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Fractal Analysis for Reduced Reference Image
Quality Assessment

Yong Xu, Delei Liu, Yuhui Quan, Patrick Le Callet

Abstract—In this paper, multi-fractal analysis is adapted to reduced-reference image quality assessment (RR-IQA). A novel RR-IQA
approach is proposed, which measures the difference of spatial arrangement between the reference image and the distorted image in
terms of spatial regularity measured by fractal dimension. An image is first expressed in Log-Gabor domain. Then fractal dimensions are
computed on each Log-Gabor subband and concatenated as a feature vector. Finally the extracted features are pooled as the quality
score of the distorted image using `1 distance. Compared with existing approaches, the proposed method measures image quality from
the perspective of the spatial distribution of image patterns. The proposed method was evaluated on seven public benchmark datasets.
Experimental results have demonstrated the excellent performance of the proposed method in comparison with the state-of-the-art
approaches.

Index Terms—image quality assessment, similarity of spatial arrangements, fractal dimension, Log-Gabor representation
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1 INTRODUCTION

Degradation of visual information is inevitable in our real
world, e.g., noise, blurring, ringing, oversaturation, etc., often
presents in the processes of image acquisition, compression
and transmission. To quantify how much an image is affected
by degradation, a metric is required to evaluate how good an
image is in visual meaning for human visual system (HVS).
This leads to the research on image quality assessment (IQA).
The purpose of IQA is to quantitatively model the quality of
images, i.e., to assign a value to an image for representing its
quality. The estimated image quality can be utilized as a guide
for image restoration or applied to image enhancement as a
constraint. IQA can be categorized into two types: subjective
and objective. As the ultimate solution, subjective IQA has
its advantages on the reliability and consistency with the
perception of human, for the quality is directly quantified
by observers. Nevertheless, the practicality of subjective IQA
is very limited because it is expensive and time-consuming.
Moreover, the manual process cannot be readily incorporated
into the image processing and compression algorithms. Thus,
objective IQA is desired and developed, in which the assess-
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ment is automatically done with the demand on its consistency
with subject assessment.

According to how much information about the reference
image is accessible, objective IQA can be further classified
into three categories: full-reference (FR), no-reference (NR),
and reduced-reference (RR). FR-IQA [1–5] works on the
whole reference image and hence yields promising results.
However, the reference image is often unavailable in many
applications, which largely reduces the applicability of the FR
approaches. On the contrary, assuming nothing for reference,
NR-IQA [6–8] is an extremely difficult task. To strike the
balance of FR and NR, RR-IQA [9–13] requires only partial
information of the original image, which is often presented in
the form of a set of image features. With much less data to
transmit, RR-IQA is flexible in real applications. This paper
focuses on RR-IQA.

A useful RR-IQA metric is expected to achieve higher pre-
diction accuracy while using less information of the reference
image. Thus, on the way to RR-IQA metric, the challenging
task is the selection of the smallest set of features that can
support the quality assessment effectively. Therefore, studying
and exploiting the special properties of natural images has
been one of the most important tasks in RR-IQA. The recent
focus of RR-IQA research mainly depends on some statistic
models of natural images and has achieved impressive results;
see e.g. [9–17]. The basic idea of these methods is to quantify
image quality by quantifying the disturbance to image statistics
caused by distortion. For example, Wang et al. [13] modeled
natural images by using the marginal distributions of wavelet
coefficients, and measured image distortion using the KL-
distance between marginal distributions. In [12], the modeling
is also done in wavelet domain but is based on the entropies
of wavelet coefficients instead of marginal probability distri-
butions. Xue et al. [14] employed the Weibull distribution to
describe the statistics of image gradient magnitude. In [15],
the generalized Gaussian density is employed to model the
distribution of the discrete cosine transform coefficients. To
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Fig. 1. The limitation of existing methods. (1)-(3) A test image
of the LIVE database [19], from left to right is the reference
image, the compressed image by JP2K, and the blured image by
Gaussian kernel; (4) Coefficient GSM model based histogram in
a wavelet subband; (5) The proposed feature computed in the
same subband as (4); (6)-(7) Scatter plot of WNISM and the
proposed method on the LIVE database. Note that a smaller
differential mean opinion score (DMOS) means a better visual
quality of the image. It can be seen that the GSM histogram
varies with different distortion types, while the proposed method
are quite consistent across different distortion types. It can also
be seen that WNISM is biased by the degradation type. In
comparison, our method has less bias and can be generalized
to a broad spectrum of distortion types.

model the perceptual sensitivity of biological vision, Li et
al. [11] proposed the so-called divisive normalization trans-
formation (DNT) for image representation. The image statistic
is based on the Gaussian scale mixtures (GSM) model. To
adapt SSIM [18] to RR-IQA, Rehman et al. [1] combined the
GSM-based statistics in multi-resolution and multi-orientation
DNT domains, following the philosophy in the construction
of SSIM. In [9], natural image statistics in transform domain
are exploited based on multiscale geometric analysis including
curvelets, bandlets, wavelets, and contourlets.

Although the aforementioned methods have achieved good
performances in several IQA tasks, some limitations can still
be figured out [12]. One limitation is the lack of generality to
a broad spectrum of distortion types. Many existing methods
either work well only for specific types of distortions or
succeed when individual distortion type is tested respectively.
As a result, the performance of these methods cannot be
guaranteed when these method are applied to dealing with
multiple types of distortions. For instance, although WNIS-
M [2] works well on individual distortion type, as shown in
Fig. 1(6), its performance degrades significantly when images

with different distortion types are evaluated together. The
other limitation is that most existing methods are based on
histogram-based statistics, and disregard spatial distribution
of elements which are helpful to IQA. Figure 1 shows the
performance comparison of the histogram-based method and
the proposed method. It can be seen that the histogram-based
method cannot correctly reflect the degree of the distortion.

We demonstrate in this paper that the above challenges
can be mitigated by using Log-Gabor representation and
multi-fractal analysis. The former aims to create a complete
basis of visual perception, while the latter can encode spatial
information in the form of the geometrical distribution of
visual data [20–22]. Specifically, the proposed RR-IQA fea-
ture, called spectrum of spatial regularity (SSR), characterizes
the spatial distribution of image structures based on fractal
geometry. The spatial-frequency components of image are first
extracted by Log-Gabor filtering. Then fractal dimension is
used to measure the spatial regularity of the arrangements
in each Log-Gabor subband. Finally all the computed fractal
dimensions are collected as a feature vector. By using fractal
analysis that has a strong correlation with HVS [23], the image
structures are well encoded and the difference of their spatial
arrangements between images can be well characterized. Un-
like previous work based on fractal analysis [24, 25], in our
method fractal analysis is working on the visual perceptive
space instead of image space due to the fact that HVS is a
limited-bandwidth system which is sensitive to specific spatial
frequencies [9, 26, 27]. Our approach was evaluated on seven
public IQA benchmark databases using five evaluation criteria.
The competitive results achieved demonstrate that our method
performs on par with the state-of-the-art approaches.

The rest of this paper is organized as follows: Section 2
gives a brief review on the Log-Gabor representation and
fractal analysis. A detailed description of the proposed method
is given in Section 3. Experimental evaluation is presented in
Section 4. Finally, Section 5 concludes the paper.

2 PRELIMINARIES

Before presenting the detailed description of our approach, we
first give an introduction to the two mathematical tools upon
which our approach is built.

