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Abstract

Discriminative sparse coding has emerged as a promis-
ing technique in image analysis and recognition, which cou-
ples the process of classifier training and the process of
dictionary learning for improving the discriminability of
sparse codes. Many existing approaches consider only a
simple single linear classifier whose discriminative power
is rather weak. In this paper, we proposed a discrimina-
tive sparse coding method which jointly learns a dictionary
for sparse coding and an ensemble classifier for discrim-
ination. The ensemble classifier is composed of a set of
linear predictors and constructed via both subsampling on
data and subspace projection on sparse codes. The ad-
vantages of the proposed method over the existing ones are
multi-fold: better discriminability of sparse codes, weaker
dependence on peculiarities of training data, and more ex-
pressibility of classifier for classification. These advantages
are also justified in the experiments, as our method outper-
formed several recent methods in several recognition tasks.

1. Introduction

In recent years, as a promising technique for efficiently
representing high-dimensional data, sparse coding has seen
its successful usages in a variety of recognition tasks, e.g.,
face recognition [31, 36, 3], object classification [32, 17, 3],
texture classification [26, 25], and action recognition [8,
39]. Given a set of input data, sparse coding aims at express-
ing each input data by a linear combination of only a few
elements from a set of representative patterns. These repre-
sentative patterns are called atoms, the set of all the atoms is
called dictionary, and the coefficients of the linear combi-

∗The corresponding author Yong Xu thanks the supports by National
Nature Science Foundations of China (61273255 and 61070091), Engi-
neering & Technology Research Center of Guangdong Province for Big
Data Analysis and Processing (2013-1589-1-11), Project of High Level
Talents in Higher Institution of Guangdong Province (2013-2050205-47)
and Guangdong Technological Innovation Project (2013KJCX0010).

nations are called sparse codes. More specifically, consider
a set of input signals {y1,y2, . . . ,yP } ⊂ RN , sparse cod-
ing is about determining a set of atoms {d1,d2, . . . ,dM} ⊂
RN , together with a set of coding vectors {c1, . . . , cP } ⊂
RM , so that each input vector yj can be approximated by
the linear combination yj ≈

∑M
`=1 cj(`)d`, where most

entries of cj are zeros or close to zeros. Let ‖ ·‖0 denote the
pseudo-norm that counts the number of non-zero elements.
Then, the classic sparse coding problem can be formulated
as the following optimization problem (e.g. [1]):

min
D,C

‖Y −DC‖2F , s.t. ∀i, ‖ci‖0 ≤ T, (1)

where D = [d1,d2, . . . ,dM ] ∈ RN×M denotes the dictio-
nary to be learned, Y = [y1,y2, . . . ,yP ] ∈ RN×P denotes
a matrix containing the input samples as column vectors,
C = [c1, . . . , cP ] ∈ RM×P denotes the matrix contain-
ing the corresponding coding vectors, and the parameter T
controls the sparsity degree on each coding vector. Further-
more, the normalization constraint on each atom is often im-
posed to avoid possible unbounded solutions, which states
‖dj‖2 = 1 for all j.

It can be seen that the dictionary learned using (1) only
cares about the approximation error between the input data
and the resultant succinct expression. In other words, the
sparse codes obtained under the learned dictionary can be
viewed as the cleaned up version of the input data. One
may use such sparse codes as the features for classification.
However, the additional discriminative information pro-
vided by these sparse codes over the original input signals
is limited when being used in complex classification tasks,
as they do not take account of the discriminability needed in
classification. In recent years, there have been an abundant
literature on discriminative sparse coding which is to learn
a dictionary whose resultant sparse codes possess improved
discriminative power; see e.g. [21, 22, 20, 33, 26, 15]. The
basic idea of discriminative sparse coding for classification
is to include some supervised learning processes into sparse
coding. Most existing approaches for discriminative sparse



coding consider the following variational model:

min
D,C

‖Y −DC‖2F + γJ (C;L) (2)

subject to ‖ci‖0 ≤ T , ‖dj‖2 = 1, for all i and j, where γ
is a weight, L is a matrix that encodes the label informa-
tion of each training sample, and J (·;L) denotes a penalty
function that measures the discriminative error between the
codes and labels.

