularized inverse in discrete Fourier domain, followed
by a de-noising process using the BM3D method with collaborative hard thresh-
olding. Then this initial de-blurred result is used to synthesize a blurred image
with better signal-to-noise ratio. (ii) Taking this re-estimated blurred image as
the input, the second step is to re-estimate the result using the regularized Wiener
filter, followed by a de-noising process using the BM3D method with collaborative
Wiener filtering. In [26], a variational formulation of the the BM3D method is
derived for general image recovery. The BM3D method is a very effective image
restoration scheme with state-of-the-art performance.

3 Main results

Image restoration is about estimating the true image f by solving the linear system
(1). In most image restoration problems, the matrix A in (1) is an ill-conditioned
or non-invertible matrix. By assuming that the frame coefficient vector of the
true solution f tends to be sparse, one popular sparsity-based approach is the
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so-called analysis based approach (e.g. [31,5,32,33]), which estimates f by solving
the following `1 norm related minimization model:

argmin
f

Φ(g −Af) + ||diag(λ)Df ||1, (12)

where λ is some regularization parameter vector and D is the analysis operator
of some frame system. There are two terms in the above minimization. The first
term is the fidelity term and the functional Φ is set as 1

2‖ · ‖
2
2 when assuming only

i.i.d. Gaussian white noise. The second term is the weighted `1 norm of coefficients
which approximately measures the sparsity of the canonical frame coefficient vector
Df . The performance of the model (12) largely depends on how well the analysis
operator D can sparsify the true image f .

In this section, we first present a scheme for constructing the analysis operator
D of non-local multi-scale wavelet frames and tight frames for RN , under which
the regularization method such as (12) can exploit both the local sparsity prior
of images in wavelet tight frame domain and the self-recursion prior of image
structures in global spatial domain and across multiple scales. Then, built on
the introduced non-local multi-scale wavelet frame system, a numerical method is
developed for solving general image restoration problems.

3.1 Construction of multi-scale non-local wavelet frames

Many wavelet tight frames have been used for image restoration, including translation-
invariant wavelets system [6] and spline framelets [12,13,14]. In the discrete case,
these wavelet tight frame systems are generated by the shifts of several filters
of small localized support, which are very suitable for sparsely approximating
cartoon-type image regions composed of sparsely distributed edges. However, their
effectiveness significantly decreases when approximating textural regions composed
of dense small edge segments. For these textural regions, a more efficient approach
is to represent these regions by themselves either in the same scale or in differ-
ent scales, since these image structures are likely to repeat themselves in spatial
domain or across different scales. Notice that if we represent these image regions
under a wavelet tight frame, the associated wavelet tight frame coefficients will
also have the same self-recursion property in spatial domain and across different
scales. Thus, considering likely self-recursions of wavelet tight frame coefficients
in spatial domain and across different scales, we propose a (tight) frame system
whose analysis operator is of the form

D(f) =
1√
2

(
I

J(f)

)
W =

1√
2

(
W

J(f)W

)
(13)

where W ∈ RM×N is the analysis operator associated with some existing multi-
level wavelet frame system (e.g. 2-level shift-invariant cubic spline framelet [3]),
I ∈ RM×M is the identity matrix, and J(f) ∈ RM×M is the operator that encodes
the self-recursion property of wavelet tight frame coefficients Wf in spatial domain
and in multiple scales.

The proposed frame system of the form (13) is composed of two systems: one
is some existing discrete wavelet tight frame system denoted by W , and the other
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is the non-local version of W generated by the multiplication of a linear operator
J(f). Since the discrete wavelet tight frame systems are generated by the shifts
of the finitely-supported wavelet filters, the non-zero elements of each row of the
matrix W are then agglomerated into some local interval. Thus, we may call the
tight frame formed by the rows of W a local wavelet tight frame. The operator J(f)
is used for relating the wavelet frame coefficients corresponding to the same image
structure, which often are not agglomerating in neighboring regions but rather
are spreading out over the whole image. Thus the operator J(f) can be viewed
as a non-local operator to relate wavelet frame coefficients that may be spatially
far away from each other, and the rows of J(f)W can be viewed as a non-local
version of discrete wavelet frame system generated by W . Therefore, we may call
the frame (tight frame) of the form (13) a non-local wavelet frame (tight frame).