2.1 Log-Gabor Representation
The Log-Gabor filters defined in frequency domain are as
follows [28],

H(ρ, θ) = exp

(
− (log(ρ/ρ0))

2

2(log(σρ/ρ0))
2

)
· exp

(
− (θ − θ0)

2

2σθ
2

)
, (1)

where (ρ, θ) are the polar coordinates in frequency domain,
(ρ0, θ0) and (σρ, σθ) denote the shift and the bandwidth
respectively in the polar coordinates of frequency domain. The
term σρ/ρ0 should be held constant to obtain filters with con-
stant shape ratios and its value determines the filter bandwidth.
In our implementation, the parameters for generating the Log-
Gabor filters are set as: ρ0 = 1/5, θ0 = 0, σρ/ρ0 = 0.75,
and σθ = 0.6. An example of a 2D Log-Gabor filter in the
frequency domain is shown in Fig. 2. By applying Log-Gabor
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Fig. 2. An example of a Log-Gabor filter in the frequency
domain. (a) The radial component of the filter; (b) The angular
component of the filter; (c) The Log-Gabor filter, which is the
product of the radial component and the angular component.

filters to an image, the Log-Gabor representation is obtained.
Figure 3 shows the example of Log-Gabor representation.

There are two major reasons to adopt the Log-Gabor rep-
resentation in this paper. Firstly, the receptive fields of simple
cells in the primary visual cortex (V1) of primates can be
well modeled by the Log-Gabor functions [28, 29]. In other
words, the Log-Gabor functions form a complete basis of
visual perception, which provides convenience for defining
perceptive features for RR-IQA. Secondly, HVS is a system
of limited bandwidth, which is sensitive to specific spatial
frequencies [9, 26, 27]. By Log-Gabor filtering, we can well
localize different spatial frequency components of image. In
comparison with Gabor filters and other wavelet filters, the
Log-Gabor filters better fit the statistics of natural images.

2.2 Fractal Analysis
Fractal analysis first developed by Mandelbrot [30] provides
a powerful mathematical framework to study the irregular,
complex and self-similar objects in nature. Fractals can be
viewed as the objects with statistical self-similarities. Most
of the intensity surfaces of natural images can be modeled
by isotropic fractals [23]. One fundamental concept in fractal
analysis is the so-called fractal dimension, denoted by d, which
summarizes the irregularity and statistical self-similarity of
a given point set E in some measurement space m(·) by
measuring its power-law behavior according to the scale δ:

mδ(E) ∝ δ−d,
where mδ(E) is some measurement of the given point set E
at scale δ. For images, the measurement could be intensity,
gradients, or other local image features.

There are many techniques to estimate the fractal dimension
of image surface. An efficient approach is the differential box
counting (DBC) method, which has advantages in terms of
efficiency, accuracy and generality [31]. The DBC method
considers an image I(x, y) of size M ×M as a 3D point set
{(x, y, z)|z = I(x, y)}, where (x, y) denotes the 2D position
and z denotes the gray level of the image. Suppose the image
is scaled down to a size s×s, where s is an integer bounded by
1 < s ≤ M/2. Let r = s/M . The (x, y) space is partitioned
into grids of size s×s. A column of boxes of size s×s×h are
placed on each grid respectively, where h denotes the height
of a single box. We generally set the values of h and s to
satisfy G/h = M/s, where G is the total number of gray
levels. Suppose the minimum gray value and the maximum
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Fig. 3. Log-log plot of box number versus box scale for four
Log-Gabor subbands. The upper row shows the coefficients
in four Log-Gabor subbands of the reference image in Fig. 1.
The bottom row shows the corresponding log-log fittings whose
slops are 2.4374, 2.3990, 2.3529, and 2.2883 respectively.

gray value in the (i, j)-th grid fall in the k-th box and the l-th
box respectively. We compute the contribution nr(i, j) in the
(i, j)-th grid as follows,

nr(i, j) = l − k + 1. (2)

Summing the contributions from all grids, we have

Nr =
∑
i,j

nr(i, j), (3)

where Nr is counted for different values of r. Then the DBC
fractal dimension of the image I is defined as

dDBC(I) = lim
r→0

logNr
− log r

. (4)

In practice, dDBC can be estimated by the least squares linear
fitting in the logNr against log 1/r coordinates system [31].

Fractal analysis can be adopted to encode Log-Gabor rep-
resentation. To demonstrate this, we plot the behaviors of the
coefficients in four Log-Gabor subbands by log-log fitting in
Fig. 3. It can be seen that the Log-Gabor representations
of image do behave according to some power law. The
advantages of using fractal analysis are as follows. Firstly,
fractal dimension has a strong correlation with HVS [23].
Secondly, compared with other statistical approaches, fractal
dimension can encode spatial information in the form of the
geometrical distribution of image [20, 22]. Specifically, the
histogram only counts the number of pixels in a category
under one resolution, while the fractal dimension counts the
number of patterns in a category under multiple resolutions
and estimates the exponential changing ratio of the number of
patterns with respect to the resolution. This multi-resolution
analysis can significantly mitigate the effect caused by image
distortions and enhance the predictive precision in IQA. See
an example studied in Fig. 1.

3 OUR METHOD

In this section, we present the proposed method, which is
built upon the developed feature called spectrum of spatial
regularity (SSR). The outline of the proposed method is
illustrated in Fig. 4. There are mainly two steps. In the first
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Fig. 4. Outline of the proposed method.

step, the SSR features are computed from the reference image
and distorted image based on the Log-Gabor representation
and fractal analysis. In the second step, the computed features
are pooled into a single index using `1 distance. We will give
the details of each step in the following subsections.

3.1 Quality Feature Regarding Spatial Regularity
Given an image I , we first extract low-level visual features
from the image. A feature map M is computed from I by

M = m(I), (5)

based on some measurement m(·). An accepted measurement
should be sensitive to a wide range of image distortion types.
In our method, the intensity measurement mint and the gradient
measurement mgrad are used, which are defined as follows,1

mint(I) = I, (6)

mgrad(I) = |∇I| =
√
∂I

∂x

2

+
∂I

∂y

2

. (7)

The gradient operator ∇ can effectively capture image local
structures, to which HVS is highly sensitive. The most com-
monly encountered image distortions, such as noise corruption,
blur and compression artifacts, will lead to highly visible struc-
tural changes in the gradient domain. In practice, using image
gradient to design IQA models is popular; see e.g. [5, 32–
34]. By using these two measurements, our approach is able

1. In our implementation, the Scharr gradient operator [5] is used.
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to explore different structures of natural images from different
aspects.

In order to simulate the perception of human to image via
the V1 cortex of primates, the Log-Gabor filters {H(ρ, θ)}ρ,θ
are run on the feature image M to localize the image struc-
tures of different orientations and frequencies. This procedure
results in multiple response images {Gρ,θ}ρ,θ from the feature
image:

Gρ,θ(M) = F(M,H(ρ, θ)), (8)

where F(·, H) denotes filtering with the Log-Gabor filter H .
By using Log-Gabor filtering, we convert the extracted image
features from image space into visual perceptive space. Then,
parallel to characterizing the spatial distribution of the visual
responses in the V1 area of HVS, we extract features from the
Log-Gabor response images via fractal analysis. The fractal
dimension is computed on each response image using (4) and
all the fractal dimensions are concatenated as the proposed
SSR feature, i.e.,

SSR(I) =
⊎
ρ,θ

dDBC(Gρ,θ(m(I))), (9)

where
⊎

denotes the concatenation of all the scalars into
a vector. The SSR feature globally summarizes the spatial
regularity of image structures of different orientations and
frequencies. Thus, it can efficiently reflect the changes of
spatial layout of local image features caused by different types
of distortions.