1.1. Motivation

In recent years, several supervised learning techniques
have been incorporated into discriminative sparse coding,
such as linear prediction in [24, 37, 13], softmax regres-
sion in [21, 22], logistic regression in [22, 20], and max-
imum margin learning in [19, 33]. All these techniques
focus on feeding back classification performance of a sin-
gle classifier, which is rather rudimentary considering the
great advances in supervised learning in recent years. For
example, the powerful ensemble learning [6], a machine
learning paradigm where a set of base classifiers are trained
and combined as an ensemble classifier to gain extra perfor-
mance, has not been fully exploited.

The benefits of introducing ensemble learning to sparse
coding are multi-fold. Firstly, the size of training data is of-
ten limited in real applications, which could be due to the
cost of data collection (e.g. face images [31]) or the compu-
tational cost of using a training set of large size (e.g. clas-
sifying objects of over thousands of categories [7]). As a
result, the dictionary learning, as well as the single classi-
fier training, is often sensitive to the shape of training data.
Ensemble learning allows the combination of multiple clas-
sifiers which can effectively reduce such sensitivity. Sec-
ondly, when using a single classifier, the applicability of dis-
criminative sparse coding is often limited owing to the im-
perfectness of the used learning algorithms, e.g., the linear
classifier used in [24, 37, 14] is inappropriate for linearly in-
separable data, and the fisher discriminant used in [35, 34] is
optimal only when the data from each category are realized
from the normal distribution. In contrast, using ensemble
learning can avoid such imperfectness by integrating multi-
ple classifiers. Lastly, the hypothesis space being searched
might not contain the true target function, while ensembles
can give some good approximation [6].

Motivated by the likely benefits of ensemble learning
over single classifier training, there have been several at-
tempts to incorporate ensemble learning into discriminative
sparse coding; see e.g. [38, 40, 41]. However, there are
plenty of room for further improvement in all these meth-
ods in both theoretical and applied perspectives. For exam-
ple, the supervised information is not fully utilized in [41],
a two-stage scheme used in [40] does not feed back classi-
fication performance for dictionary learning, and an itera-
tive re-sampling scheme is directly used in [38] for learning
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Figure 1. Motivation of sparse coding with discriminative ensem-
ble. (a) Reconstructive sparse coding only considers minimizing
the reconstruction error. Thus, inter-class signals which have high
correlations are likely to share atoms during dictionary leaning,
which yields similar inter-class sparsity patterns and decreases the
discrimination of sparse codes, e.g., green points and black points
are mixed together in the K-SVD [1] coding space. (b) Jointly
learning a linear classifier could address the issue, as labels of sig-
nals are utilized to enforce the separability of inter-class sparsity
patterns, e.g., green points and black points are separated in the
D-KSVD [37] coding space. (c) However, discrimination terms
based on a single linear classifier are insufficient in many scenar-
ios, as inter-class sparsity patterns are unnecessarily linearly sep-
arable due to the multi-modal distribution (e.g. black points or red
points are distributed in two clusters in the D-KSVD [37] cod-
ing space), peculiarity and outliers of training data. On the other
hand, using highly nonlinear classifier would result in complex
optimization models that are challenging to solve. In contrast, in-
tegrating multiple linear classifiers can overcome the weakness of
single linear classifier while keeping the simplicity of the model.

multiple dictionaries and classifiers, which lacks an unified
variational model. All these inspired us to study new vari-
ational approaches for ensemble learning based discrimina-
tive sparse coding. See Figure 1 for an illustration of our
motivation to introduce ensemble learning to sparse coding.

