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Abstract

Most existing dictionary learning algorithms consider a
linear sparse model, which often cannot effectively char-
acterize the nonlinear properties present in many types
of visual data, e.g. dynamic texture (DT). Such nonlinear
properties can be exploited by the so-called kernel sparse
coding. This paper proposed an equiangular kernel dic-
tionary learning method with optimal mutual coherence
to exploit the nonlinear sparsity of high-dimensional vi-
sual data. Two main issues are addressed in the pro-
posed method: (1) coding stability for redundant dictionary
of infinite-dimensional space; and (2) computational effi-
ciency for computing kernel matrix of training samples of
high-dimensional data. The proposed kernel sparse coding
method is applied to dynamic texture analysis with both lo-
cal DT pattern extraction and global DT pattern character-
ization. The experimental results showed its performance
gain over existing methods.

1. Introduction

In recent years, sparse dictionary learning has become
one important tool in computer vision. Most existing meth-
ods for sparse dictionary learning consider a sparse linear
model, which assumes that most local or global patterns
of data, can be represented by the linear combinations of
a small number of atoms from a dictionary. In other words,
the underlying assumption of these linear model based dic-
tionary learning methods is that the data for processing is
dominated by the stationary patterns generated by some lin-
ear process. Clearly, such approaches will be less efficient
when processing the data whose main structures are driven
by nonlinear stochastic systems.

Indeed, there are many types of visual data, especially
those high-dimensional ones, showing strong nonlinear be-
haviors in terms of visual features. One such representative
data is dynamic texture (DT). DTs are referred to as the se-

quences of moving textures with certain stationary temporal
changes in pixel intensities. The spatio-temporal behaviors
of DTs are nonlinear in general. For instance, various dis-
tinguishable shapes may be observed from flickering fires
with changes in wind, which implies multiple modalities
of spatio-temporal appearance. Likewise, turbulent water
exhibits chaotic behaviors with non-smooth motion, where
pixel intensities do not change smoothly. Moreover, cam-
era motion is likely to further aggregate the nonlinearities
of correlations among the frames of a DT sequence.

In order to exploit the nonlinear properties existing in
high-dimensional visual data, the so-called kernel sparse
coding has been proposed in the literature which considers
a nonlinear sparse model; see e.g. [12, 12, 44, 37, 11, 18,
25].The basic idea of kernel sparse coding is linearizing the
nonlinear patterns existing in data in some implicit space
and then studying the resultant linear structures by sparse
coding under an implicit kernel dictionary.

1.1. Motivations

By considering a linear sparse model in implicit infinite-
dimensional feature space, this paper aims at developing
a nonlinear sparse model for high-dimensional visual data
and investigating its applications in DT analysis and recog-
nition. The motivations of applying kernel sparse coding
to processing high-dimensional visual data are three-fold.
Firstly, sparse coding is able to automatically discover the
multiple modalities of patterns and distinguish the mixture
of linear subspaces [1]. Secondly, sparse coding with dic-
tionary learning adapts to the data and thus can better en-
code the stationary behaviors of data than the handcrafted
features [39]. Thirdly, the nonlinearity of local structures
could be partially linearized in a proper feature space in-
duced by certain kernels, which improves both the accuracy
and discriminability of sparse coding; see e.g. Fig. 2.

A direct call of existing kernel sparse coding approaches
is not suitable for the tasks of processing high-dimensional
visual data, such as DT analysis and recognition. Most ex-
isting kernel sparse coding methods do not consider the is-



sue of coding stability, i.e., the optimal sparse code is not
unique and stable when using a general redundant dictio-
nary. The performance hit caused by such coding stability
has been observed in various sparse coding based recog-
nition tasks, including both kernel sparse coding (e.g. [31,
13]) and regular sparse coding e.g. [29, 3]). Such ambigui-
ties and instabilities become worse when the dimensionality
of data increases. Considering the fact that the dimensional-
ity is very high or even infinite in the implicit space induced
by kernel, how to stabilize the code in the implicit space
becomes an important problem.

There have been extensive studies on the design of dic-
tionaries to ensure stable and optimal sparse coding in the
context of compressed sensing. One important property of-
ten considered in designing dictionaries is the so-called mu-
tual coherence of dictionary, which is defined by the max-
imal absolute value of correlations of dictionary atoms. It
is shown that the sparse code is unique and can be stably
computed as long as the mutual coherence of the dictionary
is sufficiently small; see e.g. [36, 33]. Learning an inco-
herent dictionary has seen its applications in various vision
tasks with good performance (e.g. [29, 24, 3, 38]). How-
ever, how to learn an incoherent dictionary in the implicit
space induced by kernel is still a question, as the space can
be infinite-dimensional, which prohibits explicit constraints
on the mutual coherence of dictionary. This inspired us to
study new computational methods for learning an optimal
incoherent dictionary in the implicit space.