In practice, the SSR features can be extracted globally
through an image or locally in small blocks. We found that lo-
cal SSR gives better prediction performance than global SSR,
as shown in Fig. 5. This is because local SSR provides a richer
description. Using local SSR also facilitate the generation of
a quality map for estimating quality in local regions [36].
Figure 6 shows the quality map of a block-distorted image,
which describes how a distorted image is deviated from its
reference. Inspired by the advantages of local SSR, we adapt
the global SSR scheme to a local version as follows. A given
image is first divided into non-overlapped subimages, and then
the SSR features defined in (9) are computed on each subimage
and concatenated as output. In other words, the modified SSR
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Fig. 6. The quality map by the proposed method for an block-distorted image from the TID2008 dtabase [35]. (1) The reference
image; (2) The distorted images with a local distortion caused by a block damage; (3) The difference images between the reference
image and the distorted image; (4) The quality map, magnified for better reading, where brighter pixels indicate lower quality.

feature is defined as

SSR(I) =
⊎
i,ρ,θ

dDBC(Gρ,θ(m(Pi(I))), (10)

where Pi denotes the operation that extracts the i-th subimage.
In the remainder of the paper, we refer to the SSR feature as
the modified version.

Note that using different measurements results in different
SSR features. The SSR features built upon the intensity mea-
surement mint encodes spatial distribution of image brightness
while the SSR features built upon the gradient measurement
mgrad focuses on image edges. It should also be noted that
in the scenario where the data transmission rate is vital, the
length of a RR-IQA feature should be considered. For this
case, we define a reduced version of SSR, denoted as SSR*,
by summing the local fractal dimensions of all filter responses
over orientations as follows,

SSR∗(I) =
⊎
i,ρ

∑
θ

dDBC(Gρ,θ(m(Pi(I))) (11)

The summation is based on the fact that the fractals of most
natural images are isotropic [23].

3.2 Similarity Index of Spatial Regularity

Once the SSR features of both the pristine image Ip and
the distorted image Id have been obtained, we compute the
proposed similarity of spatial regularity measure (denoted by
SSRM) as the quality score of the distorted image, which is
done by calculating the `1 distance of the two SSR feature
vectors as follows,

SSRM(Ip, Id) = ||SSR(Ip)− SSR(Id)||1. (12)

Correspondingly, we denote SSRM INT and SSRM GRAD
as the SSRM computed based on the intensity measurement
mint and the gradient measurement mgrad respectively. The
SSRM measures the difference between the distorted image
and the pristine image in the meaning of the regularity of
the spatial arrangements of local image features. The SS-
RM INT estimates such difference of regularities regarding
image brightness while SSRM GRAD regarding image edges.

To give an insight on why the proposed method works,
we computed the SSRM values with respect to five types
of distortion of the reference image in Fig. 1 as well as the
average SSRM values over all the reference images in the
LIVE database. The results are illustrated in Fig. 7. Note that
an IQA metric can be viewed as an excellent metric as long
as it monotonously changes with distortion increasing. From
Fig. 7 it is seen that the estimated quality score of our SSRM
method inclines to rise when the degree of distortion increases.
In other words, the SSRM are quite consistent with the image
quality. We can see that the SSRM GRAD method yields a
larger range of quality score than the SSRM INT method for
blurring and compression which eliminate edgels. This is not
surprising because SSRM GRAD based on gradients is more
sensitive than SSRM INT to the changes of image edges.

4 EXPERIMENT

We evaluated the proposed method on seven benchmark
datasets in terms of five performance measures. This section
is devoted to the performance evaluation and experimental
analysis. The experiments show that our method is very
competitive against the state-of-the-art approaches.

4.1 Benchmark Databases and Test Methodology
There are seven public benchmark databases widely used in
the IQA community, including the TID2008 database [35], the
CSIQ database [37], the LIVE database [19], the IVC database
[38], the MICT database [39], the WIQ database [40] and
the Cornel A57 database [41]. All of them are used for the
evaluation of our method. The characteristics of these seven
databases, in terms of the number of reference images, the
number of distorted images, the number of quality distortion
types, and the typical image size, are summarized in Table 1.

The performance is evaluated in terms of five measures,
which have been widely used in previous studies:
• the Pearson linear correlation coefficient (PLCC)
• the Spearman rank-order correlation coefficient (SROCC)
• the Kendall rank-order correlation coefficient (KROCC)
• the Root mean square error (RMSE)
• the Mean absolute error (MAE).
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Fig. 7. SSRM curves with respective to five distortion types. The first row shows the SSRM curves of the reference image in Fig. 1,
and the second row shows the average the SSRM curves of all the reference images in the LIVE database.

TABLE 1
Major characteristics of seven benchmark databases

Database Ref. Img Dist. Img Dist. Types Typical Size

TID2008 25 1700 17 512× 384
CSIQ 30 866 6 512× 512
LIVE 29 779 5 768× 512
IVC 10 185 4 512× 512
MICT 14 168 2 768× 512
WIQ 7 80 1 512× 512
A57 3 54 6 512× 512

Generally speaking, the PLCC, RMSE and MAE criteria are
used to measure the prediction accuracy, while the SROCC
and KROCC criteria are used to measure the monotonicity.
A desirable objective RR-IQA metric is expected to produce
high values for the SROCC, KROCC and PLCC criteria, and
meanwhile yield low values for the RMSE and MAE criteria.

Four representative RR-IQA metrics with competitive re-
sults were selected for comparison, including
• WNISM [2], one of the most successful RR-IQA metrics

for general distortions, in which the KL-divergence is
used for pooling scores;

• RR-SSIM [1], an extension of WNISM, with an addition-
al DNT step before computing KL-divergence;

• RRED [12], which computes the average difference of
scaled local entropies in the wavelet domain between the
reference and distorted images;

• HWD2 [9], which decomposes images based on multi-
geometry analysis and extracts features based on multi-
channel structures.

Furthermore, we compared our RR-IQA methods with five
representative FR-IQA approaches, including
• FSIM [5], a powerful method using phase congruency and

gradient magnitude to compute a local similarity maps as
well as the weights for pooling quality scores;

• IW-SSIM [42], in which the SSIM values are weighted
using the weights derived from image contents;

• VIF [3], which relates image quality to the amount of
information shared by the reference and test images;

• SSIM [18], a popular method which exploits the structural
sensitivity of human eyes under a mild assumption;

• PSNR, the simplest and most classic FR metric, in which
the pixel-wise signal fidelity is measured.

It is noted that not all of these approaches were used for the
comparison on all the benchmark databases. We only refer the
results that are available.

The objective scores x estimated by the tested method is first
mapped to the subjective score f(x) with a nonlinear mapping
f , as there is a nonlinear relationship between the objective
scores and the subjective ratings; see e.g. [43]. Following the
protocols of [44], the logistic function is used as the mapping,
which is defined as

f(x) = β1

(
1

2
− 1

1 + exp(β2(x− β3))

)
+ β4x+ β5, (13)

where the parameters βi for i = 1, 2, . . . , 5 are determined by
least squares fitting.

