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Abstract

In this paper, a reduced-reference image quality assessment metric is proposed,

which measures the difference of the regularity of the projection spatial arrange-

ments between the reference image and the distorted image. The projections

of an image are first extracted by Radon transform. Then fractal dimensions

are computed on each projection and concatenated as the image features that

characterize the image structures from the view of the spatial distribution. Fi-

nally the image features are pooled as the quality score using `1 distance. The

proposed approach was evaluated on four public benchmark databases. Exper-

imental results have demonstrated the excellent performance of the proposed

approach.
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1. Introduction

Action recognition is a widely studied topic in computer vision. It has ben-

efited a wide range of applications such as video surveillance, human-computer

interaction and video retrieval. In applications, action recognition may be affect-

ed by the image degradation, such as image blur, compression and transmission.

In other words, action recognition from images can benefit from high image qual-

ity. How to quantify image quality in visual meaning for human visual system

(HVS), leading to the research on image quality assessment (IQA). IQA can

be categorized into two groups: subjective IQA and objective IQA. Subjective

IQA is simple and accurate, however, it can not work without human’s partici-

pation. Furthermore, it is infeasible in the case that there are a mass of images.

Therefore, it is indispensable to attach more importance to objective IQA.

According to the availability of a reference image, objective IQA can be fur-

ther divided into three categories: full-reference (FR), no-reference (NR) and

reduced-reference (RR). FR-IQA [1–5]considers that the reference image is per-

fect and is available to access. A test image quality is assessed by calculating

the similarity between the test image and its reference image. However, the

reference image is always not available. NR-IQA [6–8]is not relative to the

reference image. From the view of applications, NR metrics are more adapt-

able to different conditions. But in fact, due to the varied image contents and

the individual distortion types, NR-IQA is extremely difficult when no prior

knowledge is available. As a compromise between FR-IQA and NR-IQA, RR-

IQA [9–13]is designed, which uses partial information of the reference image for

quality prediction. This paper focuses on RR-IQA.

RR-IQA expects to use less data of the reference image and achieve higher

prediction accuracy. Thus, on the way to RR-IQA metric, the challenging task is

the selection of the smallest set of features that can support quality assessment

effectively. Therefore, studying and exploiting the special properties of natural
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images has been one of the most important tasks in RR-IQA. The recent focus

of RR-IQA research mainly depends on some statistic models of natural images

(e.g., [9, 11, 13–17]). However, these RR-IQA metrics either need a large amount

of reference data to achieve good performance, or have high computational

complexity. To this end, in this paper we develop an efficient RR-IQA model

based on Radon-representation and fractal analysis, called Similar Regularity of

Radon-representation Measure(SRRM). Our approach not only can efficiently

encode both structural information and spatial information, which is much more

important for IQA, but also has low computational complexity.

Recent years, despite lots of work on RR-IQA, some problems remain un-

solved. The first is the structural information of images. As we known, the

structural information can have a dramatic impact on IQA [18], but many ex-

isting methods cannot handle this problem. For instance, Singular Value De-

composition(SVD) [19], the singular values have been used for image features

set, which loses the image’s structural information [20]. The second is the spa-

tial information of images. Different part of an image has different contribution

to the image quality. Many researchers does not consider this information. Such

as the statistic models of natural images [9, 11, 13–17] that lose the spatial infor-

mation. The third is the high data rate. A successful RR-IQA is expected to use

less data of images and achieve higher evaluation accuracy. Many RR-IQA met-

rics need a large amount of image’s information to achieve good performance.

For instance, in [12], features are extracted in the size of 3 × 3 windows and

finally concatenated as image feature set. The fourth is the high computational

complexity. From the view of applications, a RR-IQA model should be not only

effective but also efficient. However, some RR-IQA metrics have high compu-

tational complexity. For example, in [11], a number of parameters that need to

be trained on databases.

In this paper, we propose the novel RR-IQA metric, SRRM that can handle

above problems. First, SRRM converts original pixel represented images into
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Radon-pixel images by using the Radon transform [21]. The new Radon rep-

resentation is more structural informative in geometry and has a much lower

dimension. Second, SRRM characterizes Radon-pixel by fractal dimension(FD)

which not only has a strong correlation with HVS [22], but also can encode

the image’s spatial information[23–27]. Third, fractal analysis is run on 1D

projected signal of the image, which has low computational complexity.

The proposed RR-IQA feature characterizes the spatial regularity of the

distribution for the Radon-pixel image based on fractal analysis. The Radon

representation is first extracted by Radon transform. FD is then used to mea-

sure the irregularity of the spatial distribution of the image’s projection. Finally

all the computed FDs are concatenated as a feature vector. By using fractal

analysis that has a strong correlation with HVS [22], the image structures are

well represented and the irregularity of spatial difference between reference im-

age and distorted image can be well characterized. Our approach was evaluated

on four famous benchmark IQA databases using five popular evaluation criteria.

The competitive results achieved demonstrate that our method performs on par

with the state-of-the-art approaches.

SRRM has several advantages as follows.

• It is able to handle the structural information of images;

• It is able to handle the spatial information of images;

• It is easy to use. There is only one parameter in SRRM and does not need

careful adjustment.

• It is effective. It yields satisfactory results in our experiments.

The rest of this paper is organized as follows: Section 2 is devoted to related

work. Section 3 gives a brief review on the Radon transform and fractal analysis.

A detailed description of our proposed metric is given in Section 4. Experimental

4



evaluation and result analysis are presented in Section 5. Finally, Section 6

concludes the paper.

2. Related Work

In the past decade, many RR-IQA methods have been put forward, we give

a brief review in this section.