1.2. Main Contributions

The contribution of this paper is two-fold. Firstly, a new
kernel sparse coding method is proposed, which aims at ad-
dressing two main issues, i.e. coding stability and compu-
tational efficiency, existing in current sparse coding meth-
ods when processing high-dimensional visual data. More
specifically, we proposed to learn an equiangular kernel dic-
tionary, i.e., the inner products of all pairs of normalized
dictionary atoms are the same. Based on the observation
that equiangular unit-norm atoms in the original space re-
main equiangular in the implicit space induced by Gaussian
kernels or polynomial kernels, we proposed a new optimiza-
tion model for learning an equiangular dictionary in the im-
plicit space, as well as a convergent numerical solver.

Secondly, the potential of the proposed kernel sparse
coding method in practical applications is investigated in
DT analysis and recognition. A new kernel sparse coding
based DT descriptor is presented, in which the capability
of kernel sparse coding to extract nonlinear stationary pat-
terns is utilized in both the low-level feature extraction and
the high-level feature representation. The proposed descrip-
tor was applied to DT recognition and it shows noticeable
improvement over several state-of-the-art methods on some
benchmark datasets.

2. Related Works and Preliminaries

2.1. Sparse Coding and Kernel Sparse Coding

By assuming signals can be represented by a sparse lin-
ear combination of atoms from some dictionary, regular
sparse coding aims at finding the coefficients of the combi-
nation as well as the dictionary. Such a technique has been
successful in many vision tasks; see e.g. [29, 1, 22]. How-
ever, regular sparse coding assumes that signals are in linear
Euclidean spaces and thus it is not effective when dealing
with signals in nonlinear low-dimensional manifolds.

To generalize the concept of sparse coding to handle the
signals lying in nonlinear manifolds, kernel sparse coding
(e.g. [12, 12, 20, 25, 37]) performs sparse coding in some
higher-dimensional feature space which is the map of the
original Euclidean space under some kernel function. With
an appropriate nonlinear mapping, a more efficient linear
representation is expected for signals in nonlinear mani-
folds (e.g. [12, 44, 11]), since the nonlinear structures of sig-
nals in the lower-dimensional Euclidean space can be trans-
formed into linear structures in the higher-dimensional Eu-
clidean space. Moreover, by some tricks in the formulation
of kernel sparse coding, it can avoid the explicit computa-
tion in high-dimensional Euclidean space, which in general
is very computationally expensive and sometimes is even
impossible when the implicit space is infinite-dimensional.

The dictionary for kernel sparse coding is also learned
to be adaptive to input data. In [12], the dictionary is di-
rectly learned with Gaussian kernel by gradient descent over
the dictionary atoms in the original space. The kernel dic-
tionary learning is conducted on the manifold of symmet-
ric positive definite matrices by using Stein kernel in [20]
and Log-Euclidean kernel in [23]. Instead of being directly
learned, in [18, 25, 37], the dictionary atoms in feature
space are expressed as the linear combination of the input
signals in feature space.

All existing sparse coding problems require solving non-
convex optimization problems. Therefore, both the stability
and the optimality of the computed sparse code are in ques-
tion when the dictionary has no additional specific proper-
ties. In recent years, learning an incoherent dictionary for
better sparse coding performance has drawn a lot of atten-
tion in compressed sensing and computer vision; see e.g.
[29, 24, 3, 38]). The basic idea is from the theoretical work
in compressed sensing which states that sparse coding prob-
lem can be well-defined and effectively computed when the
mutual coherence of dictionary is sufficiently low. In exist-
ing incoherent dictionary learning methods, the constraints
on mutual coherence is explicitly expressed in terms of the
inner products of all pairs of atoms, which is not compu-
tationally feasible when the dimension of atoms is infinite.
In other words, the existing incoherent dictionary learning
methods are not applicable to kernel sparse coding.



2.2. Dynamic Texture Analysis

The analysis and recognition on dynamic textures pro-
vide useful cues for understanding dynamic data, which
has seen their applications in video registration, surveil-
lance, facial expression recognition, motion analysis, and
many others; see e.g. [17, 46, 26].By assuming the un-
derlying dynamics of DT sequences is linear, many gen-
erative methods characterize the local behaviors of DTs
with linear models, which include the linear dynamical sys-
tem (LDS) [32, 40, 16] and its hierarchical extension [19],
the autoregressive model [35, 39] and its multi-scale ex-
tension [9], etc. These methods are vulnerable to the DT
sequences with camera motions like zooming and panning
or with chaotic motions driven by nonlinear stochastic dy-
namic systems (e.g. flapping flags and turbulent waters).

To characterize the nonlinearities of DTs, some nonlin-
ear generative models [5, 14] have been proposed, which
is done by imposing priors on the form of possible non-
linearities. In [14], Fourier phase is used for modeling the
global motion patterns of DTs. In [5], LDS is extended to a
nonlinear system using kernel tricks. Such approaches are
vulnerable to the DTs that do not satisfy the imposed spe-
cific priors [42]. A promising alternative to the generative
approach is viewing each of DT sequences as a bag of local
features. By treating DTs as 3D volume data, a promising
alternative to the generative approach is the discriminative
one, which directly extracts local DT features and organizes
them into global features by some statistical measurements,
e.g. histograms [46, 6] and fractal spectra [42, 43]. Most
existing DT features are the spatio-temporal extension from
the traditional ones in images or videos, e.g. spatio-temporal
filters [42, 21], volume local binary patterns [46, 19], and
histograms of orientations [6, 7]. Despite these attempts, it
remains an open question how to effectively extract impor-
tant nonlinear patterns that exist in both local low-level DT
features and global high-level organizations.