4.2 Implementation Details
The performance of an IQA metric is related to the scale
of image [45]. By a proper normalization on image size,
RR-IQA method including SSRM can use less information
of the reference image while achieving higher prediction
accuracy. However, the image scale is dependant on both
the image resolution and the viewing distance and hence is
difficult to tune up for optimality. In our implementation, we
follow the empirical scale proposed in [45] and normalize
all the images to 256 × 256. In Table 2, we compare the
SROCC scores estimated by SSRM using non-normalization
and normalization (normalized to 256×256 and normalized to
128× 128 respectively) on the CSIQ and TID2008 databases.
It can be seen that empirical scale does affect the performance
of the proposed approach. Similar conclusions could be drawn
by using other databases.

There are three parameters to be determined in our method,
i.e., the scale of Log-Gabor wavelet decomposition, the orien-
tations of Log-Gabor wavelet decomposition, and the size of
sub-images. In the literature, two strategies are often used for
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Fig. 8. The performance of SSRM in terms of SROCC vs. number of scales/orientations/blocks on the TID2008 database.

TABLE 2
The results of PLCC and SROCC by SSRM versus image size

on the CSIQ and TID2008 Databases
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Fig. 8. The performance of SSRM in terms of SROCC vs. scales, orientations and number of block on TID2008 database.

TABLE 2
PLCC and SROCC values versus image size on the CSIQ and

TID2008 Databases

Model Img.size 512× 512 256× 256 128× 128

SRRM GRAD PLCC 0.8626 0.9442 0.8927
SROCC 0.8556 0.9416 0.8751

SRRM INT PLCC 0.8507 0.8818 0.8515
SROCC 0.7883 0.8376 0.8014

CSIQ

Model Img.size 512× 384 256× 256 128× 128

SRRM GRAD PLCC 0.7684 0.8371 0.7346
SROCC 0.7527 0.8387 0.7186

SRRM INT PLCC 0.7686 0.7825 0.6711
SROCC 0.7376 0.7683 0.6359

TID2008

There are three parameters to be determined in our method,
i.e., the scale of Log-Gabor wavelet decomposition, the ori-
entations of Log-Gabor wavelet decomposition, and size of
sub-images. In the literature, two strategies are often used to
determine the parameters. One is to choose the parameters
depending on how well the resulting model fits the physio-
logical or psychophysical data, e.g.[27]. The other strategy
is to select the parameters which optimize the performance
in terms of predicting subjective ratings, e.g. [5, 9]. We
adopted the second strategy. More precisely, we tuned up the
parameters based on TID2008 database. The performance of
our method with respect to the above mentioned parameters
is summarized in Fig. 8. According to the results in Fig. 8,
our implementation on the parameters is as follows. Both the
reference and distorted images are decomposed into different
subbands using a Log-Gabor wavelet decomposition with 32
orientations at 4 scales . Thus there are a total of 128 subbands
in the wavelet decomposition. The local feature is computed
on the blocks of size 64× 64 in each subband.

4.3 Performance Comparison

The experimental results of the proposed approach and the
compared methods on the benchmark databases are listed in
Table 3. The FR-IQA methods which perform the best on
each database are marked in boldface while the RR-IQA
methods performing the best are underlined. In addition, in
order to provide an overall performance evaluation, Table 3

TABLE 4
The statistical significance tests on several IQA methods, which
is done on the (a) TID2008, (b) CSIQ and (c) LIVE Databases.

The value ‘1’ indicates that the method in the row is
significantly better than the method in the column. Note that the

proposed SSRM GRAD method is significantly better than
other compared methods on the CSIQ database, while RRED
is not significantly better than SSRM GRAD on the TID2008

and LIVE databases
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determining parameters. One is to choose the parameters de-
pending on how well the resulting model fits the physiological
or psychophysical data, e.g. [28]. The other strategy is to select
the parameters which optimize the performance in terms of
predicting subjective ratings, e.g. [5, 9]. We adopted the second
strategy. More precisely, we tuned up the parameters based on
the TID2008 database. The performance of our method with
respect to the aforementioned parameters is summarized in
Fig. 8. According to Fig. 8, the parameters are set as follows.
The Log-Gabor decomposition is done with 32 orientations
at 4 scales. Thus there are a total of 128 subbands after the
decomposition. The local SSR feature is computed on the
blocks of size 64× 64 in each Log-Gabor subband.

4.3 Performance Comparison

The experimental results of the proposed approach and the
compared approaches on the test databases are listed in Table
3. The FR-IQA methods which perform the best on each
database are marked in boldface, while the RR-IQA methods
with best performances are underlined. In addition, in order
to provide an overall performance evaluation, Table 3 gives
the average PLCC, SROCC, and KROCC values over all the
test databases. The average values are computed in two cases:
direct average and weighted average. The direct average is
about setting the weights of each database equal, while the

TABLE 4
The statistical significance tests on several IQA methods, which
is done on the (a) TID2008, (b) CSIQ and (c) LIVE databases.

The value ‘1’ indicates that the method in the row is
significantly better than the method in the column.
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Fig. 8. The performance of SSRM in terms of SROCC vs. scales, orientations and number of block on TID2008 database.

TABLE 2
PLCC and SROCC values versus image size on the CSIQ and

TID2008 Databases

Model Img.size 512× 512 256× 256 128× 128

SRRM GRAD PLCC 0.8626 0.9442 0.8927
SROCC 0.8556 0.9416 0.8751

SRRM INT PLCC 0.8507 0.8818 0.8515
SROCC 0.7883 0.8376 0.8014

CSIQ

Model Img.size 512× 384 256× 256 128× 128

SRRM GRAD PLCC 0.7684 0.8371 0.7346
SROCC 0.7527 0.8387 0.7186

SRRM INT PLCC 0.7686 0.7825 0.6711
SROCC 0.7376 0.7683 0.6359

TID2008

There are three parameters to be determined in our method,
i.e., the scale of Log-Gabor wavelet decomposition, the ori-
entations of Log-Gabor wavelet decomposition, and size of
sub-images. In the literature, two strategies are often used to
determine the parameters. One is to choose the parameters
depending on how well the resulting model fits the physio-
logical or psychophysical data, e.g.[27]. The other strategy
is to select the parameters which optimize the performance
in terms of predicting subjective ratings, e.g. [5, 9]. We
adopted the second strategy. More precisely, we tuned up the
parameters based on TID2008 database. The performance of
our method with respect to the above mentioned parameters
is summarized in Fig. 8. According to the results in Fig. 8,
our implementation on the parameters is as follows. Both the
reference and distorted images are decomposed into different
subbands using a Log-Gabor wavelet decomposition with 32
orientations at 4 scales . Thus there are a total of 128 subbands
in the wavelet decomposition. The local feature is computed
on the blocks of size 64× 64 in each subband.

4.3 Performance Comparison

The experimental results of the proposed approach and the
compared methods on the benchmark databases are listed in
Table 3. The FR-IQA methods which perform the best on
each database are marked in boldface while the RR-IQA
methods performing the best are underlined. In addition, in
order to provide an overall performance evaluation, Table 3

TABLE 4
The statistical significance tests on several IQA methods, which
is done on the (a) TID2008, (b) CSIQ and (c) LIVE Databases.