In previous work, RR-IQA focuses on the specific types of image distortion-

s, these methods use image distortion modeling [17, 28] developed for specific

application environments. For instance, in [28], a hybrid image quality met-

ric combines five structural features: blocking, blur, edge-based image activity,

gradient-based image activity and intensity masking. The metric makes a simi-

larity assessment between the distorted image and the reference image to assess

JPEG coded images. However, these metrics suffer from bad performance when

images with different distortion types are tested together, because the models

are built for each distortion type respectively.

Recent work has concentrated on general-purpose RR-IQA methods. Most

of these approaches are base on natural image statistical model [11, 13, 14, 16]

and have achieved impressive results in RR-IQA. The basic idea of these meth-

ods is to quantify the image quality by quantifying the disturbance to the image

statistics caused by the distortion. Wang et al.[13] modeled natural images us-

ing the marginal probability distributions of the coefficients in wavelet domain,

and the Kullback-Leibler distance (KLD) between two marginal distributions is

used to measure the image distortion. In order to model the perceptual sensitiv-

ity of biological vision, Li et al.[11] proposed the so-called divisive normalization

transformation (DNT) for image representation. The image statistic is based

on the Gaussian scale mixtures(GSM) model and the KLD is used to pool the

features to the final score. In [9], according to the distribution of wavelet coef-

ficients, geometric information is extracted for quality assessment. In [15], the
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generalized Gaussian density is employed to model the distribution of the dis-

crete cosine transform (DCT) coefficients. Xue et al.[14] employed the Weibull

distribution to describe the statistics of image gradient magnitude. In [12], the

image quality is measured by the difference between the entropies of wavelet co-

efficients of reference and distorted images. To adapt the SSIM[18] to RR-IQA,

Rehman et al.[1] combined the GSM-based statistics in a multi-scale and multi-

orientation DNT domain following the philosophy in the construction of SSIM.

A regression-by-discretization method is then applied to normalize the measure

across image distortion types. All of these methods are based on counting the

difference of the numbers of elements in two images, which lose the details of

how the elements are distributed.

Another most interesting direction of RR-IQA is the usage of the Singular

Value Decomposition(SVD) [19]. The singular values calculated for 8× 8 pixels

blocks of reference and distorted images have been used for the calculation of

the quality factors of each block which are proportional to the square roots

of the aggregated squared differences of 8 singular values. The overall image

quality score has been defined as the mean difference between the quality factors

computed for each block and the middle element of the sorted vector of factors.

The drawback of this metric is that it loses the image structure information [20].

In this paper, we develop an efficient RR-IQA model based on Radon-

representation and fractal analysis, our approach not only can efficiently encode

the structural information, but also characterize the spatial information.

3. Preliminaries

Before presenting the detailed description of our approach, we give an in-

troduction of two mathematical tools upon which our approach is built. we

first describe the Radon transform. Then we introduce fractal analysis which

encodes coefficients for Radon transform, which can offer us the ability to pre-

cisely evaluate the visual structural information of images.
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Figure 1: The image and its Radon transform coefficients. Left: an image“Railway

Station” in LIVEmd database. Right: its Radon transform of the image.

3.1. Radon Transform

The Radon transform [21] computes projections of an image matrix along

specified directions. It is defined as follows:

Rθ(ρ) =

∫ +∞

−∞
f(x′cosθ − y′sinθ, x′sinθ + y′cosθ)dy′, (1)

where x′
y′

 =

 cosθ sinθ

−sinθ cosθ

x
y

 .
The Radon operator maps the spatial domain f(x, y) to the projection do-

main (ρ, θ), in which θ is the angle and ρ is the signed distance to the origin

of the coordinate system. The Radon transform for a large number of angles is

often displayed as an image. Figure 1 shows the example of Radon transform

of the image “Railway Station” which is taken from LIVEmd database. We

can see that some very bright spots are found in the Radon transform plot,

the location of each bright spot corresponds to one or many strong lines in the

original image.

In this work, we have two major reasons to adopt the Radon transform.

First, the Radon-pixel image brings a large advantage to achieving global geo-

metric structural information. This is because the Radon-pixel image has more
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geometric information than the original pixel image. It can be seen that one

Radon-pixel corresponds to a line segment which needs two pixels in the original

image to describe. Second, the dimension of Radon-pixel representation is much

lower than that of the original image, which provides convenience for further

feature extraction.

In summary, the Radon transform converts a pixel represented image into an

equivalent, lower dimensional and more geometrically informative Radon-pixel

image, which is a good basis of defining structural features for RR-IQA.

3.2. Fractal Analysis

Fractal analysis is introduced and developed by Mandelbrot [29] as a means

for describing and analyzing the properties of objects with irregular and complex

structure in nature. The characteristic property of fractals can be viewed as

the objects with statistical self-similarity. The numerical quantification of self-

similarity is obtained by the FD. The FD d is a measure of a given point set E

in a certain measurement space m(·) by measuring its power law behavior with

respect to the scale δ:

mδ(E) ∝ δ−d,

where mδ(E) is some measurement of the given point set E at scale δ.

There are many techniques to estimate the FD of signal. One popular ap-

proach is the so-called differential box counting (DBC) method, which has the

advantage of efficiency, accuracy and generality [30]. The DBC method con-

siders a signal f(x) of length M as a 2D point set {(x, y)|y = f(x)}, where x

denotes the signal position and y denotes the magnitude level of the signal. Sup-

pose the signal is scaled down to a size s, where s is an integer and 1 < s ≤M/2.

The x space is partitioned into grids of size s. A column of boxes of size s×s are

placed on each grid respectively. Suppose the minimum magnitude value and

the maximum magnitude value in the ith grid fall in the kth box and the lth
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box respectively, we compute the contribution nr(i) in the ith grid as follows,

nr(i) = l − k + 1. (2)

Summing contributions from all grids, we have

Nr =
∑
i

nr(i), (3)

where Nr is counted for different values of r. Then the DBC fractal dimension

is defined as

dDBC = lim
r→0

log(Nr)

− log r
. (4)

In practice, dDBC can be estimated from the least squares linear fitting in the

log(Nr)-log(1/r) coordinates system.