Considering the fact that the above hand-crafted features
do not adapt to the structures of DT data, dictionary learning
based methods are proposed for better performance. In [39],
LDS is learned as a dictionary from each class of DT se-
quences. In [30], the parameters of LDS are used as local
features from which a cookbook is learned for generating
feature codes. In [28], an orthogonal tensor dictionary is
proposed for computational efficiency when using dictio-
nary learning for DT recognition. All these methods use
linear models for characterizing local DT structures without
considering the nonlinearities. In [19], dictionary learning
is applied to encoding the nonlinearities among global DT
features instead of learning local features, which does not
fully exploit the essential local property of DTs for recog-
nition. In comparison with these approaches, our method
considers the nonlinear stationary properties of DTs as well
as the nonlinearities existing among global DT features.

3. Equiangular Kernel Dictionary Learning
In this section, we propose an equiangular kernel dictio-

nary learning method for kernel sparse coding, which learns
a dictionary with optimal mutual coherence has computa-
tional feasibility.

3.1. Problem Formulation

Given N training samples {Yi}Ni=1 ⊂ M ⊂ Rm, where
M is a Riemannian manifold which also can be a subspace.
Denote Φ : M → H to be a nonlinear mapping from M
into a high-dimensional or infinite-dimensional dot prod-
uct space H. This mapping is associated with some kernel
k(x, y) = 〈Φ(x),Φ(y)〉 = Φ(x)>Φ(y), where x, y ∈ M.
Accordingly, denote Φ(Y ) = [Φ(Y1), . . . ,Φ(YN )] and de-
fine K(X,Y ) = Φ(X)>Φ(Y ).

Kernel sparse coding aims at finding a dictionary A ∈ H
such that Φ(Y ) ≈ AC and columns of C are sparse. Reg-
ular sparse coding cannot be directly called to solve this
problem, as Φ is implicit and it maps finite vectors into an
infinite-dimensional space in most cases. In this paper, we
propose to learn a dictionary A = Φ(D) in feature space
with D ∈ Rm×n. The mutual coherence of such a dictio-
nary in feature space is then given by

µ(Φ(D)) = max
i 6=j

|〈Φ(Di),Φ(Dj)〉|
‖Φ(Di)‖‖Φ(Dj)‖

.

A dictionary optimized in terms of mutual coherence is
closely related to the so-called equiangular tight frame
(Grassmannian frame) [34]. It is shown in [34] that for a
complete system D with for Rm with n unit-norm atoms,
the lowest bound of mutual coherence is

√
n−m
m(n−1) and

such a bound is achieved if and only if the dictionary is an
equiangular tight frame such that

|〈Di, Dj〉| = c0, ∀i 6= j (1)

for some constant c0 which equals to the mutual coher-
ence of unit-norm atoms. Thus, in this paper, we consider
learning an equiangular dictionary for obtaining a dictio-
nary with optimal mutual coherence.

However, using the constraints of the form (1) for de-
signing the dictionary Φ(D) is challenging. The follow-
ing proposition solves such a problem by showing that the
equiangular constraints on the atoms of Φ(D) can be trans-
fered to that of D in a finite-dimensional space for certain
types of kernel functions.

Proposition 3.1. Let Φ : M → H to be a mapping from
M ⊂ Rm into a dot product space H with its associ-
ated kernel k of the form k(x, y) = ψ(‖x − y‖22). Let
D = {D1, D2, . . . , Dn} ⊂ M be an equiangular dictio-
nary such that ‖Di‖2 = ‖Dj‖2 and 〈Di, Dj〉 = µ0, for



all i, j and some constant µ0. Then, Φ(D) also forms an
equiangular dictionary inH such that

‖Φ(Di)‖2 = c0,∀i and 〈Φ(Di),Φ(Dj)〉 = η, ∀i 6= j,

for some constants c0 and η.

Proof. See the proof in supplementary materials.

It can be seen that the kernel matrix K = Φ(D)>Φ(D)
used in computation has the structure

Ki,j = k(Di, Dj) = 〈Φ(Di),Φ(Dj)〉 = η, ∀ i 6= j.

Based on Prop. 3.1, we formulate the problem of equiangu-
lar kernel sparse coding as follows,

min
D,C

1
2‖Φ(Y )− Φ(D)C‖2F

s.t. ‖Cz‖0 ≤ T, ∀z,
‖Di‖2 = 1, 〈Di, Dj〉 = µ, ∀i 6= j,

(2)

where T is the predefined sparsity level, µ is the predefined
incoherence level, and Φ is the nonlinear mapping with its
associated kernel function k satisfying

k(x, y) = ψ(‖x− y‖22). (3)

Remark 3.2. Both Gaussian function and polynomial func-
tion can be used as ψ in (3). When using Gaussian function,
it becomes the Gaussian kernel which is often seen in appli-
cations.