The value ‘1’ indicates that the method in the row is
significantly better than the method in the column. Note that the

proposed SSRM GRAD method is significantly better than
other compared methods on the CSIQ database, while RRED
is not significantly better than SSRM GRAD on the TID2008

and LIVE databases
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TABLE 3
Performance comparison on seven benchmark databases. The ’img.size’ denotes the image size after normalization

DataBase Criteria SSRM GRAD SSRM INT RRED [12] FSIM[5] IW-SSIM[41] VIF[3] SSIM[18] PSNR

Type RR RR RR FR FR FR FR FR

Length img.size*/32 img.size*/32 img.size/36 img.size img.size img.size img.size img.size

TID
2008

PLCC 0.8371 0.7825 0.8255 0.8738 0.8579 0.8084 0.7732 0.5734
SROCC 0.8387 0.7683 0.8237 0.8805 0.8559 0.7491 0.7749 0.5531
KROCC 0.6480 0.5719 0.6346 0.6946 0.6636 0.5860 0.5768 0.4027
RMSE 0.7342 0.8356 0.7573 0.6525 0.6895 0.7899 0.8511 1.0994
MAE 0.5564 0.6480 0.5641 0.4926 0.5276 0.6000 0.6547 0.8327

CSIQ

PLCC 0.9442 0.8818 0.9121 0.9120 0.9144 0.9277 0.8613 0.8000
SROCC 0.9416 0.8376 0.9184 0.9242 0.9213 0.9195 0.8756 0.8058
KROCC 0.7820 0.6559 0.7429 0.7567 0.7529 0.7537 0.6907 0.6084
RMSE 0.0865 0.1238 0.1077 0.1077 0.1063 0.0980 0.1334 0.1575
MAE 0.0692 0.0972 0.0820 0.0797 0.0801 0.0743 0.0991 0.1195

LIVE

PLCC 0.9423 0.9210 0.9385 0.9597 0.9522 0.9604 0.9449 0.8723
SROCC 0.9432 0.9200 0.9429 0.9634 0.9567 0.9636 0.9479 0.8756
KROCC 0.7907 0.7501 0.7888 0.8337 0.8175 0.8282 0.7963 0.6865
RMSE 9.1434 10.6465 9.4317 7.6780 8.3473 7.6137 8.9455 13.3597
MAE 7.0767 8.3466 7.2976 5.9468 6.4702 6.1070 6.9325 10.5093

IVC

PLCC 0.8688 0.8549 0.9050 0.9376 0.9231 0.9028 0.9119 0.7196
SROCC 0.8622 0.8393 0.8987 0.9262 0.9125 0.8964 0.9018 0.6884
KROCC 0.6780 0.6514 0.7175 0.7564 0.7339 0.7158 0.7223 0.5218
RMSE 0.6033 0.6322 0.5183 0.4236 0.4686 0.5239 0.4999 0.8460
MAE 0.4461 0.4734 0.3971 0.3388 0.3694 0.4104 0.3777 0.6677

MICT

PLCC 0.8059 0.7922 0.8272 0.9078 0.9248 0.9138 0.8887 0.6429
SROCC 0.8048 0.7958 0.8228 0.9059 0.9202 0.9077 0.8794 0.6132
KROCC 0.6102 0.5951 0.6306 0.7302 0.7537 0.7315 0.6939 0.4443
RMSE 0.7409 0.7638 0.7033 0.5248 0.4761 0.5084 0.5738 0.9585
MAE 0.5686 0.6107 0.5465 0.4021 0.3677 0.4038 0.4386 0.7761

A57

PLCC 0.9458 0.8876 0.8547 0.9393 0.9034 0.6915 0.8017 0.7073
SROCC 0.9253 0.8794 0.8399 0.9181 0.8709 0.6223 0.8066 0.6189
KROCC 0.7769 0.7042 0.6483 0.7639 0.6842 0.4589 0.6058 0.4309
RMSE 0.0798 0.1132 0.1276 0.0844 0.1054 0.1784 0.1469 0.1737
MAE 0.0615 0.0921 0.1051 0.0721 0.0892 0.1329 0.1209 0.1417

WIQ

PLCC 0.8483 0.8944 0.8367 0.8546 0.8329 0.7605 0.7980 0.7939
SROCC 0.7871 0.8638 0.7626 0.8006 0.7865 0.6918 0.7261 0.6257
KROCC 0.6196 0.6867 0.5864 0.6215 0.6038 0.5246 0.5569 0.4626
RMSE 12.1285 10.2441 12.5448 11.8949 12.6765 14.8731 13.8046 14.1381
MAE 9.4520 8.1653 9.8095 9.0496 9.9121 12.2465 10.9873 11.2027

Weighted
Average

PLCC 0.8846 0.8408 0.8726 0.9050 0.8960 0.8728 0.8407 0.7020
SROCC 0.8830 0.8230 0.8719 0.9094 0.8955 0.8423 0.8430 0.6874
KROCC 0.7083 0.6362 0.6934 0.7409 0.7215 0.6827 0.6593 0.5161

Direct
Average

PLCC 0.8846 0.8592 0.8714 0.9121 0.8542 0.8522 0.8542 0.7299
SROCC 0.8718 0.8435 0.8584 0.9027 0.8446 0.8215 0.8446 0.6830
KROCC 0.7008 0.6593 0.6784 0.7367 0.6632 0.6570 0.6632 0.5082

gives the average PLCC, SROCC, and KROCC values over
seven databases. The average values are computed in two
cases: direct average and weighted average. The direct average
is about setting the weights of each database equal, while the
weights in the weighted average are determined by the number
of distorted images in each database.

From Table 3, it can be seen that the proposed method per-
forms consistently well across all the databases. In particular,
SSRM INT performs the best among the RR-IQA methods
on the WIQ database, and SSRM GRAD performs better
than RRED on all the databases except MICT. Considering
the scales of the databases (i.e. the number of images, the
number of distortion types, and the number of observers),
we believe that the results obtained on TID2008, CSIQ,
and LIVE are much more convincing than those obtained
on MICT. Moreover, SSRM GRAD performs the best on
average, no matter which kind of averaging is used and
which performance measure is. Compared with the FR-IQA
methods, SRRM GRAD performs the best on average among
all the compared methods except FSIM. Even for FSIM,
SRRM GRAD performs much better than it on the CSIQ and
A57 databases.

In order to make statistically meaningful conclusions on the
performance of the compared methods, we further conducted
a series of hypothesis tests based on the prediction residuals
of each compared method after nonlinear regression. Smaller
the residuals are, better the metric is. By assuming that the
model residuals follow a Gaussian distribution, we apply the
left-tailed F-test to the residuals of every pair of the compared
methods. A value of 1 for the left-tailed F-test at a significance
level of 0.05 means that the first model has better performance
than the second model with a confidence greater than 95%. A
value of 0 means that the first model is not significantly better
than the second one. Table 4 shows the significance test results
on the TID2008, CSIQ and LIVE databases respectively.
It can be seen that on the CSIQ database, SSRM GRAD
is significantly better than all other compared methods. On
the CSIQ and TID2008 databases, SSRM GRAD is very
competitive to RRED.

As discussed in Section 3.1, in the scenario where the data
transmission rate is crucial, the feature length is one key factor
to consider. Thus, we also evaluated our SSR* feature under
the so-called minimum features comparison scheme proposed
in [12]. In this setting, we select three RR-IQA metrics of

weights in the weighted average are determined by the number
of distorted images in each database.

From Table 3, it can be seen that the proposed method
performs consistently well across all the databases. In par-
ticular, SSRM INT performs the best among the compared
RR-IQA methods on the WIQ database, and SSRM GRAD
performs better than RRED on all the databases except MICT.
Considering the scales of the databases (i.e. the number of
images, the number of distortion types, and the number of
observers), we believe that the results obtained on TID2008,
CSIQ, and LIVE are much more convincing than those ob-
tained on MICT. Moreover, SSRM GRAD performs the best
on average, no matter which kind of averaging and which
performance measure are used. Compared with the FR-IQA
methods, SRRM GRAD performs the best on average among

all the compared methods except FSIM. Even compared with
FSIM, SRRM GRAD shows noticeable performance improve-
ment on the CSIQ and A57 databases.