1.2. Main Contributions

This paper aims to develop a new discriminative sparse
coding method which is built upon ensemble learning. We
first construct a new variational model of the form (2) that
embeds ensemble learning into sparse coding by consider-
ing an ensemble classifier in defining the term J . Then,
we propose an alternating iterative scheme to solve the re-
sultant optimization problem. The proposed discriminative
sparse coding method can be applied to classification by
voting the predictions from all base classifiers in the en-
semble. Compared to the classic sparse coding methods,
e.g. the K-SVD method [1] and the proximal method [2, 3],
the sparse codes from the proposed method are much more
discriminative when being used in classification. Compared



to the single classifier based discriminative sparse coding
methods [24, 37, 14], the proposed method is built upon
multiple classifiers in an ensemble setting, which is capable
to tackle the insufficiency of training data and improve the
robustness of classification. Compared to the methods that
assign labels to atoms for adding discrimination [40, 13],
the proposed method can be regarded as a generalization
which projects the sparse codes to a set of subspaces and
learns a classifier on each subspace, yielding a compact dic-
tionary without explicit label assignment. In comparison
to other existing ensemble-based dictionary learning meth-
ods [38, 40], the proposed method provides a variational
model with better theoretical justification, and avoids learn-
ing multiple dictionaries for ensemble as done in [40, 41].

2. Discriminative Sparse Coding
Nowadays, sparse coding has emerged as one promis-

ing technique in a wide range of applications, including im-
age recovery, analysis, and classification. In classic sparse
modeling problem, the sparse coding aims at finding sparse
representation of input data under an adaptive dictionary.
There has been an abundant literature on its analysis and
algorithms. For example, the SRC method [31] considers
the sparse approximation problem with the dictionary con-
structed by concatenating all training samples. The well-
known K-SVD method [1] considers the model (1) and pro-
vides a fast numerical solver, and the proximal method for
solving the same problem is proposed in [2] with rigorous
convergence analysis. All these methods only concern the
sparse approximation of input data. The label information
of the training samples in supervised setting are ignored.
As a result, the obtained sparse codes often do not provide
additional discriminative information over the input feature
vectors when used for classification. Thus, many methods
have been proposed to utilize the labels of data for discrim-
inative sparse coding, e.g. [21, 37, 26, 35, 13]. In the next,
we give a brief review on the existing discriminative sparse
coding techniques, which can be mainly classified into two
categories based on the usage of label information.

2.1. Joint dictionary learning and classifier training

There are two approaches for combining classification
and sparse coding. One is a two-stage approach which first
runs sparse coding and then uses the obtained sparse codes
as the features to train classifiers; see e.g. [11, 32, 30]. Such
a two-stage scheme is not optimal for discrimination as it
does not relate classifiers to the process of sparse coding.
Thus, a better approach is to simultaneously run classifier
training and sparse coding, which often can be formulated
as a variational model:

min
D,W ,C

‖Y −DC‖2F + γJ (C,W ;L)

s.t. ‖ci‖0 ≤ T, ‖dj‖2 = 1, for all i, j,
(3)

where J (·, ·;L) denotes a classification loss function,
W denotes the classifier parameters related to J , and
L = [l1, l2, . . . , lP ] ∈ RK×P is the binary label ma-
trix of P training samples from K categories, where lp =
[0, 0, . . . , 1, . . . , 0, 0]> ∈ RK denotes the binary label vec-
tor of the pth sample yp in which nonzero occurs at the kth
entry if yp belongs to the kth category.

As a discriminative term, the classification loss function
J (C,W ;L) in (3) varies in different methods - softmax
discriminative cost [21, 22], linear prediction error [24, 37,
14, 13], hinge loss [19, 33], and logistic loss [22, 20], to
name a few. Take the linear prediction error for example,
the classification loss function J is defined as

J (C,W ;L) = ‖L−WC‖2F , (4)

where W ∈ RK×M is a classic multi-class linear predictor.
Such a simple discrimination term has demonstrated moder-
ate performance improvement in face recognition [37]. But
a global linear classifier is often still not powerful enough
in many challenging classification tasks.

Most existing approaches solve the problem (3) via an
alternating iteration scheme which alternatively updates the
estimations in three submodules, i.e. sparse coding, dictio-
nary learning and classifier training.