To further simplify the computation when dealing with
volume data like DTs, we set µ = 0 in (2) in the application
of DT recognition. In other words, we consider an orthogo-
nal dictionary D. It is noted that Ψ(D) is not an orthogonal
dictionary in feature space. More concretely, the model (2)
for DT analysis is in the following form:

min
D,C

1
2‖Φ(Y )− Φ(D)C‖2F

s.t. ‖Cz‖0 ≤ T, ∀z, D>D = I, ‖C‖∞ ≤M.
(4)

The last constraint in (4) is mainly for the stability in nu-
merical solvers, where M can be set sufficiently large so as
to keep the accuracy of sparse approximation.

3.2. Numerical Algorithm

To avoid direct computation in the implicit space induced
by kernel, the model (4) is reformulated as follows,

‖Φ(Y )−Φ(D)C‖2F = Tr(C>K(D,D)C)

− 2Tr(K(D,Y )>C) + Tr(K(Y, Y )),
(5)

which is based on the fact that ‖X‖2F = Tr(X>X) and
the kernel trick K(X,Y ) = Φ(X)>Φ(Y ). Substituting (5)
into (4), we rewrite (4) as

min
D∈D,C∈C

1
2Tr(C>QC − 2K(D,Y )>C), (6)

where C = {C : ‖C‖∞ ≤M, ‖Cz‖0 ≤ T, ∀z},D = {D :
D>D = I}, and Q = K(D,D). It is easy to verify that Q
is fixed for D ∈ D given the kernel k satisfying (3). When
k is the Gaussian kernel, Q is positive definite.

The problem (6) is a challenging non-smooth and non-
convex problem, owing to the terms with l0 norm, the or-
thogonality constraints, and the ambiguity between D and
C. Based on the proximal alternating scheme [2], we
present an efficient numerical solver for (6) with rigorous
convergence analysis. The proposed algorithm is summa-
rized in Alg. 1. In the next, we will detail each step of the
algorithm. To streamline the presentation of our algorithm,
we define

H(C,D) = 1
2Tr(C>QC − 2K(Y,D)>C),

F (C) = δC(C), G(D) = δD(D),
(7)

where δC(C) is an indicator function of C, i.e. δC(C) = 0
if C ∈ C and δC(C) = +∞ if C /∈ C, The problem (6) is
equivalent to the unconstrained minimization problem:

min
D,C

F (C) +G(D) +H(C,D). (8)

We alternately update C and D with the following scheme.

Algorithm 1 Equiangular kernel dictionary learning
1: INPUT: Training signals Y and kernel function k.
2: OUTPUT: Learned dictionary D and sparse code C.
3: Initialization: set {γj}∞j=1 > 1, λmax(Q) < a < b

and 0 < c < d such that d > Lmax
4: for j = 1, 2, . . . , do
5: Update the sparse code C via (10).
6: Set the step size tj via (15b).
7: Update the dictionary D via (13).
8: Set the step size sj via (15a).
9: end for

1. Kernel sparse coding. When the dictionary D is fixed,
we update the sparse code C via solving:

Cj+1 ∈ argmin
C

F (C) + sj

2 ‖C − U
j‖2F , (9)

where U j = Cj − ∇CH(Cj , Dj)/sj and sj is some pos-
itive step size. This subproblem has a closed-form solution
given by the following proposition.

Proposition 3.3. The solution of (9) is given by

Cj+1 = sign(U j)�min(HT (|U j |),M), (10)

where HT (C) keeps only the largest T entries in each col-
umn of C.

Proof. The problem (9) is equivalent to

min
C
‖C − U j‖2F , s.t. ‖Cz‖0 ≤ T, ∀z ‖C‖∞ ≤M. (11)

It is easy to verify that (10) is the solution of (11) .



2. Dictionary update. When the sparse code C is fixed, we
update the dictionary D by solving

Dj+1 ∈ argmin
D

G(D) + tj

2 ‖D − V
j‖2F , (12)

where V j = Dj − ∇DH(Cj+1, Dj)/tj and tj is some
positive step size. This problem has a closed-form solution
given by the following proposition.

Proposition 3.4. The problem (12) has a closed-form solu-
tion which is given by

Dj+1 = UW> (13)

where UΣW = V j is the SVD of V j .

Proof. The problem (12) is equivalent to

min
D
‖D − V j‖2F , s.t. D>D = I. (14)

From [47], we conclude that (13) is a solution of (14).

3. Setting step sizes. There are two step sizes sj and tj that
need to be set in Alg 1. Here we give a strategy for setting
these two parameters for the Gaussian kernel. For this pur-
pose, we first show that H(C,D) has Lipschitz gradient in
D × C. Given a function f , we say f is Lipschitz in Ω with
modulus L, if ‖f(x)− f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Ω.