In order to make statistically meaningful conclusions on the
performance of the compared methods, we further conducted
a series of hypothesis tests based on the prediction residuals
of each compared method after nonlinear regression. Smaller
the residuals are, better the metric is. By assuming that the
model residuals follow a Gaussian distribution, we apply the
left-tailed F-test to the residuals of every pair of the compared
methods. A value of 1 for the left-tailed F-test at a significance
level of 0.05 means that the first model has better performance
than the second model with a confidence greater than 95%.
A value of 0 means that the first model is not significantly
better than the second one. Table 4 shows the results of the
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significance test on the TID2008, CSIQ and LIVE databases.
It can be seen that on the CSIQ database, SSRM GRAD
is significantly better than all other compared methods. On
the CSIQ and TID2008 databases, SSRM GRAD is very
competitive to RRED.

As discussed in Section 3.1, the data transmission rate is
a key factor in some scenarios. In such cases, the feature
length should be considered. Thus, we evaluated our SSR*
feature using the so-called minimum feature protocol proposed
in [12]. In this setting, we selected three low-data-rate RR-
IQA metrics for comparison, including RR-SSIM, HWD2
and WNISM. The results are shown in Table 5. The SSR-
M GRAD* outperforms WNISM by a large margin across all
the benchmark databases and on all the performance measures.
Compared with RR-SSIM, when the feature length is set 16,
the superiority of SSRM GRAD* is obvious on the TID2008,
CSIQ and A57 databases. On average, the SSRM GRAD*
method has advantages on data rate.

4.4 Evaluation on Individual Distortion Type
The satisfactory performance of an IQA metric evaluated on
multiple distortion types does not necessarily guarantee good
results by the metric for individual distortion type, and vice
versa. To examine how the proposed SSRM method behaves
on different distortion types, we show the performance of
SSRM with respect to each type of distortion on the TID2008,
CSIQ and LIVE databases in Table 6. For clarity, only the
SROCC values are listed. Note that SROCC is chosen as it
is suitable for measuring a small number of data points and
its value will not be affected by an unsuccessful monotonic
nonlinear mapping. There are a total of 28 groups of distorted
images in the three databases. We use boldface font to high-
light the best results in each group. It is seen that RRED is
marked 19 times, followed by SSRM GRAD which is only
marked 7 times. However, SSRM GRAD is better than RRED
in terms of the average performance on the three databases.
From Table 3 and Table 6, it can be seen that WNISM just
performs well on some specific distortion types.

For visualization, we show the scatter plots of the predicted
quality scores against subjective DMOS scores for several
compared method on the CSIQ database with six types of dis-
tortions in Fig. 9, where each point represents one test image
and the curves are obtained by the nonlinear fitting via (13).
It can be observed that for SSRM INT, the distribution of the
predicted scores on the CTD distortion deviates much from
the distributions on other types of distortions, which degrades
its overall performance. It can also be seen that the objective
scores predicted by SSRM GRAD are more correlated with
the subjective ratings than other compared methods.

Figure 9 also gives another interesting phenomena. The
scatter plot of SSRM GRAD is concentrated across different
types of distortions. For example, its points corresponding to
JPEG, APN and CTD distortions are very close to each other.
However, the points of RRED corresponding to JPEG, APN
and CTD are relatively far from each other, which explains
why some RR-IQA methods perform well for many individual
types of distortions but their performance decreases on the
entire database.

4.5 Computational Cost
We evaluated the computational efficiency of our method by
comparing its average running time with other methods. The
test was performed on a Dell Inspiron 530s PC embedded
with an Intel T5850 processor and 2GB RAM. The software
platform is Matlab R2012b. The size of the test images is
768 × 512. All the Matlab source codes of the compared
methods were obtained from the original authors. The results
are shown in Table 7. It can be seen that our approach
has moderate computational cost - the running time of our
approach is about two times as the RRED method and 1.4
times as the WNISM method. Note that WNISM is about two
times faster than RR-SSIM [1]. The computational complexi-
ties of WNISM, RRED and RR-SSIM mainly come from the
highly overcomplete steerable pyramid decomposition, while
ours comes from the multi-orientation and multi-scale wavelet
decomposition in Log-Gabor representation.

5 CONCLUSION

Image quality assessment can facilitate many image-related
tasks including image processing and image recognition. How-
ever, image quality assessment is a challenging task, especially
when only partial information of the reference image is known.
Moreover, the quality of an image depends on not only
the content of the image but also the perception ability of
humans. To simulate the humans visual perception, Log-Gabor
is employed to preprocess and decompose the image, which
extracts the spatial-frequency components of images in parallel
to the V1 cortex of HVS.

For characterizing the distortion of image content, many
traditional RR-IQA approaches have been proposed based on
counting and comparing the numbers of local elements of the
reference image and the distorted image. Such approaches may
lose the details of the spatial distribution of image elements. To
overcome this problem, the regularity of spatial arrangements
of local image structure is accounted in this paper. Fractal
analysis is employed to characterize the spatial distributions
of image structure expressed in Log-Gabor subbands of both
the reference image and the distorted image.

The proposed method has several advantages: competitive
performance among state-of-the-arts, consistent performance
across different types of distortions, high ratio of accuracy over
data rate, moderate and acceptable computational cost. The
proposed approach was evaluated on seven public benchmark
datasets using five performance metrics. The results show
that our method is competitive against the state-of-the-art ap-
proaches. In the future, we would like to study the application
of our approach to video quality assessment.
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TABLE 5
Performance of minimum features on seven benchmark databases

DataBase Criteria SSRM GRAD* SSRM INT* RR-SSIM [1] HWD2 [9] WNISM [2]

Length Scale× block 1× 16 2× 16 3× 16 4× 16 1× 16 2× 16 3× 16 4× 16 36 16 18

TID
2008

PLCC 0.7661 0.7831 0.7973 0.8047 0.6845 0.7105 0.7278 0.7374 0.7231 N/A 0.5891
SROCC 0.7734 0.7936 0.8101 0.8174 0.6825 0.7092 0.7245 0.7326 0.7210 N/A 0.5119
KROCC 0.5708 0.5926 0.6094 0.6174 0.4844 0.5072 0.5210 0.5285 0.5236 N/A 0.3589
RMSE 0.8625 0.8345 0.8100 0.7966 0.9783 0.9444 0.9203 0.9064 0.9270 N/A 1.0843
MAE 0.6655 0.6337 0.6137 0.6031 0.7770 0.7486 0.7297 0.7171 0.7190 N/A 0.8666

CSIQ

PLCC 0.8961 0.9045 0.9104 0.9142 0.8205 0.8344 0.8404 0.8423 0.8426 N/A 0.7124
SROCC 0.8876 0.8964 0.9043 0.9074 0.7819 0.7990 0.8047 0.8015 0.8527 N/A 0.7431
KROCC 0.6962 0.7098 0.7212 0.7256 0.5825 0.6043 0.6114 0.6084 0.6540 N/A 0.5457
RMSE 0.1165 0.1119 0.1086 0.1064 0.1501 0.1447 0.1423 0.1415 0.1413 N/A 0.1842
MAE 0.0935 0.0895 0.0865 0.0852 0.1205 0.1156 0.1138 0.1132 0.1092 N/A 0.1492