In this work, fractal analysis is adopted to encode Radon-pixels image. The

advantages of employed fractal analysis are as follows:

First, FD has a strong correlation with HVS [22]. Second, compared with

statistical approaches, FD can encode spatial information in form of the geo-

metrical distribution of the point sets[26].

As we known, intensity images of most natural surfaces are isotropic fractal-

s [22]. To demonstrate that the image’s projected response of Radon transform

can also be characterized by the fractal model, we plot the behaviors of three

projections by log-log fitting in Figure 2. It can be seen that the projections of

the image do behave according to some power law.

4. Similarity of Radon-pixels Regularity(SRR)

Our proposed approach can be briefly described as the collection of FD

defined on each projected component of Radon transform. The computation of

the proposed approach is outlined in Algorithm 1. In the rest of this section,

we will give detailed description of each step in the algorithm.
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Algorithm 1 Description of SRRM

Input:

Reference image Ir;

Distorted image Id;

Output:

abs(SRR(Ir)− SRR(Id);

1: Compute the Radon transform of Ir and Id ,

{R(Ir), R(Id)}; (5)

2: Compute the FD for each projection in (5) using the box-counting method,

SRR(Ir) = [FDθ(R(Ir))],

SRR(Id) = [FDθ(R(Id))];
(6)

3: return abs(SRR(Ir)− SRR(Id).
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Figure 2: Log-log plot of box number versus box scale for three projections of the image

by Radon transform. The upper row shows the projections of the reference image in

Figure 1 in three different directions. The bottom row shows the corresponding log-log

fittings.

4.1. Feature Based on Radon Transform

Given an image I, we propose the Radon transform for the image. Then we

calculate the FD for each direction component of Radon transform using the

box-counting method. Thus, we get the bag of FD for the given image I as

follows,

SRR = {FDθ(RI)}. (7)

By using SRR, our approach can capture different structures of natural images

from different directions. For each direction, we get one FD feature. Since 16

directions are used(It will be discussed in 5.2). Thus the image feature vector

is 16 dimensional.

4.2. Similarity Index of SRR

Once the SRR features of the reference image Ir and the distorted image

Id have been obtained, we compute our SRR measure, denoted as SRRM by
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calculating the `1 distance of the two feature vectors as follows,

SRRM(Ir, Id) = ||SRR(Ir)− SRR(Id)||1. (8)

Due to the nature of the SRR feature, the SRRM value measures the differ-

ence between the distorted image and the reference image in the meaning of the

regularity of the projected spatial distribution of the image structures. It is not-

ed that using `2 distance would yield similar performance in practice, and more

complex distances [31–36], such as the Support Vector Machines(SVM) which

has been widely demonstrated in different applications(e.g. image retrieval [36],

image quality assessment [20]), might yield better performance. We employ `1

distance just for simplicity.

To verify the rationality of the SRRM method, we compute the SRRM of

the reference image in Figure 1 with three most commonly encountered im-

age distortions, which are blurring(with smoothing window), additive Gaussian

noise(with zero-mean and the changing variance) and JPEG compression(with

the changing compression rate). Meanwhile, we also compute the average SR-

RM values over all the reference images in the LIVEmd database with respect

to above three types of distortion. The results are illustrated in Figure 3. In the

light of the fact that an IQA metric can be viewed as a excellent metric as long

as the metric monotonously changes with distortion increasing. What’s more,

from Figure 3, it can be seen that the prediction of the SRRM method trends to

rise when the degree of the distortion increases. Thus, the SRRM values of our

method are well consistent with the tendency of the decreasing image quality.

5. Experiment

We evaluated our SRR feature by applying it to the RR-IQA. In this section,

we report on the performance evaluation and analyze the experimental results.
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Figure 3: Rationality of SRRM. (1) SRRM of images with blured. (2) SRRM of images

with JPEG compressed. (3) SRRM of images with Gaussian noise contaminated.

Table 1: Configurations of four benchmark datasets

Table 1: Configurations of four benchmark datasets

Database Reference Img Distorted Img Distortion Types

LIVEmd 15 450 2

LIVE 29 779 5

CSIQ 30 866 6

TID2013 25 3000 24

5. Experiment

We evaluated our SRR feature by applying it to the RR-IQA. In this section,

we report on the performance evaluation and analyze the experimental results.

5.1. Benchmark Databases and Test Methodology

Subjective IQA studies are of fundamental importance for the development

of IQA. Over the years, many researchers have contributed significant research

in this area through the construction of various IQA databases. In this sec-

tion, we introduce the composition of the four largest databases, i.e. the Tam-

pere Image Database 2013(TID2013) [30], LIVE multiple distorted(LIVEmd)

database [31], LIVE database [32], and Categorical Subjective Image Quality

(CSIQ)database [33]. The important information of these four databases, in

terms of the number of reference images, the number of distorted images, and

the number of quality distortion types is summarized in Table 1.

The TID2013 is so far the largest image database for quality evaluation.

It includes 3,000 images in sum. These images are generated by corrupt-

ing 25 original images with 24 types of distortion at 5 different levels. The

distortion types include: WN(#1), additive white Gaussian noise which is

more intensive in color components than in the luminance component(#2),

additive Gaussian spatially correlated noise(#3), masked noise(#4), high fre-

quency noise(#5), impulse noise(#6), quantization noise(#7), Gblur(#8), im-
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distortion types include: WN(#1), additive white Gaussian noise which is

more intensive in color components than in the luminance component(#2),

additive Gaussian spatially correlated noise(#3), masked noise(#4), high fre-

quency noise(#5), impulse noise(#6), quantization noise(#7), Gblur(#8), im-

age denoising (residual noise, #9), JPEG(#10), JP2k(#11), JPEG transmis-

sion errors(#12), JPEG2000 transmission errors(#13), non-eccentricity pat-

tern noise(#14), local block-wise distortion of different intensity(#15), mean

shift(#16), contrast change(#17), change of color saturation(#18), multiplica-

tive Gaussian noise(#19), comfort noise(#20), lossy compression of noisy im-

ages(#21), image color quantization with dither(#22), chromatic aberrations(#23),

and sparse sampling and reconstruction(#24). The MOS of each image is avail-

able and ranges from 0.2 to 7.3.