2.2. Associating dictionary atoms with class labels

The discriminability in sparse codes can be further im-
proved by learning a dictionary with labeled atoms. More
specifically, each dictionary atom is associated with one or
more class labels. During the process of dictionary learn-
ing, each input signal is encouraged to have significant re-
sponses on the atoms whose class labels are shared with
the signal. In this scheme, a dictionary is partitioned into
several discriminative sub-dictionaries, and distinct sparsity
patterns (e.g. positions or magnitude spectrum of non-zero
elements) are induced in the sparse coefficients of inter-
class signals, which is likely to increase the distance of
sparse codes among different classes.

When they are disjoint and learned independently from
inner-class samples, sub-dictionaries become naive class-
specific dictionaries, which have been employed in many
previous studies; see e.g. [21, 28]. The main drawback of
these methods is that the learned class-specific dictionaries
do not encode correlation between classes. On the one hand,
the learned class-specific dictionary in each class might also
represent data from other classes equally well, which results
in decreased discriminative power of sparse codes. On the
other hand, the samples from different classes do not share
any dictionary atom, which makes the resultant representa-
tion less efficient in terms of characterizing the underlying
structures. Several schemes have been proposed to tackle
these issues - adding an additional globally shared pool of
atoms [40, 16], reducing mutual coherence between atoms



and detecting shared atoms among class-specific dictionar-
ies [26], etc.

A promising alternative to using naive class-specific dic-
tionaries is to jointly learn sub-dictionaries, e.g. [35]. To
induce discriminability in sparse codes according to subdic-
tionaries, one way is to group sparse codes according to the
label consistency between dictionary atoms and data sam-
ples. Then group sparsity is imposed on the grouped sparse
codes, e.g. [10, 12]. The resultant structured sparse codes
are more discriminative for classification than the purely
sparse ones. Another way is to induce separability in sparse
codes with certain class separation criterion, see e.g. [35, 5].
Take the label consistency criterion [14, 13] for example,
the discrimination term is defined as follows:

J (C,A;B) = ‖B −AC‖2F , (5)

where A is a linear transformation matrix to be learned,
B ∈ RM×P is a predefined binary matrix for label consis-
tency where Bm,p is nonzero if the atom dm is expected to
share class label with the signal yp.

3. Main Body
In this section, we develop an ensemble based discrim-

inative sparse coding method for classification. Instead of
learning a single linear classifier defined in (4), we train
multiple linear classifiers based on different subspaces of
sparse codes from different subsets of input signals dur-
ing dictionary learning. By jointly learning a dictionary for
sparse coding and training an ensemble classifier for classi-
fication, the benefits of the proposed method are two-fold:
better discriminability of sparse coding and better robust-
ness in classification.

3.1. Ensemble based discriminative sparse coding

Let {Wz ∈ RK×Mz}Zz=1 be a set of multi-class linear
classifiers to be learned. We propose the following varia-
tional model for discriminative sparse coding:

min
D,{Wz}Zz=1,C

‖Y −DC‖2F +

Z∑
z=1

γz‖Wz‖2F+

Z∑
z=1

βz‖LQz −WzPzC Qz‖2F (6)

s.t. ‖ci‖0 ≤ T, ‖dj‖2 = 1, for all i, j,

where βzs and γzs are the scalars controlling relative con-
tribution of each term, Pz ∈ RMz×M is a subspace ensem-
ble constructor which projects coding vector of each sample
(i.e. each column of C) onto certain subspace, and Qz ∈
RP×P is a subsample ensemble constructor which selects
coding vectors of certain samples ( i.e. some columns of C)
for classification. There are three main terms in (6):

• The first term is a fidelity term for the consistency be-
tween signals and codes;

• The second term is a discrimination term built upon an
ensemble of classifiers, where {Pz}Zz=1 is used for con-
structing subspace ensemble while {Qz}Zz=1 for con-
structing subsample ensemble;

• The last term is to control the energy of the classifiers to
avoid over-fitting.