Proposition 3.5. Let H(C,D) to be the function defined in
(7) where k(x, y) = exp

(−‖x−y‖22
2σ2

)
is the Gaussian kernel.

Then, we have ∇CH is Lipschitz with modulus λmax(Q),
where λmax(Q) is the maximal eigenvalue ofQ and∇D`

H
is Lipschitz in Ω := {d : ‖d‖2 = 1} with modulus L(C`),
where L(C`) is defined as

1

σ2

n∑
i=1

|C`i| exp
(
− (1− ‖Yi‖22)2

2σ2

)(
1 +

1

σ2
(1 + ‖Yi‖22)2

)
.

Proof. See the proof in supplementary materials.

Given γj > 1, 0 < a < b and 0 < c < d such that
b > λmax(Q) and d > Lmax, where λmax(Q) is the max-
imal eigenvalue of Q and Lmax = max({L(C`) : ` =
1, 2, . . . ,m,C` ∈ C)}. According to Prop. 3.5, we set sj

and tj as follows:

sj = max(min(γjλmax(Q), b), a), (15a)

tj = max(min(γjL(Cj+1), d), c), (15b)

where L(Cj+1) = max({L(Cj+1
` ), ` = 1, 2, . . . ,m}).

Remark 3.6. Compared with the kernel sparse coding
methods [18, 25, 37], our algorithm avoids the computa-
tion of K(Y, Y ) which is expensive when the Y is large.

3.3. Convergence Analysis

Based on the convergence results of proximal alternat-
ing algorithm for general non-convex and non-smooth min-
imization problems [4], we establish the global convergence
of Alg. 1 in the following theorem.

Theorem 3.7. The sequence, {(Cj , Dj)}, generated by
Alg. 1 converges to a critical point of (6).

Proof. The proof can be done by checking the conditions
of the Thm. 1 in [4], and we sketch the proof as follows.
Firstly, it is easy to verify that all functions H(C,D),F (C)
and G(D) are bounded below and lower semi continuous
and H(C,D) is a C1 function. Secondly, from Prop. 3.5,
∇CH(C,D) and ∇DH(C,D) are Lipschitz continuous
with modulus L1(D) and L2(C), respectively. Moreover,
∇H(C,D) is Lipschitz continuous on any bounded set.
From (15a) and (15b), the two step sizes sj and tj satisfy
sj ∈ [a, b], tj ∈ [c, d], for all j where a, b, c, d > 0. Thirdly,
the function H(C,D) are analytic functions, as polynomial
functions and exponential functions are analytic, and F (C)
and G(D) are semi-algebraic functions, as `0 norm and in-
dicator function over Stiefel manifold are semi-algebraic
[2]. Hence,H(C,D)+F (C)+G(D) satisfies the so-called
K-L property. From the Thm. 1 in [4], we conclude the
global convergence of (Cj , Dj) of Alg. 1.

3.4. Extension to Supervised Case

The proposed kernel dictionary learning method can be
easily applied to supervised sparse coding which utilizes la-
bels of signals for further discrimination. For instance, the
supervised term used in D-KSVD [45] which is defined by
linear prediction error can be incorporated to (4) as follows:

argmin
D∈D,C∈C,W

H(C,D) + β
2 ‖L−WC‖2F + α

2 ‖W‖
2
F , (16)

where Li is the binary label vector of the i-th sample, W
is a classifier to be learned, and the scalars α and β are
two weights for controlling the contribution of each term in
the model. The algorithm and convergence results for (16)
are detailed in the supplementary materials. Figure 2 com-
pares the coding results of (16) and D-KSVD on 2D spirals,
which demonstrates the capability of our method to capture
nonlinear structures. We also extended (4) by incorporat-
ing the label consistency term developed in LC-KSVD [22].
The recognition test on the AR face dataset shows 3.2% ac-
curacy improvement of our method over LC-KSVD.

4. Constructing DT Descriptor via Two-Layer
Kernel Sparse Coding

To address the DT analysis problem in the presence of
nonlinearities, we apply our kernel sparse coding approach
to extracting DT features in two layers, i.e. the low-level



feature description layer and the high-level feature repre-
sentation layer. The first layer is to learn a kernel dictionary
from DT patches, which is for characterizing the nonlin-
ear local behaviors of DTs and generating useful local DT
features. Using the dictionary learned in the first layer, the
sparse code of each DT sequence is calculated, and the his-
tograms on sparse code over space and time are used to con-
struct a global feature vector for each DT sequence. Then
the second layer is to obtain better representations from the
global feature vectors, which is done by using kernel sparse
coding to analyze the nonlinear relationships among differ-
ent DT samples. The pipeline of our two-layer scheme is
illustrated in Fig. 1.