Proposition 1 Let W ∈ RM×N be a tight frame system satisfying W>W = IN . For

any f ∈ RN , the rows of D defined by (13) form a frame system for RN . Furthermore,

the rows of D form a tight frame system for RN provided that J(f)>J(f) = IM .

Proof Notice that

S = D(f)>D(f)

=
1

2
W>(IN + J(f)>J(f))W

=
1

2
W>W +

1

2
W>J(f)>J(f)W

=
1

2
IN +

1

2
W>J(f)>J(f)W.

Since the term 1
2W
>J(f)>J(f)W is positive semi-definite, the matrix S is a pos-

itive definite matrix. Thus, the rows of D(f) forms a frame for RN . Moreover, if
J(f)>J(f) = IM , then we have

S =
1

2
IN +

1

2
W>J(f)>J(f)W =

1

2
IN +

1

2
W>W = IN .

Thus, the rows of D(f) forms a tight frame for RN .

Proposition 1 states that the system formed by (13) is always a frame and is a
tight frame if J(f) is the analysis operator of some tight frame system. In the next,
we give a detailed description on how to construct a non-local operator J(f) whose
rows form a tight frame for RM . First, the wavelet frame coefficients Wf ∈ RM are
grouped into P dis-adjoint sets {WGpf}

P
p=1 with ∪Pp=1Gp = ZM and Gp1 ∩ Gp2 = ∅

if p1 6= p2. Before introducing the ideal grouping strategy for partitioning wavelet
coefficients, we first define the image region associated with each wavelet coefficient
which will be used as the measurement for coefficient grouping.

Recall that in discrete multi-level wavelet decomposition, the k-th filter at the `-

th level, denoted by a
(`)
k , is defined as a

(`)
k = a

(`−1)
0 ∗a↓2`−1

k , where a
(`−1)
0 and a

↓
2`−1

k

are given by (5) and (6). Then, the wavelet coefficients generated by the filter a
(`)
k

can be calculated by applying the filter a
↓
2`−1

k on the image f (`−1) = f ∗a(`−1)
0 , the

(`− 1)-th level low-pass output of the original image f in wavelet decomposition.
Clearly, f (`−1) is f itself when ` = 1 and is a smoothed version of f by the

low-pass filter a
(`−1)
0 when ` > 1. Suppose that all wavelet masks {ak}mk=0 are



10 Yuhui Quan et al.

supported on [−r, r]2 ∩Z2. Then, it can be seen that the filter a
↓
2`−1

k is supported

on [−2`−1r, 2`−1r]2 ∩ Z2, and the support of its non-zero elements is restricted
on [−2`−1r, 2`−1r]2 ∩ 2`−1Z2. In other words, the number of non-zero element of

a
↓
2`−1

k is the same as that of the corresponding mask ak, i.e. (2r + 1)2.

For each wavelet coefficient Wj0f ∈ Wf which corresponds to the output of

the filter a
(`)
k with respect to image pixel located at i0, we define its corresponding

image region used for grouping by

Ω(Wj0f) = {f (`−1)(x) : x ∈ i0 + [−2`−1r, 2`−1r]2 ∩ 2`−1Z2}. (14)

In other words, the image region of each wavelet coefficient used for grouping is
defined as the smoothed image f (`−1) sampled by the same way as its associated

filter a
↓
2`−1

k . It can be seen that the image regions of all wavelet coefficients from
different filters at different levels have the same size (2r + 1)× (2r + 1). Based on
the definition (14), the ideal grouping strategy is summarized as follows.

Condition 2 (Ideal grouping strategy) The wavelet coefficients Wf ∈ RM are

partitioned into P dis-adjoint sets {WGpf}
P
p=1 such that ∪Pp=1Gp = ZM and two

wavelet coefficients Wj1f,Wj2f belong to the same group if and only if

(i) Wj1f and Wj2f are both generated by the same wavelet mask ak0 with respect to

either the same level or the different levels. In other words, they are generated by

the filter sets {a(1)k0 , . . . , a
(L)
k0
} composed by the same mask ak0 as (6) at all levels.