The LIVEmd database includes images distorted by multiple types of dis-

tortion. There are two subsets, one of which is associated with the images

corrupted by Gblur followed by JPEG (GblurJPEG), and the other is associat-

ed with images corrupted by Gblur followed by WN (GblurWN). Each subset

includes 225 images. The DMOS of each image is released and ranges from 0 to

85.

The CSIQ database consists of 866 images which are derived from 30 orig-

inal images. Six types of distortion are considered in CSIQ, i.e. WN, JPEG,

JP2k, additive Gaussian pink noise(PN), Gblur, and global contrast decre-

ments(GCD). The DMOS of each image is available and ranges from 0 to 1.

The LIVE database includes 779 images, which are generated from 29 origi-

nal images by corrupting them with five types of distortion, i.e. JPEG2000 com-

pression(JP2k), JPEG compression(JPEG), WN, Gaussian blur(Gblur), and F-

F. The DMOS and realigned DMOS of each image are available. Because the

realigned DMOS is more precise than the DMOS, we adopt the realigned DMOS

in our work. The realigned DMOS ranges from -3 to 112.

There are many criteria for quantifying the performance of the IQA ap-
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proaches. Before computing these metrics, a regression analysis is required to

provide a nonlinear mapping between the objective scores and the subjective

mean opinion scores (MOS). In our setting, the following mapping function [41]

is used,

f(x) = β1

(
1

2
− 1

1 + exp(β2(x− β3))

)
+ β4x+ β5, (9)

where βi, i = 1, 2, . . . , 5 are the parameters to be fitted by logistic regression.

With the regression computed, five popular criteria are employed for evaluation

in our experiment. These criteria are

• Pearson linear correlation coefficient (PLCC),

• Spearman rank-order correlation coefficient (SROCC),

• Kendall rank-order correlation coefficient (KROCC),

• Root mean square error (RMSE),

• Mean absolute error (MAE).

Roughly speaking, the PLCC, RMSE and MAE criteria are used to measure the

prediction accuracy, while the SROCC and KROCC criteria are used to measure

the monotonicity. All these evaluation criteria except KROCC are recommended

by video quality experts group [42]. A desirable objective RR-IQA measure is

expected to have high values for the SROCC, KROCC and PLCC criteria, and

meanwhile have low values for the RMSE and MAE criteria.

5.2. Implementation of SRRM

We use the matlab function(radon(img, theta)) to implement the Radon

transform. Thus, the only parameter in the proposed SRRM model is the pro-

jected number of the Radon transform, which determines the feature length of

SRRM. We tuned the parameter based on TID2013, CSIQ and LIVE databas-

es. Figure 4 plots the SROCC curves against numbers of projection by applying
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Figure 4: The performance of SRRM in terms of SROCC vs. the projected number of

Radon transform on the TID2013, CSIQ and LIVE databases.

SRRM to three biggest databases. One can see that with the projected number

increasing, the better results obtains. In our implementation, we set numbers

of the projection 16 to get the balance between performance and data rate.

5.3. Performance Comparison

The experimental results of the proposed SRRM and the compared ap-

proaches on four benchmark databases are listed in Table 2 in terms of SROCC,

PLCC, KROCC, RMSE and AME. In addition, in order to provide an overall

indication of the comparative performance of the different schemes, Table 2 al-

so gives the average PLCC, SROCC, and KROCC results over four databases,

where the average values are computed in two cases [1]. In the first case, the

correlation scores are directly averaged, whereas in the second case, different

weights are assigned to the databases depending on the number of the distorted

images in each database (refer to Table 1).

Generally speaking, from Table 2, we can see that with respect to the pre-

diction performance, the proposed scheme performs consistently well across all

the databases.
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Specifically, compared with WNISM, the proposed SRRM outperforms it

by a large margin no matter on individual database or on all four databases.

One possible reason is that WNISM is a statistical metric which doesn’t encode

image’s spatial information. Another possible reason is that WNISM performs

well on the single distortion type but not very well on the whole database, as

can be observed from the scatter plots with CSIQ database in Figure 5.

Compared with RR-SSIM, the superiority of SRRM is obvious on CSIQ

database and they have similar performance on the LIVE database. The pro-

posed scheme has a clear advantage in terms of data rate and time required

(execution time will be compared in subsection 5.5).

Compared with RRED, SRRM has no advantage on performance. The rea-

son is that RRED is local scheme metric while SRRM is global scheme metric.

However, SRRM has a clear advantage in terms of data rate and time required

(refer subsection 5.5).

Compared with SVD, one can see that the SRRM performs much better no

matter which database is used and what the evaluation criterion is, although

SVD uses much more information of the reference image. The reason lies that

the singular values can not efficiently encode the structural information of im-

ages [20].

In order to further demonstrate the effectiveness of the proposed metric,

SRRM is also compared with two classical FR-IQA metrics as follows:

• PSNR, which has a wide usage in the image processing literature. It also

provides useful baseline comparisons.

• SSIM[18], which is state-of-the-art FR-IQA algorithm that has demon-

strated competitive performance. It is also available online [43] that facil-

itates repeatable experimental verifications.

Compared with PSNR, one can see that the SRRM outperforms PSNR no

matter which database is used and what the evaluation criterion is.
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Figure 5: Scatter plots of predicted quality scores against the subjective quality scores

(DMOS) by representative RR-IQA models on the CSIQ database. The six types of

distortions are represented by different shaped colors.