In details, given a set of DT sequences {gi}i with labels
{li}i for training, we sample Z DT patches of sizem×m×
m from each class of DT sequences and stack all of them as
a matrix Y ∈ Rm3×Z by vectorization. Then we apply (4)
to learning a dictionary DL from Y , and each training DT
sequence gi is represented by its sparse code Xi under DL
via calculating Xi = F(P ◦ gi, DL), where

F(Y,D) := argmin
X

‖Φ(Y )− Φ(D)X‖2F , (17)

subject to ‖Xz‖0 ≤ T for all z, and P denotes the opera-
tor that extracts patches from a DT sequences with a sliding
window and stacks them as a matrix. This problem can be
efficiently solved by proximal methods. Due to space limit,
we list the algorithm for solving (17) in the supplementary
materials. Working on Xi, we calculate the histogram over
the whole sequence and three mean histograms along dif-
ferent axes in each coding channel (i.e. the sparse code cor-
responding to the same dictionary atom). See our supple-
mentary materials for the illustration of the above process.
These histograms are concatenated as a feature vector fi.
Collecting all fis from the training sequences as a matrix
F , we further apply (4) to learning a dictionary DH from
F . Using the high-level dictionary DH, we obtain the new
representation of each fi by calculating F(fi, DH). Such
representations can be used to train a classifier or for other
DT analysis problems.

When a unlabeled DT sequence arrives, we calculate its
descriptor using the same process as above, i.e. calculate
its sparse code via (17). More concretely, we compute the
histogram-based feature, and obtain the high-level represen-
tation by using (17) one more time. The feature vector is
input to the trained classifier for classification or for other
DT analysis problems.

5. Experiments
In this section, we present the experimental evaluation

on the proposed methods. In particular, we present the
DT classification results on three widely-used benchmark
datasets for demonstrating the effectiveness the proposed

DT descriptor. Before that, we first use some synthetic data
to examine the performance and computational efficiency
of the proposed equiangular kernel dictionary learning ap-
proach. Throughout the experiments, the Gaussian kernel is
used with careful parameter tuning.

5.1. Experiments on Synthetic Data

To demonstrate the effectiveness of Alg. 1, we generate
the synthetic data as follows. First, a dictionaryD ∈ Rm×n
is sampled from Gaussian random matrices. Then three
sparse matrices C1,C2,C3 ∈ Rn×N are generated such that
each of them has T rows of nonzeros with random values
drawn from the normal distribution, and t rows out of the T
rows share the same row indices among these three matri-
ces while the indices of the remaining T − t rows are totally
different across different matrices. Finally we generate the
signal matrix Y = DC where C = [C1, C2, C3]. As a re-
sult, we obtain three classes of signals. Each class of signals
lies at a T -dimensional subspace, and these three subspaces
have t-dimensional overlap.

The computational efficiency of Alg. 1 is tested by set-
ting T = 10, t = 5, n = 100 and varying N = 3 × 500 :
3×500 : 3×4000. The test was conducted in MATLAB on a
PC with an Intel i5 CPU and 32G memory. For comparison,
we implemented and tested the kernel KSVD method [37]
in the same setting, i.e. with the same iteration number set
to 20 and the same dictionary size set to n. The results are
shown in Fig. 3. Obviously, our method is much faster and
more scalable w.r.t. the amount of data. The reason is kernel
KSVD requires the computation of K(Y, Y ), whose cost is
much more expensive than that in computingK(D,Y ) in it-
erations when the amount of data is much larger than the di-
mension of data. To demonstrate the effectiveness of Alg. 1
in revealing the subspaces of data, we show the coding re-
sults with N = 1500 in Fig. 3. Furthermore, we show two
interesting demos in Fig. 2 using synthetic data on nonlin-
ear manifolds, which demonstrates the capability of Alg. 1
to linearize the nonlinear structures of data, .

5.2. Experiments on Real Datasets

There are mainly three benchmark datasets for evaluat-
ing DT analysis methods: the UCLA-DT dataset [8], the
DynTex dataset [27] and the DynTex++ dataset [15]. Due
to the expensive cost in gathering DT data, the first two
datasets have been rearranged in previous studies to ob-
tain multiple datasets with different setting for evaluation.1

Throughout all these three datasets, we converted all frames
to gray-scale images for removing the benefits from color.
A support vector machine (SVM) with the RBF kernel is
trained for classification, and the parameters of SVM are
determined by cross-validation.

1Indeed, DynTex++ originates from DynTex. However, regarding its
wide use, we consider it a separate dataset in this paper.



Figure 1. Pipeline of the proposed DT descriptor.

(a) Two circles (b) K-SVD [1] (c) Model (4)

(d) Two spirals (e) D-KSVD [45] (f) Model (16)
Figure 2. Proposed kernel sparse coding methods versus general
sparse coding methods on two synthetic data. Note that general
sparse coding methods cannot learn informative dictionary atoms
in (a) and (b), as the distributions of red points and blue points
along different directions are the same to each other.

(a) (b)

(c) (d)
Figure 3. Some results. (a) Time costs of Alg. 1 and kernel KSVD;
(b) Objective function value decay of Alg. 1 when applying Alg. 1
to (c); (c) Synthetic data; (d) Coding results from (c) by Alg. 1.