(ii) The mean square difference between two images regions Ω(Wj1f) and Ω(Wj2f)
defined by (14) is bounded by a pre-defined threshold σ (very small).

Let {Gp}Pp=1 denote the index sets obtained via the ideal grouping strategy.

Then {Gp}Pp=1 forms a dis-joint partition of ZM that satisfies ∪pGp = ZM and

Gp1 ∩ Gp2 = ∅ if p1 6= p2. Define the matrix J ∈ RM×M by

J(j, k) =
1

Kp


−(Kp − 2), j = k and j ∈ Gp;
2, j 6= k and j, k ∈ Gp;
0, otherwise,

(15)

where Kp denotes the cardinality of the set Gp. The matrix J is defined such that
the operation by J takes a weighted average of the input vector inside the same
group. The weights are determined based on the following heuristic: large weight
on the element itself, small weight equally on the other elements in the same group,
and J forms an orthogonal matrix. Define the operator D(f) by

D(f) =
1√
2

(
I

J

)
W =

1√
2

(
W

JW

)
. (16)

Then such an operator D(f) is indeed an analysis operator of a tight frame for
RN .

Proposition 3 Let W ∈ RM×N be a tight frame system satisfying W>W = IN . For

any f ∈ RN , the rows of D(f) defined by (16) forms a tight frame for RN .
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Proof Let G ∈ RM denote the vector of all integer indexes formed by sequentially
concatenating the index sets {Gp}Pp=1 obtained via the ideal grouping strategy:

G = (G>1 , . . . ,G>P )>.

By the definition of {Gp}p, the vector G is a permutation of the vector (1, . . . ,M)>.
Let Q denote the corresponding permutation matrix such that QG = [1, 2, . . . ,M ]>.
Then, we have Q>Q = IM , and by the definition (15),

Q>J = diag(J1, J2, . . . , JP ),

where diag(J1, J2, . . . , JP ) denotes the block-wise diagonal matrix formed by the
sub-matrices {Jp}p, and Jp ∈ RKp×Kp is given by

Jp =
1

Kp



2−Kp 2 · · · 2 2
2 2−Kp · · · 2 2

2 2
. . . 2 2

...
...

...
...

...
2 2 · · · 2 2−Kp

 .

A direct calculation leads to Jp
>Jp = IKp

. Thus,

J(f)>J(f) = diag(J1, J2, . . . , JP )>Q>Qdiag(J1, J2, . . . , JP )

= diag(J>1 J1, . . . , J
>
P JP )

= IM .

By Proposition 1, the rows of D(f) forms a tight frame for RN .

It can be seen that the non-zero elements of the operator J(f) sparsely spread
out over the whole matrix. As a result, the elements of the tight frame, the rows of
J(f)W , have a non-local support. Indeed, as we show in the following, the outcome
J(f)Wf is a non-local version of wavelet tight frame coefficient vector Wf . By the
definition of Gp, we have that

(Wf)(j) = (Wf)(k), for any j, k ∈ G`

which is equivalent to

(Wf)(j) =
1

K`

(
(
∑

k 6=j,k∈G`

2(Wf)(k))− (K` − 2)Wf(j)
)
, ∀ j ∈ G`, (17)

or in the matrix form:

Wf = J(f)Wf.

Thus, when we use D(f) defined by (16) in the regularization model (12), the
regularization functional includes two components:

‖diag(λ)D(f)f‖1 = ‖
(

diag(λ1)
diag(λ2)J(f)

)
Wf‖1

= ‖diag(λ1)Wf‖1 + ‖diag(λ2)J(f)Wf‖1.
(18)
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The first component is the local version of the weighted `1 norm of wavelet
tight frame coefficients and the second component is the non-local version of the
weighted `1 norm of wavelet tight frame coefficients. Compared to the widely used
regularization functional ‖diag(λ)Wf‖1, the new functional ‖diag(λ)D(f)f‖1 not
only enforces the same local sparsity prior of the image f in wavelet tight frame do-
main, but also enforces two additional non-local constraints on the self-recursions
of wavelet frame coefficients: one in spatial domain and the other in scale domain.