Compared with SSIM, from the view of overall indication in Table 2, one can

see that the SSIM has no apparent advantage than SRRM, and SRRM performs

even better than SSIM in CSIQ database.

These further confirm that the proposed RR-IQA metric outperforms the

state-of-the-art RR-IQA metrics.

In order to provide a visual illustration for the performance comparison

among the compared RR-IQA models, scatter plots of subjective ratings versus

objective scores on CSIQ database are shown in Figure 5, where each point

represents one test image. The curves shown in Figure 5 are obtained by a

nonlinear fitting according to (9). Compared with other scatter plots, points of

SRRM and RRED are more close to each other, which means that SRRM and

RRED correlate well with subjective ratings.
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Table 2: Performance of the proposed SRRM and the other competing RR-IQA models

in terms of SROCC, PLCC, KROCC, MAE, and RMSE on the LIVE, LIVEmd, CSIQ and

TID2013 databases

DataBase Criteria SRRM HWD2 [9] WNISM [2] RR-SSIM [1] RRED [12] SVD [19] SSIM[18] PSNR

Type RR RR RR RR RR RR FR FR

Length 16 16 18 36 img.size/36 img.size/8 img.size img.size

TID2013

PLCC 0.7774 N/A 0.6247 N/A 0.8189 0.6715 0.7895 0.7018

SROCC 0.7198 N/A 0.5202 N/A 0.7632 0.6534 0.7417 0.6394

KROCC 0.5363 N/A 0.3647 N/A 0.5884 0.4855 0.5588 0.4696

RMSE 0.7797 N/A 0.9680 N/A 0.7115 0.9186 0.7609 0.8832

MAE 0.6059 N/A 0.7917 N/A 0.5407 0.7070 0.5927 0.6565

CSIQ

PLCC 0.9064 N/A 0.7124 0.8426 0.9121 0.8613 0.8613 0.8000

SROCC 0.9146 N/A 0.7431 0.8527 0.9184 0.8756 0.8756 0.8058

KROCC 0.7365 N/A 0.5457 0.6540 0.7429 0.6907 0.6907 0.6084

RMSE 0.1109 N/A 0.1842 0.1413 0.1077 0.1334 0.1334 0.1575

MAE 0.0866 N/A 0.1492 0.1092 0.0820 0.0991 0.0991 0.1195

LIVE

PLCC 0.9021 0.9624 0.7365 0.9194 0.9385 0.8266 0.9449 0.8723

SROCC 0.9060 0.9418 0.7472 0.9129 0.9429 0.8251 0.9479 0.8756

KROCC 0.7296 N/A 0.5577 0.7349 0.7888 0.6328 0.7963 0.6865

RMSE 11.7887 6.3657 18.4814 11.3026 9.4317 15.3764 8.9455 13.3597

MAE 9.0863 4.8445 14.6352 9.1889 7.2976 11.7104 6.9325 10.5093

LIVEmd

PLCC 0.8554 N/A 0.7347 N/A 0.9010 0.7388 0.8817 0.7315

SROCC 0.8309 N/A 0.6217 N/A 0.8810 0.6223 0.8560 0.6709

KROCC 0.6337 N/A 0.4412 N/A 0.6991 0.4504 0.6647 0.4945

RMSE 6.4506 N/A 8.4484 N/A 5.4023 8.3916 5.8743 8.4914

MAE 5.2191 N/A 6.6554 N/A 4.3018 6.6363 4.7662 6.8582

Weighted

Average

PLCC 0.8253 N/A 0.6664 N/A 0.8603 0.7334 0.8336 0.7472

SROCC 0.7912 N/A 0.6018 N/A 0.8275 0.7147 0.8061 0.7066

KROCC 0.6085 N/A 0.4317 N/A 0.6551 0.5398 0.6269 0.5286

Direct

Average

PLCC 0.8603 N/A 0.7021 N/A 0.8926 0.7745 0.8693 0.7764

SROCC 0.8428 N/A 0.6581 N/A 0.8764 0.7441 0.8553 0.7479

KROCC 0.6590 N/A 0.4773 N/A 0.7048 0.5648 0.6776 0.5647
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5.4. Performance Comparison on Individual Distortion Types

To more comprehensively evaluate an IQA model’s ability to predict image

quality degradations caused by specific types of distortion, we compare the

performance of competing methods on each type of distortion. The results are

listed in Table 4, where only the SROCC scores are shown. There are a total of

37 groups of distorted images in the four databases.

We can directly view the performances of the compared metrics from Ta-

ble 4. For the common distortion(see LIVE and CSIQ). HWD2 can accurately

assess blocking artifact(JPEG) and is not fit for smoothing (GB). WNISM can

accurately assess JP2K and is not fit for noise (AGN and PGN). RR-SSIM can

accurately assess noise (AGN) and is not fit for smoothing (GB). SVD can ac-

curately assess noise (AGN and PGN) and is not fit for smoothing (GB) and

CTD. RRED and SRRM are mostly always better as a whole.

In order to demonstrate more clearly, in Table 3 we count the number of

compared RR-IQA metrics on which the performances are better than SRRM

according to SROCC values. One can see that SVD is counted 20 times in 37

groups. However, in above subsection, we have discussed that SRRM is much

better than SVD no matter which database is used and what the evaluation

criterion is. Generally speaking, performing well on specific types of distor-

tions does not guarantee that an IQA model will perform well on the whole

database with a broad spectrum of distortion types. A good IQA model should

also predict the image quality consistently across different types of distortion-

s. Referring to the scatter plots in Figure 5, it can be seen that the scatter

plot of SRRM is more concentrated across different groups of distortion types.