LIVE

PLCC 0.9067 0.9144 0.9183 0.9213 0.8702 0.8831 0.8912 0.8938 0.9194 0.9624 0.7365
SROCC 0.9052 0.9147 0.9188 0.9217 0.8689 0.8817 0.8901 0.8924 0.9129 0.9418 0.7472
KROCC 0.7247 0.7388 0.7459 0.7515 0.6699 0.6858 0.6983 0.7029 0.7349 N/A 0.5577
RMSE 11.5242 11.0600 10.8181 10.6261 13.4605 12.8199 12.3960 12.2557 11.3026 6.3657 18.4814
MAE 9.3972 8.9267 8.7825 8.5453 10.6940 10.3576 9.9702 9.8502 9.1889 4.8445 14.6352

IVC

PLCC 0.7502 0.8035 0.8385 0.8390 0.7461 0.7846 0.8098 0.8258 0.8177 N/A 0.5311
SROCC 0.7341 0.7866 0.8199 0.8185 0.7289 0.7686 0.7957 0.8082 0.8154 N/A 0.4114
KROCC 0.5411 0.5874 0.6197 0.6164 0.5372 0.5754 0.6018 0.6109 0.6164 N/A 0.2907
RMSE 0.8056 0.7253 0.6638 0.6630 0.8113 0.7554 0.7148 0.6870 0.7014 N/A 1.0322
MAE 0.6373 0.5611 0.5168 0.5120 0.6520 0.5904 0.5526 0.5284 0.5619 N/A 0.8550

MICT

PLCC 0.6362 0.7342 0.7266 0.7272 0.6593 0.6697 0.6883 0.6927 0.8051 N/A 0.6542
SROCC 0.6416 0.7389 0.7254 0.7269 0.6413 0.6573 0.6782 0.6878 0.8003 N/A 0.6322
KROCC 0.4575 0.5470 0.5341 0.5368 0.4633 0.4850 0.5014 0.5099 0.6090 N/A 0.4570
RMSE 0.9656 0.8497 0.8599 0.8591 0.9410 0.9294 0.9079 0.9026 0.7423 N/A 0.9464
MAE 0.7965 0.6775 0.6778 0.6806 0.7517 0.7256 0.7032 0.6967 0.5648 N/A 0.7742

A57

PLCC 0.7498 0.7919 0.8134 0.8396 0.5440 0.6837 0.7565 0.7791 0.7044 N/A 0.5125
SROCC 0.7397 0.7953 0.8105 0.8276 0.5252 0.6818 0.7290 0.7711 0.7301 N/A 0.3140
KROCC 0.5531 0.6007 0.6189 0.6399 0.3517 0.4692 0.5168 0.5559 0.5345 N/A 0.2210
RMSE 0.1626 0.1501 0.1430 0.1335 0.2063 0.1794 0.1607 0.1541 0.1744 N/A 0.2317
MAE 0.1359 0.1257 0.1176 0.1077 0.1713 0.1481 0.1289 0.1275 0.1433 N/A 0.1971

WIQ

PLCC 0.8522 0.8415 0.8427 0.8383 0.8322 0.8494 0.8689 0.8742 N/A N/A 0.3401
SROCC 0.7768 0.8008 0.8061 0.8016 0.7446 0.8091 0.8290 0.8368 N/A N/A 0.2156
KROCC 0.5892 0.6126 0.6177 0.6107 0.5651 0.6164 0.6380 0.6500 N/A N/A 0.1561
RMSE 11.9849 12.3734 12.3307 12.4897 12.7025 12.0881 11.3383 11.1206 N/A N/A 21.5404
MAE 9.2227 9.6357 9.7240 9.8264 9.5498 9.7289 9.1873 9.2003 N/A N/A 16.9682

subjective ratings than other compared methods.
Also, performing well on specific types of distortions does

not guarantee that an IQA model can perform well on the
whole database with a broad spectrum of distortion types.
A good IQA model should also predict the image quality
consistently well across different types of distortions. In Fig. 9,
it can be seen that the scatter plot of SSRM GRAD is
concentrated across different types of distortion. For example,
its points corresponding to JPEG, APN and CTD distortions
are very close to each other. However, the points corresponding
to JPEG, APN and CTD for RRED are relatively far from
each other, which explains why some RR-IQA methods per-
form well for many individual types of distortions but their
performance decreases on the entire databases.

4.5 Computational Cost
We also evaluated the computational efficiency of our method.
The test is performed on a Dell Inspiron 530s PC embedded
with an Intel T5850 processor and 2GB RAM. The software
platform is Matlab R2012b. The size of the test image is
768×512. All the Matlab source codes were obtained from the
original authors. Table 7 shows the running time of the com-
pared methods. It can be seen that our approach has moderate
computational cost - the running time of our approach is about
two times as the RRED method and 1.4 times as the WNISM
method. Note that WNISM is about two times faster than RR-
SSIM [1]. The computational complexities of WNISM, RRED
and RR-SSIM mainly come from the highly overcomplete
steerable pyramid decomposition, while ours comes from the
multi-orientation and multi-scale wavelet decomposition in
Log-Gabor representation.

5 CONCLUSION

Image quality assessment can facilitate many image-related
tasks including image processing and image recognition. How-
ever, image quality assessment is a challenging task, especially
when only partial information of the reference image is known.
Moreover, the quality of an image not only depends on
the content of the image but also the perception ability of
humans. To simulate the humans visual perception, Log-Gabor
is employed to preprocess and decompose the image, which
extracts the spatial-frequency components of images in parallel
to the V1 cortex of HVS.

For characterizing the distortion of image content, many
traditional RR-IQA approaches have been proposed based on
counting and comparing the numbers of local elements of the
reference image and the distorted image. Such approaches may
lose the details of the spatial distribution of image elements. To
overcome this problem, the regularity of spatial arrangement
is accounted in this paper. Fractal analysis is employed to
characterize the spatial distributions of wavelet coefficients
in Log-Gabor subbands of both the reference image and the
distorted image.

The proposed method has several advantages: competitive
performance among state-of-the-arts, consistent performance
across different types of distortion, high ratio of accuracy
over data rate, moderate and acceptable computational cost.
To demonstrate the power of the proposed approach, seven
public benchmark datasets and five performance metrics are
used for evaluation. Our approach performs on a par with the
state-of-the-art approaches. In the future, we will study the
application of our approach to video quality assessment.

TABLE 6
SROCC values of several RR-IQA methods with respect to individual distortion type on the TID2008, CSIQ, and LIVE

databases. The ’img.size*’ denotes the image size after normalization.
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TABLE 6
SROCC values of several RR-IQA methods with respect to individual distortion type on the TID2008, CSIQ, and LIVE

Databases. img.size* denotes the image size after normalization

Database Distortion Type SSRM GRAD SSRM INT RRED [12] SSRM GRAD* SSRM INT* RR-SSIM [1] HWD2 [9] WNISM [2]