In practice, there are a few issues to be addressed when directly using the
nonlocal tight frame D(f) constructed by (16) in image restoration. The first is
we usually have a rough estimate of f in hand in image restoration which may
contain noticeable errors in the early stage. The second is the imperfection of self-
recursions of image structures in practice, as they are usually not exactly repeating
themselves but rather they are highly similar. The last is the computational effi-
ciency as a rigorous treatment on grouping requires an overwhelming amount of
computational cost. Thus, we propose a robust version of D(f) to address these
issues. The modified system is still of the form (16) but with a slightly different
non-local operator. It is noted that the robust version of D(f) is a frame, not a
tight frame.

The first modification for the robustness is on the construction of {Gp}Pp=1.
Instead of grouping only wavelet coefficients corresponding to the same image
structure, we group the wavelet coefficients corresponding to image structures
with high similarity. Then the weights are introduced into the definition of J(f)
to encode the similarity degree of wavelet frame coefficients. Let {Hr}Rr=1 denote
the groups formed by the new strategy. The modified non-local operator, denoted
by J̃ , is then defined as follows,

J̃(j, k) =
1

ω(j,Hr) + 1


−(ω(j,Hr)− 1), j = k;
2ω(j, k), j 6= k and j, k ∈ Hr;
0, otherwise,

(19)

where 0 < ω(j, k) ≤ 1 is the weight defined by some similarity measurement be-
tween two wavelet tight frame coefficients, and ω(j,H`) =

∑
k 6=j,k∈H`

ω(j, k). It
can be seen that the definition of (19) is degenerated to (15) of the ideal case
where all weights are the same.

In summary, we propose a modified version of the operator D(f) for better
performance when solving practical image restoration problems:

D(f) =
1√
2

(
I

J̃(f)

)
W (20)

where J̃(f) is defined by (19) and W is the analysis operator of some wavelet tight
frame system. By proposition 1, the new operator D(f) of the form (20) is the
analysis operator of a frame system for RN .

3.2 Regularization model for image recovery

For image restoration, the non-local adaptive tight frame proposed in the previous
section cannot be pre-constructed as the true image f is not available. Thus, we
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propose the following minimization model for solving the ill-posed linear system
(1):

argminf∈RN
1

2
‖Af − g‖22 + ‖diag(λ)D(f)f‖1, (21)

where D(f) is defined by (20). We take an iterative scheme to alternatively update
the estimation of f and the operator D(f). See Algorithm 1 for the outline of the
iterative scheme. There are two non-trivial steps in Algorithm 1, one is using the

current estimate f (k) of the true image to construct the index sets {H(k)
r }Rr=1 and

the other is to re-estimate the true image by solving the minimization model (21)

with D(f) := D(k). The construction of {H(k)
r }Rr=1 in first step requires solving a

discrete optimization problem. Regarding the minimization problem (21), many ef-
ficient numerical solvers have been developed for solving such type of minimization
problems in recent years, e.g, the split Bregman iteration [32,33].

Algorithm 1 Alternative iteration scheme for solving (21)

Input: the degraded image g
Output: the recovered image f
Main procedure:

1. f (0) := g.
2. for k = 0, 1, . . . ,K − 1,

(a) constructing the index sets of groups {H(k)
r }Rr=1 using f (k);

(b) synthesizing D(k) defined by (20) and (19) using {H(k)
r }Rr=1;

(c) f (k+1) := argminf∈RN
1
2
‖Af − g‖22 + ‖diag(λ)D(k)f‖1.

3. f := f (K).

In the computation, a rigorous construction of {H(k)
r }Rr=1 is a very time consum-

ing process. Certain simplifications are needed such that the construction provides
a reasonable good grouping within acceptable running time. In our implementa-
tion, for computational efficiency, all index sets {Hr}Rr=1 have the same size S and
for each framelet coefficient, only the first S − 1 framelet coefficients in its neigh-
borhood with the highest similarity are grouped together. Then, the similarity

measure between two framelet coefficients ci and cj from the same group H(k)
r is

defined as

ω(ci, cj) =

{
βe−d(ci,cj)/h, if ci, cj relate to the same filter;

(1− β)e−d(ci,cj)/h, otherwise,
(22)

where 0 < β < 1 determines percentage of inner-scale and cross-scale nonlocal
constraints, h is the constant which is set to 0.3 in our implementation, and d(ci, cj)
is defined as the square difference summation of two image regions associated with
the two coefficients as defined in (14).