5.2.1 The UCLA-DT Dataset

The UCLA-DT dataset originally contains 200 DT se-
quences from 50 categories, and each category contains
four video sequences captured from different viewpoints.

All the videos sequences are of the size 160 × 110 × 75.
Figure 4 shows some sample sequences from the dataset.
There are several rearrangements for this dataset in the lit-
erature, but the performance of recent methods on most of
the rearrangements has been saturated.2 Therefore, we only
selected two most challenging rearrangements for evalua-
tion, including the ’Cat-9’ protocol [15] and the ’SIR’ pro-
tocol [6]:

Figure 4. Snapshots of DT sequences from the UCLA-DT dataset.

• Cat-9 (9 Categories) [15]: The original sequences are
combined from different viewpoints to form 9 categories,
with the number of samples per category varying from 4
to 108. Half of the samples per category are used for
training and the rest are used for test. This protocol can
evaluate the robustness to viewpoint changes.

• SIR (Shift-Invariant Recognition) [6]: Each original
video sequence is cut into non-overlapping left and right
halves with careful panning, where one half is used for
training and the other half for test. This protocol is
mainly to evaluate the shift-invariance of descriptors.

5.2.2 The DynTex Dataset

The DynTex dataset contains a large number of DT se-
quences of size 720 × 576 × 250. See Figure 5 for some
samples from the dataset. There are three breakdowns of the
dataset which are challenging and used in previous study,
including ’Alpha’ [27], ’Beta’ [27], and ’Gama’ [27]. These
breakdowns share the same protocol where five samples per
category are used for training and the rest are used for test,
and the differences between them are as follows:

• Alpha [27]: 60 sequences divided into three categories
(sea, grass and trees), with 20 samples in each category.

• Beta [27]: 162 sequences from 10 categories, with the
number of samples per class varying from 7 to 20.
2The saturated performance is over 90% and even has reached 100%.
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Figure 5. Snapshots of DT sequences from the DynTex dataset.

• Gamma [27]: 275 sequences from 10 categories, with
the number of samples per class varying from 7 to 38.

5.2.3 The DynTex++ Dataset

The DynTex++ dataset is a large DT dataset with 36 cat-
egories. Each category contains 100 DT sequences. See
Fig. 6 for some samples of the dataset. One half samples
per class are used for training and the rest are for test.

1

Figure 6. Snapshots of DT sequences from the DynTex++ dataset.

5.3. Implementation Details and Results

Throughout the experiments, we sampled 10000 patches
from each class to stack the training set for the first-layer
dictionary learning. The patch size is set according to the
size as well as the resolution of training sequences, ranging
from 4 to 7, and the sparsity degree is set to 5. The dic-
tionary is initialized by a set of wavelet tight frame filters.
Using the learned dictionary, we selected the sparse code
which corresponds to the 25 most discriminative dictionary
atoms for computing the histograms. Each histogram is 20-
dimensional. In the second-layer dictionary learning, the
sparsity degree is set to 7 and the dictionary is randomly
initialized. In classifier training, we set the penalty coef-
ficient of SVM to a multiple of the number of categories
when the size of training set is insufficiently large for reli-
able cross-validation.
Results on UCLA-DT: Our method is compared to MMDL
[15], DFS [42] and its variant DFS+ [43], HEM [26],
OTF [41], and WMFS [21]. The results are summarized
in Tab. 1, in which our method performs the best among
the compared methods and shows noticeable improvement
over the latest DT descriptors. It is worth mentioning that

the overall performance of our method dropped by 2.8%-3.6
when we discarded the higher-level component and trained
the classifiers directly by the first-layer output.

Table 1. Classification accuracies (%) on the UCLA-DT dataset.
Protocol MMDL DFS DFS+ OTF WMFS HEM Ours

Cat-9 95.6 97.5 97.5 97.2 97.1 97.3 98.6
SIR - 73.8 74.2 67.4 61.2 58.0 75.8

Results on DynTex and DynTex++: Besides the aforemen-
tioned DFS, OTF, and WMFS methods, we compare our
method with the LBP-TOP [46], KGDL [19], 2D+T [10].
Note that KGDL is a Grassman kernel dictionary learning
method which is closely-related to our work. The classifi-
cation results are summarized in Tab. 2. Again, our method
outperforms the latest ones. The effect of not using kernel
was simply evaluated in our framework by setting the map-
ping function Φ as Φ(x) = x. Overall, around 2.2%-4.6%
performance drop was observed on the tested datasets. We
also tested the supervised extension (16) by using it for the
high-level representation, and there is essentially no perfor-
mance improvement. The possible reason could be that our
original framework is sufficient for the complexity of the
tested data.

Table 2. Classification accuracies (%) on the DynTex and and Dyn-
Tex++ datasets.