Length img.size*/32 img.size*/32 img.size/36 16 16 36 16 18

TID2008

Additive Gaussian noise 0.7921 0.7725 0.8203 0.7372 0.7065 N/A N/A 0.6037
Noise in color comp. 0.7935 0.8063 0.8502 0.6865 0.7209 N/A N/A 0.6076
Spatially corr. noise 0.8299 0.7407 0.8417 0.7525 0.6655 N/A N/A 0.6008
Masked noise 0.7548 0.7649 0.8325 0.6266 0.6317 N/A N/A 0.6311
High frequency noise 0.9139 0.8978 0.9088 0.7826 0.8313 N/A N/A 0.7064
Impulse noise 0.5949 0.6428 0.7407 0.4516 0.4864 N/A N/A 0.5922
Quantization noise 0.8499 0.8293 0.8308 0.7182 0.6659 N/A N/A 0.6096
Gaussian blur 0.9481 0.9262 0.9573 0.8915 0.8903 N/A N/A 0.8723
Image denoising 0.9487 0.9182 0.9493 0.8966 0.8771 N/A N/A 0.8582
JPEG compression 0.9271 0.9224 0.9333 0.8640 0.8552 N/A N/A 0.8246
JPEG2000 compression 0.9618 0.9587 0.9681 0.9245 0.9143 N/A N/A 0.9344
JPEG trans. error 0.8586 0.8675 0.8704 0.7998 0.8356 N/A N/A 0.8774
JPEG2000 trans. error 0.8422 0.7683 0.7421 0.7894 0.7270 N/A N/A 0.6889
Non ecc. patt. noise 0.7001 0.6982 0.7127 0.6166 0.6694 N/A N/A 0.4293
Local block-wise dist. 0.7538 0.7009 0.8243 0.4931 0.4326 N/A N/A 0.6071
Mean shift 0.6506 0.5326 0.5378 0.4898 0.3911 N/A N/A 0.3204
Contrast change 0.1816 0.6589 0.5424 0.0548 0.6377 N/A N/A 0.7042

CSIQ

Additive Gaussian noise 0.9111 0.9209 0.9353 0.8293 0.8393 N/A N/A 0.8188
JPEG compression 0.9521 0.9556 0.9521 0.8864 0.8528 N/A N/A 0.8955
JPEG2000 compression 0.9663 0.9627 0.9628 0.9170 0.9042 N/A N/A 0.9405
Additive pink noise 0.9210 0.9123 0.9362 0.8480 0.8282 N/A N/A 0.8002
Gaussian blur 0.9686 0.9529 0.9634 0.9202 0.9176 N/A N/A 0.9144
Contrast change 0.9305 0.5348 0.9383 0.8660 0.1999 N/A N/A 0.9122

LIVE

JPEG2000 compression 0.9618 0.9530 0.9580 0.9325 0.8869 N/A 0.9362 0.9330
JPEG compression 0.9734 0.9683 0.9759 0.9170 0.9029 N/A 0.9543 0.9204
Additive Gaussian noise 0.9711 0.9569 0.9780 0.9389 0.9320 0.9642 0.9321 0.8701
Gaussian blur 0.9662 0.9383 0.9675 0.8557 0.8765 0.8692 0.8282 0.9145
JPEG2000 trans. error 0.9214 0.8681 0.9427 0.8671 0.8389 0.9137 0.9386 0.9227

TABLE 7
Time cost of the compared methods

Model SSRM GRAD SSRM INT RRED [12] RR-SSIM [1] HWD2 [9] WNISM [2] FSIM[5] IW-SSIM[41] VIF[3] SSIM[18] PSNR

Type RR RR RR RR RR RR FR FR FR FR FR

Time (seconds) 5.63 5.47 2.74 N/A N/A 4.01 1.74 2.04 4.63 0.20 0.01
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Fig. 9. Scatter plots of the predicted quality scores against the subjective quality scores (DMOS) by several IQA methods on the
CSIQ database. The six types of distortions are represented by different shapes and colors.
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TABLE 6
SROCC values of several RR-IQA methods with respect to individual distortion type on the TID2008, CSIQ, and LIVE

Databases. img.size* denotes the image size after normalization

Database Distortion Type SSRM GRAD SSRM INT RRED [12] SSRM GRAD* SSRM INT* RR-SSIM [1] HWD2 [9] WNISM [2]

Length img.size*/32 img.size*/32 img.size/36 16 16 36 16 18

TID2008

Additive Gaussian noise 0.7921 0.7725 0.8203 0.7372 0.7065 N/A N/A 0.6037
Noise in color comp. 0.7935 0.8063 0.8502 0.6865 0.7209 N/A N/A 0.6076
Spatially corr. noise 0.8299 0.7407 0.8417 0.7525 0.6655 N/A N/A 0.6008
Masked noise 0.7548 0.7649 0.8325 0.6266 0.6317 N/A N/A 0.6311
High frequency noise 0.9139 0.8978 0.9088 0.7826 0.8313 N/A N/A 0.7064
Impulse noise 0.5949 0.6428 0.7407 0.4516 0.4864 N/A N/A 0.5922
Quantization noise 0.8499 0.8293 0.8308 0.7182 0.6659 N/A N/A 0.6096
Gaussian blur 0.9481 0.9262 0.9573 0.8915 0.8903 N/A N/A 0.8723
Image denoising 0.9487 0.9182 0.9493 0.8966 0.8771 N/A N/A 0.8582
JPEG compression 0.9271 0.9224 0.9333 0.8640 0.8552 N/A N/A 0.8246
JPEG2000 compression 0.9618 0.9587 0.9681 0.9245 0.9143 N/A N/A 0.9344
JPEG trans. error 0.8586 0.8675 0.8704 0.7998 0.8356 N/A N/A 0.8774
JPEG2000 trans. error 0.8422 0.7683 0.7421 0.7894 0.7270 N/A N/A 0.6889
Non ecc. patt. noise 0.7001 0.6982 0.7127 0.6166 0.6694 N/A N/A 0.4293
Local block-wise dist. 0.7538 0.7009 0.8243 0.4931 0.4326 N/A N/A 0.6071
Mean shift 0.6506 0.5326 0.5378 0.4898 0.3911 N/A N/A 0.3204
Contrast change 0.1816 0.6589 0.5424 0.0548 0.6377 N/A N/A 0.7042

CSIQ

Additive Gaussian noise 0.9111 0.9209 0.9353 0.8293 0.8393 N/A N/A 0.8188
JPEG compression 0.9521 0.9556 0.9521 0.8864 0.8528 N/A N/A 0.8955
JPEG2000 compression 0.9663 0.9627 0.9628 0.9170 0.9042 N/A N/A 0.9405
Additive pink noise 0.9210 0.9123 0.9362 0.8480 0.8282 N/A N/A 0.8002
Gaussian blur 0.9686 0.9529 0.9634 0.9202 0.9176 N/A N/A 0.9144
Contrast change 0.9305 0.5348 0.9383 0.8660 0.1999 N/A N/A 0.9122

LIVE

JPEG2000 compression 0.9618 0.9530 0.9580 0.9325 0.8869 N/A 0.9362 0.9330
JPEG compression 0.9734 0.9683 0.9759 0.9170 0.9029 N/A 0.9543 0.9204
Additive Gaussian noise 0.9711 0.9569 0.9780 0.9389 0.9320 0.9642 0.9321 0.8701
Gaussian blur 0.9662 0.9383 0.9675 0.8557 0.8765 0.8692 0.8282 0.9145
JPEG2000 trans. error 0.9214 0.8681 0.9427 0.8671 0.8389 0.9137 0.9386 0.9227

TABLE 7
Time cost of the compared methods

Model SSRM GRAD SSRM INT RRED [12] RR-SSIM [1] HWD2 [9] WNISM [2] FSIM[5] IW-SSIM[41] VIF[3] SSIM[18] PSNR

Type RR RR RR RR RR RR FR FR FR FR FR

Time (seconds) 5.63 5.47 2.74 N/A N/A 4.01 1.74 2.04 4.63 0.20 0.01
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