The error in the initial estimates f (k) will also have a negative impact on the
performance of the deconvolution process by (21). The negative impact mainly
comes from the relatively low quality of the non-local operator J̃(f) in the frame
system D(k). Thus, we propose to update the regularization parameter vector
λ(k) during each iteration according to the quality of the operator D(k). In our
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implementation, we propose the following empirical formulation of setting the
regularization parameter vector λ(k) ∈ R2M :

λ(k) =

(
λ
(k)
1

λ
(k)
2

)
, (23)

whereλ
(k)
1 (j) = c0λ0σ

2
n(η + max(0, 1

S

∑
i,j∈Hr

|Wf (k)(i)|2 − σ2n))
−1/2

,

λ
(k)
2 (j) = (1− c0)λ0σ

2
n(η + max(0,var({Wf (k)(i) : i, j ∈ Hr})− σ2n))

−1/2
.

(24)
In (24), the variable σn denotes the standard deviation of image noise which could
be estimated in many image restoration tasks by some statistical approach; see e.g.
[34]. The operator var(·) denotes the variance estimator. There are three constants
in (24): λ0, c0, η. The constant λ0 is the regularization value; the constant co ∈ [0, 1]
determines the percentage of local and non-local constraints in the overall regu-
larization; the constant η is just for numerical stability. Once the regularization
parameter vector λ(k) is set, the minimization (21) can be solved by split Breg-
man iteration. A detailed description for the proposed regularization method is
summarized in Algorithm 2. The subproblem u(p) in Step 2 (d) is solved by the
conjugate gradient method with 20 iterations in our implementation.

Algorithm 2 Regularization method using non-local tight frames
Input: the observed image g
Output: the recovered image f
Main procedure:

1. f (0) := g.
2. For k = 1, ...,K,

(a) constructing the index sets of groups {H(k)
r }Rr=1 using f (k).

(b) synthesizing D(k) using (20).

(c) d(0) = b(0) := 0 and D := D̃(K).
(d) For p = 1, ..., P ,

i. synthesizing λ(k) using (23) and (24).
ii. defining 

u(p) := (ATA+ µDTD)−1(AT g + µDT (d(p−1) − b(p−1)));

d(p) := Tλ(Du(p) + b(p−1));

b(p) := b(p−1) + δ(Du(p) − d(p)),

,

where µ and δ are two parameters used in split Bregman iteration, and Tλ is the
soft-thresholding operator defined by

Tλ(u) = sign(u) max(|u| − λ, 0).

(e) f (k) := u(P ).

3. f := f (K).
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peppers256 goldhill256 boat256 camera256

house256 bridge256 Lena512 Barbara512

Fig. 1 Eight tested images

4 Experiments and discussions

Algorithm 2 can be used to solve general image restoration problems. In this
section, we will mainly focus on the evaluation of Algorithm 2 in the application
of image deconvolution. The applications of Algorithm 2 in image de-noising and
image in-painting will be demonstrated only with a few examples.

Let f and g denote the true image and the observed image, and let f ∈ RN and
g ∈ RN denote their vectorized versions, where n ∈ RN denotes image noise. For
image deconvolution, the matrix A in the linear system (1) becomes the convolu-
tion operator, i.e., the blurring process can be modeled as a convolution process
such that

g = p ∗ f + n, (25)

where p denotes the blur kernel and ’∗’ denotes the 2D discrete convolution oper-
ator. The system (25) can be re-written in the matrix form:

g = Af + n, (26)

where A is a block-wise Toeplitz matrix under Neumann boundary extension or a
block-wise circulant matrix under periodic boundary extension.