For example, its points corresponding to JPEG, PGN and CTD distortions are

very close to each other. However, the points corresponding to JPEG, PGN

and CTD for SVD are relatively far from each other. This explains why some

RR-IQA models perform well for many individual types of distortions but they

do not perform well on the entire database; that is, these IQA models behave
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Table 3: The number of the performance, compared with RR-IQA models, is better than

SRRM on each individual distortion type in terms of SROCC. Note, for HWD2 and RR-

SSIM, the codes are not available, so we just compare with those we can get

Models HWD2 [9] WNISM [2] RR-SSIM [1] RRED [12] SVD [19]

Length 16 18 36 img.size/36 img.size/8

SRRM 3/5 5/37 2/3 32/37 20/37

5.5. Complexity

In applications such as real-time image quality monitoring and prediction,

the complexity of implemented IQA models becomes crucial. We thus analyze

the computational complexity of SRRM, and then compare the competing IQA

models in terms of running time. Table ?? shows the running time of the seven

IQA models on a pair of 1280 × 720 images which are taken from LIVEmd

database. All algorithms were run on a Dell Inspiron INSP1440 notebook with

Intel Core T6600 processor and 2GB RAM. The software platform used to run

all algorithms was MATLAB R2012b. All the MATLAB source codes were

obtained from the original authors.

Compared with FR-IQA metrics, SRRM takes more time than the PSNR

and has the similar time with the SSIM.

Compared with RR-IQA metrics, clearly, SRRM is much faster than WNIS-

M, RRED, SVD and RR-SSIM(according to [1], WNISM is about 2 times faster

than RR-SSIM). The main reason is that WNISM, RRED, SVD and RR-SSIM

take much time for the image decomposition while SRRM does not. Thus, the

computational complexity of our approach is acceptable.

5.6. Discussions

The challenging task in the design of a RR-IQA metric is the selection of the

smallest set of features that can support quality assessment effectively. These

features should

• provide an efficient representation of the image;

• be sensitive to various image distortions;
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the different ranges of quality scores for those distortion types.
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Table 4: Performance comparison of the IQA models on each individual distortion type in

terms of SROCC

Database Distortion SRRM HWD2 [9] WNISM [2] RR-SSIM [1] RRED [12] SVD [19]

Length 16 16 18 36 img.size/36 img.size/8

TID2013

#1 0.7644 N/A 0.6910 N/A 0.8519 0.9490

#2 0.6980 N/A 0.6202 N/A 0.7893 0.8517

#3 0.7875 N/A 0.6805 N/A 0.8517 0.9627

#4 0.7736 N/A 0.6468 N/A 0.8042 0.7798

#5 0.8521 N/A 0.7467 N/A 0.8961 0.9330

#6 0.6688 N/A 0.6798 N/A 0.7931 0.7525

#7 0.7488 N/A 0.6409 N/A 0.8282 0.8829

#8 0.9263 N/A 0.9191 N/A 0.9666 0.8914

#9 0.8911 N/A 0.8406 N/A 0.9233 0.9372

#10 0.9055 N/A 0.8379 N/A 0.9274 0.9402

#11 0.9408 N/A 0.9110 N/A 0.9539 0.9360

#12 0.8151 N/A 0.8141 N/A 0.8468 0.7744

#13 0.8241 N/A 0.7639 N/A 0.7897 0.8636

#14 0.7126 N/A 0.4530 N/A 0.7809 0.8151

#15 0.0260 N/A 0.2493 N/A 0.5491 0.5532

#16 0.7581 N/A 0.4537 N/A 0.6143 0.6644

#17 0.4015 N/A 0.5237 N/A 0.3970 0.3954

#18 0.1814 N/A 0.1569 N/A 0.0455 0.0003

#19 0.6923 N/A 0.6002 N/A 0.7950 0.8847

#20 0.8476 N/A 0.7508 N/A 0.9039 0.9073

#21 0.8489 N/A 0.7245 N/A 0.9203 0.9611

#22 0.7813 N/A 0.4759 N/A 0.8646 0.8827

#23 0.8781 N/A 0.8504 N/A 0.8915 0.8711

#24 0.9180 N/A 0.9145 N/A 0.9536 0.9431

CSIQ

AGN 0.9282 N/A 0.8188 N/A 0.9353 0.9467

JPEG 0.9614 N/A 0.8955 N/A 0.9521 0.9459

JP2K 0.9596 N/A 0.9405 N/A 0.9628 0.9746

APN 0.9166 N/A 0.8002 N/A 0.9362 0.9369

GB 0.9467 N/A 0.9144 N/A 0.9634 0.9104

CTD 0.9327 N/A 0.9122 N/A 0.9383 0.8651

LIVE

JP2K 0.9319 0.9362 0.9330 N/A 0.9580 0.9064

JPEG 0.9524 0.9543 0.9204 N/A 0.9759 0.8821

AGN 0.9578 0.9321 0.8701 0.9642 0.9780 0.9396

GB 0.9523 0.8282 0.9145 0.8692 0.9675 0.6578

FF 0.9108 0.9386 0.9227 0.9137 0.9427 0.8816

LIVEmd
GJPEG 0.8387 N/A 0.7085 N/A 0.8719 0.6951

GWN 0.8168 N/A 0.5454 N/A 0.9005 0.5358
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Table 5: Time cost of each metric

Model SRRM RRED [12] RR-SSIM [1] WNISM [2] SVD [19] SSIM[18] PSNR

Type RR RR RR RR RR FR FR

Time (seconds) 0.10863 3.853580 N/A 5.986130 2.425327 0.104198 0.016128

• be relevant to the perceptual sensitivity of HVS.

Since the HVS is more sensitive to the structural information, in this paper,

a RR-IQA is proposed using the regularity of Radon representation. Otherwise,

different part of an image has the different contribution to humans perception,

FD is used by SRRM to encode the spatial information of images. Moreover,

from view of applications, SRRM is simplicity and low complexity, which make

it more attractive and competitive to previous RR-IQA metrics.