Protocol DFS OTF LBP-TOP DFS+ 2D+T KGDL Ours

Alpha 84.9 82.8 83.3 85.2 85.0 86.2 88.8
Beta 76.5 75.4 73.4 76.9 67.0 77.0 77.4

Gamma 74.5 73.5 72.0 74.8 63.0 75.1 75.6
DynTex++ 89.9 89.8 89.2 91.7 - 92.8 93.4

6. Conclusion
Kernel sparse coding has been an effective tool for ex-

ploiting the nonlinear structures and patterns of data. In
this paper, we proposed a new mathematical framework for
learning an equiangular dictionary in the implicit space as-
sociated with some kernel, and then developed an efficient
numerical solver with guaranteed convergence property.
The learned equiangular dictionary has low mutual coher-
ence to ensure the accuracy and stability of sparse coding.
We also investigated the application of kernel sparse coding
in DT analysis. A new DT descriptor is constructed via a
two-layer kernel sparse coding based framework, where the
proposed kernel sparse coding method is used for both local
DT pattern extraction and global DT feature representation.
The experiments on several DT datasets showed that the
proposed equiangular dictionary learning method can effec-
tively characterize DT sequences with better performance
over the state-of-the-art methods. In future, we would like
to investigate the potential applications of equiangular ker-
nel dictionary learning in other visual recognition tasks.
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[27] R. Péteri, S. Fazekas, and M. J. Huiskes. DynTex : A Comprehen-
sive Database of Dynamic Textures. Pattern Recogn. Lett., 31:1627–
1632, 2010. 6, 7, 8

[28] Y. Quan, Y. Huang, and H. Ji. Dynamic texture recognition via or-
thogonal tensor dictionary learning. In ICCV, pages 73–81. IEEE,
2015. 3

[29] I. Ramirez, P. Sprechmann, and G. Sapiro. Classification and clus-
tering via dictionary learning with structured incoherence and shared
features. In CVPR. IEEE, 2010. 2

[30] A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant dy-
namic texture recognition using a bag of dynamical systems. In
CVPR, pages 1651–1657. IEEE, 2009. 3

[31] C. Richard, J. C. M. Bermudez, and P. Honeine. Online predic-
tion of time series data with kernels. IEEE Trans. Signal Process.,
57(3):1058–1067, 2009. 2

[32] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic texture
recognition. In CVPR, volume 2, pages II–58. IEEE, 2001. 3

[33] K. Schnass and P. Vandergheynst. Dictionary preconditioning for
greedy algorithms. IEEE Trans. Signal Process., 56(5):1994–2002,
2008. 2

[34] T. Strohmer and R. W. Heath. Grassmannian frames with applica-
tions to coding and communication. Appl. Comput. Harmonic Anal.,
14(3):257–275, 2003. 3

[35] M. Szummer and R. W. Picard. Temporal texture modeling. In ICIP,
volume 3, pages 823–826. IEEE, 1996. 3

[36] J. Tropp et al. Greed is good: Algorithmic results for sparse approx-
imation. IEEE Trans. Inf. Theory, 50(10):2231–2242, 2004. 2

[37] H. Van Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa.
Design of non-linear kernel dictionaries for object recognition. IEEE
Trans. Image Process., 22(12):5123–5135, 2013. 1, 2, 5, 6

[38] J. Wang, J.-F. Cai, Y. Shi, and B. Yin. Incoherent dictionary learn-
ing for sparse representation based image denoising. In ICIP, pages
4582–4586. IEEE, 2014. 2

[39] X. Wei, H. Shen, and M. Kleinsteuber. An adaptive dictionary learn-
ing approach for modeling dynamical textures. In ICASSP, pages
3567–3571, May 2014. 1, 3

[40] F. Woolfe and A. Fitzgibbon. Shift-invariant dynamic texture recog-
nition. In ECCV, pages 549–562. Springer, 2006. 3

[41] Y. Xu, S. Huang, H. Ji, and C. Fermüller. Scale-space texture de-
scription on sift-like textons. Comput. Vis. Image. Und., 116(9):999–
1013, 2012. 8

[42] Y. Xu, Y. Quan, H. Ling, and H. Ji. Dynamic texture classification
using dynamic fractal analysis. In ICCV, pages 1219–1226. IEEE,
2011. 3, 8

[43] Y. Xu, Y. Quan, Z. Zhang, H. Ling, and H. Ji. Classifying dynamic
textures via spatiotemporal fractal analysis. Pattern Recogn., 2015.
3, 8

[44] L. Zhang, W.-D. Zhou, P.-C. Chang, J. Liu, Z. Yan, T. Wang, and
F.-Z. Li. Kernel sparse representation-based classifier. IEEE Trans.
Signal Process., 60(4):1684–1695, 2012. 1, 2

[45] Q. Zhang and B. Li. Discriminative K-SVD for dictionary learning
in face recognition. In CVPR, pages 2691–2698. IEEE, 2010. 5, 7

[46] G. Zhao and M. Pietikainen. Dynamic texture recognition using local
binary patterns with an application to facial expressions. IEEE Trans.
Pattern Anal. Mach. Intell., 29(6):915–928, 2007. 3, 8

[47] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component
analysis. J. Comp. Graph. Stat., 15(2):265–286, 2006. 5