4.1 Experiments and demonstrations

For the experiments on image deconvolution, we run Algorithm 2 on eight images
as shown in Figure 1. The experimental setup is as follows. Each tested image
is first convoluted by a blur kernel, followed by the addition of white Gaussian
noise with different standard deviations. Four different types of blur kernels are
tested in the experiments, including (a) a disk kernel of radius 3 pixels; (b) a
linear motion kernel of length 15 pixels and orientation 30◦; (c) a Gaussian kernel
of size 25 × 25 pixels and standard deviation 8/5; and (d) a box kernel of size
9 × 9 pixels. The mathematical expression of a Gaussian blur kernel is p(x, y) =
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(2πσ2)−1 exp(−(x2 + y2)/(2σ2)). The other three blur kernels can be expressed as

p(x) =
1

#Ω

{
1, x ∈ Ω,
0, otherwise,

where Ω denotes the support of the kernel, which is a disk, a box and a line segment
respectively; and #Ω denotes the cardinality of Ω. We use the peak signal to noise
ratio (PSNR) as the quantitative measure of image quality which is defined by

PSNR(f, f̂) = −20log10
||f − f̂ ||22

255N
,

where f denotes the true image, f̂ denotes the restored image and N denotes the
number of image pixels.

The experimental results from Algorithm 2 are compared to that from three
related existing image restoration approaches. The first one is the framelet based
image restoration approach [33] which used the same minimization model (21) to
recover the true image. The main difference between the framelet based method
and Algorithm 2 lies in the choice of the wavelet frame system D in the model
(21). The former used the linear spline wavelet frame system and the later used the
non-local wavelet frame system of the form (20). The second method for compar-
ison is the non-local TV based approach [22] which introduced a non-local mean
operator into the TV-based image regularization. The third one is the patch-based
BM3DDEB approach introduced in [25], the generalization of the BM3D method
to image deconvolution. The BM3DDEB method is built on the concept of col-
laborative filtering on the 3D array of matched image patches. The results from
these three methods for comparison are all generated by using the codes with
recommended parameter settings from the original authors.

The same parameters of Algorithm 2 are used for all eight input images during
the experiments. As we observed in the experiments, only one more round of the
refinement for patch grouping is sufficient to obtain satisfactory results. Thus,
the iteration number K of the outer loop is set to 2. The iteration number P of
the inner loops is set to 30. The two parameters µ and δ for the spilt Bregman
iteration are set to 1/10 and 1 respectively. The parameter β in (22) is set to 1/20.
The parameters of the adaptive regularization vector defined in (24) are set to
η = 3/10, λ = 2 × 10−3 and c0 = 6/10. The fact that c0 > 0.5 implies that the
regularization in (21) weights more on the non-local wavelet frame coefficients. On
a PC workstation with a 6 core INTEL Xeon CPU (2.4 Ghz) and 32 GB memory,
the MATLAB implementation of Algorithm 2 takes about 9 minutes for an image
with size 256× 256 in total, including 2 minutes for patch grouping.

Table 1 and 2 summarized the PSNR values of the results de-blurred by four
methods, with respect to different configurations on blur kernels and noise levels.
It can be seen that Algorithm 2 outperformed the framelet method and the non-
local TV method by a large margin in most test images. Also it outperformed
the BM3DDEB method in most test images, but it did not perform as well as
the BM3DDEB method on the image ”Barbara512”. The main reason is that the
BM3DDEB method enforces the sparsity constraint in DCT transform, which is
very suitable for representing the stripe textures that are prevailing in the image
”Barbara512”. For the images dominated by other types of texture or dominated
by cartoon-type regions, Algorithm 2 performed noticeably better. The reason
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Image Kernel Local framelet Nonlocal TV BM3DDEB Algorithm 2