6. Conclusion

In this paper, we propose an effective RR-IQA model, SRRM. In contrast

to previous approaches, SRRM effectively extracts image structural information

by Radon transform. Another feature of SRRM is that it effectively makes use

of the spatial information by fractal analysis. Moreover, SRRM has only one

parameter that does not need careful tuning. Finally, SRRM is computationally

efficient. To demonstrate the power of the proposed approach, four largest

benchmark databases and five performance metrics are involved for evaluation.

Our approach performs on a par with other state-of-the-art approaches. In the

future, we will study the application of our approach to video quality assessment.

Actually, SRRM provides a general framework for RR-IQA. In this work,

SRRM just uses the global features of a given image. In the future, we are

seeking to further improve the current approach by using local image window

for feature extraction.

[1] A. Rehman, Z. Wang, “Reduced-reference image quality assessment by

23

5.6. Discussions

The challenging task in the design of a RR-IQA metric is the selection of the

smallest set of features that can support quality assessment effectively. These

features should

• provide an efficient representation of the image;

• be sensitive to various image distortions;

• be relevant to the perceptual sensitivity of HVS.

Since the HVS is more sensitive to the structural information, in this paper,

a RR-IQA is proposed using the regularity of Radon representation. Otherwise,

different part of an image has the different contribution to humans perception,

FD is used by SRRM to encode the spatial information of images. Moreover,

from view of applications, SRRM is simplicity and low complexity, which make

it more attractive and competitive to previous RR-IQA metrics.

6. Conclusion

In this paper, we propose an effective RR-IQA model, SRRM. In contrast

to previous approaches, SRRM effectively extracts image structural information

by Radon transform. Another feature of SRRM is that it effectively makes use

of the spatial information by fractal analysis. Moreover, SRRM has only one

parameter that does not need careful tuning. Finally, SRRM is computationally

efficient. To demonstrate the power of the proposed approach, four largest

23



benchmark databases and five performance metrics are involved for evaluation.

Our approach performs on a par with other state-of-the-art approaches. In the

future, we will study the application of our approach to video quality assessment.

Actually, SRRM provides a general framework for RR-IQA. In this work,

SRRM just uses the global features of a given image. In the future, we are

seeking to further improve the current approach by using local image window

for feature extraction.

[1] A. Rehman, Z. Wang, “Reduced-reference image quality assessment by

structural similarity estimation”, IEEE Trans. Image Process. 21 (8) (2012)

3378–3389.

[2] Z. Wang, G. Wu, H. R. Sheikh, E. P. Simoncelli, E. H. Yang, A. C. Bovik,

“Quality-aware images”, IEEE Trans. Image Process. 15 (6) (2006) 1680–

1689.

[3] H. R. Sheikh, A. C. Bovik, “Image information and visual quality”, IEEE

Trans. Image Process. 15 (2) (2006) 430–444.

[4] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, A. C. Bovik,

“Image quality assessment based on a degradation model”, IEEE Trans.

Image Process. 9 (4) (2000) 636–650.

[5] L. Zhang, L. Zhang, X. Q. Mou, D. Zhang, “FSIM: a feature similarity

index for image quality assessment”, IEEE Trans. Image Process. 20 (8)

(2011) 2378–2386.

[6] H. R. Sheikh, A. C. Bovik, L. K. Cormack, “No-reference quality assessment

using natural scene statistics: JPEG2000”, IEEE Trans. Image Process.

14 (11) (2005) 1918–1927.

[7] Z. Wang, A. C. Bovik, B. L. Evans, “Blind measurement of blocking arti-

24



facts in images”, in: Proc. of IEEE Int. Conf. Image Process., Vol. 3, 2000,

pp. 981–984.

[8] Z. Wang, H. R. Sheikh, A. C. Bovik, “No-reference perceptual quality as-

sessment of JPEG compressed images”, in: Proc. of IEEE Int. Conf. Image

Process., Vol. 1, 2002, pp. 477–480.

[9] X. Gao, W. Lu, D. Tao, X. Li, “Image quality assessment based on multi-

scale geometric analysis”, IEEE Trans. Image Process. 18 (7) (2009) 1409–

1423.

[10] U. Engelke, M. Kusuma, H. J. Zepernick, M. Caldera, “Reduced-reference

metric design for objective perceptual quality assessment in wireless imag-

ing”, Signal Processing: Image Communication 24 (7) (2009) 525–547.

[11] Q. Li, Z. Wang, “Reduced-reference image quality assessment using divisive

normalization-based image representation”, IEEE Journal of Selected Top-

ics in Signal Processing, Special issue on Visual Media Quality Assessment

3 (2) (2009) 202–211.

[12] R. Soundararajan, A. C. Bovik, “RRED indices: reduced reference entropic

differencing for image quality assessment”, IEEE Trans. Image Process.

21 (2) (2012) 517–526.

[13] Z. Wang, E. P. Simoncelli, “Reduced-reference image quality assessment

using a wavelet-domain natural image statistic model”, in: Human Vision

and Electronic Imaging X, Proc. SPIE, Vol. 5666, 2005, pp. 149–159, san

Jose, CA.

[14] W. F. Xue, X. Q. Mou, “Reduced reference image quality assessment based

on Weibull statistics”, in: Proc. of the Int. Workshop on Quality of Multi-

media Experience, 2010, pp. 1–6.

25



[15] L. Ma, S. N. Li, F. Zhang, K. N. Ngan, “Reduced-reference image quali-

ty assessment using reorganized DCT-based image representation”, IEEE

Trans. on Multimedia 13 (4) (2011) 824–829.

[16] A. A. Abdelouahad, M. E. Hassouni, H. Cherifi, D. Aboutajdine, “Image

quality assessment based on IMF coefficients modeling”, in: Proc. of the

Int. Conf. on Digital Information and Communication Technology and its

Applications, 2011, pp. 131–145.