peppers256

disk 28.43 28.08 30.35 31.12
motion 28.35 27.25 29.53 30.17

gaussian 26.73 26.75 27.19 29.84
box 28.46 27.60 28.55 29.48

goldhill256

disk 27.66 27.63 27.87 28.16
motion 27.66 26.97 27.41 28.19

gaussian 27.10 27.28 27.38 27.73
box 26.87 26.57 26.89 27.33

boat256

disk 26.88 27.06 27.13 27.87
motion 26.75 26.59 26.92 27.63

gaussian 26.31 26.72 26.57 26.90
box 25.64 25.72 25.93 26.30

camera256

disk 27.45 28.06 28.54 29.11
motion 27.63 27.57 28.29 29.02

gaussian 26.39 27.00 27.08 27.34
box 25.77 26.12 26.61 26.85

bridge256

disk 25.74 25.67 25.75 26.13
motion 25.67 24.93 25.43 25.78

gaussian 25.30 25.49 25.51 25.81
box 24.61 24.30 24.67 24.85

house256

disk 32.98 32.51 33.54 34.52
motion 32.10 31.13 32.72 33.79

gaussian 31.80 32.41 32.41 33.23
box 31.79 30.71 32.32 33.11

Barbara512

disk 25.47 25.76 27.63 26.33
motion 25.49 25.48 27.99 26.86

gaussian 24.58 24.70 25.05 24.71
box 24.30 24.31 25.01 24.61

Lena512

disk 32.91 31.82 33.55 33.81
motion 32.03 30.46 32.63 33.04

gaussian 33.05 32.90 33.50 33.98
box 30.68 30.01 31.06 31.47

Table 1 Comparison of the PSNR values (dB) of the results by four methods, with respect
to the noise level σ = 2.

is that the self-recursive property of image structures is very weak on these two
images which results in reliable patch stacks in the BM3DDEB method. Contrary
to the BM3DDEB method, the non-local wavelet frame system used in Algorithm 2
allows the simultaneous usage of both the local prior in wavelet frame domain and
the non-local self-recursion prior of wavelet frame coefficients. Together with the
regularization parameters adaptive to the accuracy of each prior, Algorithm 2
performs consistently on a wide range of images, including both image of rich
textures and images of less textures. The advantage of Algorithm 2 over other
methods in terms of the PSNR value is also consistent with the improvement of
the visual quality. See Figures 2, Figure 3 and Figure 4 for the visual comparison
of the results on a few tested images.

Algorithm 2 can also be applied to solve many other image restoration problems
with only small modifications. In the end of the experimental section, we demon-
strated some examples of applying Algorithm 2 to image de-noising and image
in-painting. For image de-noising, the matrix A in the linear system (1) becomes
the identical matrix and for image in-painting, the matrix A in the linear system
(1) becomes a diagonal matrix with diagonal element being 1 if the corresponding
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original image degraded image (23.55 dB)

local framelet (25.97 dB) non-local TV (25.65 dB)

BM3DDEB (26.29 dB) Alg. 1 (27.32 dB)

Fig. 2 Visual comparison of de-blurred results for the image ”peppers256”. The true image is
degraded by the 25× 25 Gaussian kernel with standard deviation 1.6 and the Gaussian noise
with standard deviation σ = 5.
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original image degraded image (20.57 dB)

local framelet (24.16 dB) non-local TV (24.51 dB)

BM3DDEB (24.85 dB) Alg. 1 (25.32 dB)

Fig. 3 Visual comparison of de-blurred results for the image ”cameraman256”. The true image
is degraded by the 9×9 box kernel and the Gaussian noise with standard deviation σ = 5.
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original image degraded image (18.02 dB)

local framelet (23.79 dB) non-local TV (22.59 dB)

BM3DDEB (23.87 dB) Alg. 1 (24.22 dB)

Fig. 4 Visual comparison of de-blurred results for the image ”bridge256”. The true image is
degraded by the 9× 15 motion kernel and the Gaussian noise with standard deviation σ = 5.
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Image Kernel Local framelet Nonlocal TV BM3DDEB Algorithm 2