[17] I. P. Gunawanand, M. Ghanbari, “Reduced reference picture quality es-

timation by using local Harmonic amplitude information”, in: Proc. of

London Commun. Symp, 2003, pp. 137–140.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity”, IEEE Trans.

Image Process. 13 (4) (2004) 600–612.

[19] A. Shnayderman, A. Gusev, A. Eskiciogl, “An SVD-Based gray-scale im-

age quality measure for local and global assessment”, IEEE Trans. Image

Process. 15 (2) (2006) 422–429.

[20] M. Narwaria, W. Lin, “SVD-Based quality metric for image and video using

machine learning”, IEEE Trans. on Systems, Man, and Cybernetics, Part

B: Cybernetics 42 (2) (2012) 347–364.

[21] S. R. Deans, “The Radon transform and some of its applications”, Courier

Dover Publications, 2007.

[22] A. P. Pentland, “Fractal-Based description of natural scenes”, IEEE Trans.

on Pattern Analysis and Machine Intelligence 6 (6) (1984) 661–674.

[23] Y. Quan, Y. Xu, Y. Sun, Y. Luo, “Lacunarity Analysis on Image Patterns

for Texture Classification”, in: CVPR2014., 2014, pp. 160–167.

26



[24] H. Ji, X. Yang, H. Ling, Y. Xu, “Wavelet domain multi-fractal analysis for

static and dynamic texture classification”, Transactions on Image Process-

ing 22(1) (2013) 286–299.

[25] Y. Xu, X. Yang, H. Ling, H. Ji, “A New Texture Descriptor Using Multi-

fractal Analysis in Multi-orientation Wavelet Pyramid”, in: CVPR, 2010,

pp. 161–168.

[26] Y. Xu, H. Ji, C. Fermüller, “Viewpoint invariant texture description using

fractal analysis”, International Journal of Computer Vision 83 (1) (2009)

85–100.

[27] Y. Xu, S. Huang, H. Ji, C. Fermuller, “Combining Powerful Local and

Global Statistics for Texture Description”, in: CVPR, 2009, pp. 573–580.

[28] T. M. Kusuma, H. J. Zepernick, “A reduced-reference perceptual quality

metric for inservice image quality assessment”, in: Proc. of Workshop on

Mobile Future and Symposium on Trends in Communications, 2003, pp.

71–74.

[29] B. B. Mandelbrot, “The Fractal Geometry of Nature”, San Francisco, CA:

Freeman, 1982.

[30] N. Sarkar, B. B. Chaudhuri, “An efficient differential box-counting ap-

proach to compute fractal dimension of image”, IEEE Trans. Systems, Man,

Cybernet 24 (1) (1994) 115–120.

[31] J. Yu, M. Wang, D. Tao, “Semisupervised multiview distance metric learn-

ing for cartoon synthesis”, IEEE Trans. Image Process. 21 (11) (2012)

4636–4648.

[32] J. Yu, D. Tao, J. Li, J. Cheng, “Semantic preserving distance metric learn-

ing and applications”, Information Sciences, In Press.

27



[33] J. Yu, R. Hong, M. Wang, J. You, “Image clustering based on sparse patch

alignment framework”, Pattern Recognition, In Press.

[34] D. Tao, X. Li, X. Wu, S. Maybank, “Geometric mean for subspace selec-

tion”, IEEE Transactions on Pattern Analysis and Machine Intelligence

31 (2) (2009) 260–274.

[35] D. Tao, X. Li, X. Wu, S. Maybank, “General tensor discriminant analysis

and gabor features for gait recognition”, IEEE Transactions on Pattern

Analysis and Machine Intelligence 29 (10) (2007) 1700–1715.

[36] D. Tao, X. Tang, X. Li, X. Wu, “Asymmetric bagging and random subspace

for support vector machines-based relevance feedback in image retrieval”,

IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (7)

(2006) 1088–1099.

[37] N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin, J. Astola,

B. Vozel, K. Chehdi, M. Carli, F. Battisti, et al., “Color image database

TID2013: peculiarties and preliminary results ”.

[38] D. Jayaraman, A. Mittal, A. K. Moorthy, A. C. Bovik, “Objective quality

assessment of multiply distorted images”, in: Signals, Systems and Com-

puters (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar

Conference on, 2012, pp. 1693–1697.

[39] H. R. Sheikh, K. Seshadrinathan, A. K. Moorthy, Z. Wang, A. C. Bovik,

L. K. Cormack, “Image and video quality assessment research at LIVE”,

http://live.ece.utexas.edu/research/quality.

[40] E. C. Larson, D. M. Chandler, “Categorical Image Quality (CSIQ)

Database”, http://vision.okstate.edu/csiq.

[41] H. R. Sheikh, M. F. Sabir, A. C. Bovik, “A statistical evaluation of recent

28

http://live.ece.utexas.edu/research/quality
http://vision.okstate.edu/csiq


full reference image quality assessment algorithms”, IEEE Trans. Image

Process. 15 (11) (2006) 3440–3451.

[42] VQEG, “Final report from the video quality experts group on the validation

of objective models of video quality assessment”, http://www.vqeg.org

(2000).

[43] Z. Wang, “SSIM Index for Image Quality Assessment”, https://ece.

uwaterloo.ca/%7Ez70wang/research/ssim/.

Appendix

To make the paper more readable, a notation list is added as follows,

Rθ(ρ) Radon transform, where θ is the angle and ρ is the signed distance to

the origin of the coordinate system;

FD Fractal Dimension;

DBC Differential Box Counting;

dDBC FD obtained by DBC;

SRR The bag of FD for the given image;

`1 L1 norm;

SRRM `1 distance between the reference’s SRR and the distorted’s SRR.
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