peppers256

disk 26.94 25.22 28.08 28.37
motion 25.41 24.20 26.60 27.46

gaussian 25.97 25.65 26.29 27.32
box 25.84 25.45 26.67 27.71

goldhill256

disk 26.55 25.43 26.65 26.75
motion 25.93 24.44 25.95 26.27

gaussian 26.33 26.29 26.59 26.88
box 25.40 24.87 25.69 26.00

boat256

disk 25.23 24.91 25.71 25.87
motion 24.61 23.88 25.06 25.44

gaussian 25.40 25.58 25.64 25.85
box 24.19 24.20 24.56 24.88

camera256

disk 25.43 25.43 26.50 26.64
motion 24.97 24.33 25.82 26.43

gaussian 25.44 25.91 26.02 26.15
box 24.16 24.51 24.85 25.32

bridge256

disk 24.33 23.51 24.55 24.78
motion 23.79 22.59 23.87 24.22

gaussian 24.51 24.38 24.63 24.85
box 23.18 22.79 23.49 23.75

house256

disk 30.75 29.50 32.02 31.88
motion 29.78 27.28 30.87 31.07

gaussian 30.72 30.54 31.19 31.64
box 29.48 28.66 30.34 30.86

Barbara512

disk 24.28 24.30 25.28 24.79
motion 24.10 23.73 25.01 24.48

gaussian 24.27 24.15 24.43 24.40
box 23.69 23.54 24.01 24.00

Lena512

disk 31.13 28.95 31.72 31.82
motion 29.77 27.45 30.30 30.64

gaussian 31.53 30.63 32.15 32.24
box 29.17 28.18 29.35 29.96

Table 2 Comparison of the PSNR values (dB) of the results from the four methods, with
respect to the noise level σ = 5.

pixel is known or 0 otherwise. In this paper, we only provide a few examples. See
Figure 5 for the visual illustration of the result de-noised by the model (9) using
3-level linear spline wavelet frame and the one using the non-local wavelet frame
(20). See Figure 6 and Figure 7 for the comparisons of the in-painted results by the
linear spline wavelet approach and the non-local wavelet frame approach. It is seen
that the non-local wavelet tight frame (20) performed better than the linear spline
framelet on the tested images. We also compare our approach with the recent non-
local method from [35]. The visual results can be refereed to Fig. 8. Obviously,
our approach outperformed the non-local method from [35], which demonstrates
the power of the combination of the local and non-local priors.

4.2 Summary

The performance of a regularization-based image restoration method largely de-
pends on not only the accuracy but also the strength of the assumptions used
for regularizing the true image. In recent years, the wavelet tight frame based
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noisy image (22.10 dB) linear spline framelet (31.61 dB) Alg. 2 (32.78 dB)

Fig. 5 Visual comparison of de-noised results for the image ”Lena512”. The true image is
degraded by Gaussian noise with standard deviation 20.

damaged image (40% lost) linear spline framelet (28.46 dB) Alg. 2 (30.05 dB)

Fig. 6 Visual comparison of in-painted results for the image ”boat256”. The forty percents
of image pixels of the true image are randomly missing.

damaged image linear spline framelet (34.38 dB) Alg. 2 (35.40 dB)

Fig. 7 Visual comparison of in-painted results for the image ”Lena512”. Some image pixels
of the true image are damaged by the scratches and texts.

regularization plays an active role in the newest development of powerful image
restoration methods, which seek the solution that minimizes the `1 norm of the
associated wavelet tight frame coefficients. The wavelet tight frame approach as-
sumes that the image of interest is likely to have sparse approximation in the
wavelet tight frame domain, which essentially exploits the sparse nature of local
image intensity variations. However, in existing wavelet tight frame systems, there
is no measurement on the self-similarity relationship of image structure in spatial
domain, one often seen phenomena in natural images of complex textures. By ex-
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damaged image Result from [35] (28.16 dB) Alg. 2 (30.10 dB)

Fig. 8 Visual comparison of the in-painted results of our method and [35]. The fifty percents
of image pixels of the true image are randomly missing.

ploiting such non-local self-recurrence , the patch-based methods like BM3D or
the non-local means methods demonstrated the promising performance in various
image restoration tasks.

Motivated by the idea behind these non-local approaches, we developed in this
paper a scheme of constructing non-local wavelet frame and tight frame that are
adaptive to the input image. The constructed adaptive non-local wavelet frames
are composed of two types of wavelet frame systems: one local version and one
nonlocal version of some existing wavelet frame system. The proposed wavelet
frame system not only measures the local variations on image intensity, but also
measures two self-recurrence properties of image structures: one in image domain
and one in scale domain owing to the multi-resolution nature of wavelet system.
As such, the `1 norm based regularization under the proposed non-local wavelet
frame can simultaneously exploit all these three image priors. The experiments on
image de-convolution showed the advantages of our approaches over some related
approaches.
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