Compared to the single linear classifier based approaches
(e.g. [37]), by using the ensemble of linear classifiers, the
proposed method is able to reduce the dependence of sparse
codes on peculiarities of training set and learn more expres-
sive concepts for further performance gain in classification.
Remark - An interesting observation on the connection be-
tween label consistency and ensemble learning. The label
consistency term defined in (5) can be also understood from
the viewpoint of ensemble learning. First, assuming each
class shares label with H atoms and each atom only shares
label with one class, it is easy to verify that there exists a
permutation matrix R such that R(1H ⊗ L) = B. Then
we can rewrite (5) as

J (C, Ā;L) =

H∑
h=1

‖L− ĀhC‖2F , (7)

where Āh ∈ RK×M is the hth block of Ā which is defined
as Ā = [Ā1; Ā2; ...; ĀH ] = R>A. Thus, the label consis-
tency term can be viewed as a discrimination term defined
as the summation of prediction errors from a set of linear
classifiers {Ah}Hh=1, which is a special case of the ensem-
ble discrimination term in (6). Note that the base learners
{Ah}Hh=1 learned in LC-KSVD are utilized in learning but
not classification. In comparison, we utilize the base learn-
ers in both learning and classification for improvement.

3.2. Construction of ensemble classifier

We now give a detailed description on the implementa-
tion of the ensemble construction operators {Pz}Zz=1 and
{Qz}Zz=1 in (6). As suggested in [6], the correlation of
each pair of base classifiers in the ensemble should be as
low as possible for promising diversity and improvement.
One often-used technique to form ensemble with indepen-
dent bases is done by random injection. In this paper, we
configure {Pz}Zz=1 and {Qz}Zz=1 as follows1:

• Identical projection: Set P1 = IM and Q1 = IP .
This is an ordinary base which results in (4).
• Feature selection: For z = 2, ...,H1 + 1, set Qz = IP

and set Pz ∈ RK×M to be a feature selection matrix
such that PzC selects K rows from C. More specifi-
cally, Pz is a binary matrix withK nonzeros generated

1Recall that M /P /K are the number of atoms/signals/categories.



by randomly deleting M −K rows from IM . The row
positions of 1s in Pz indicate the selected dimensions
of sparse codes for training Wz .
• Random projection: For z = H1 + 2, ...,H2 +H1 + 1,

set Qz = IP and set Pz ∈ RM
2 ×M to be a random

Gaussian matrix with zero mean. Compared to the fea-
ture selection, the random projection can guarantee a
global preservation of inter-point distances.
• Data subsampling: For z = H2+H1+2, ...,H3+H2+
H1+1, set Pz = IM and set Qz ∈ RP×P to be a diag-
onal projection matrix that selects sparse codes from a
subset of training samples from each class. More con-
cretely, Qz is a binary diagonal matrix where the pth
diagonal element being 1 indicates that the pth signal
is used for training Wz .2 The Qzs are generated by
thresholding randomly permuted indices.

Empirically, the performance of our method is insensitive
to the randomness from the generation schemes above.

3.3. Algorithm

We use an alternating iterative scheme to solve the
problem (6), which alternatively updates the unknowns
D, C and {Wz}Zz=1 as follows3: for ` = 1, 2, . . . ,

C(`+1) = argmin
C

Z∑
z=1

βz‖L−W (`)
z PzC

(`)Qz‖2F

+ ‖Y −D(`)C‖2F , s.t. ‖ci‖0 ≤ T for all i;

D(`+1) = argmin
D

‖Y −DC(`)‖2F , s.t. ‖dj‖2 = 1 for all j;

W (`+1)
z = argmin

W
‖L−WPzC

(`)Qz‖2F +
γz
βz
‖W ‖2F .

3.3.1 Sparse approximation

At the beginning of the (l + 1)th iteration, we update the
sparse codes with the learned dictionary and classifiers from
the previous step by solving the following problem:

C(`+1) = argmin
C

Z∑
z=1

βz‖L−W (`)
z PzCQz‖2F

+ ‖Y −D(`)C‖2F s.t. ∀i, ‖ci‖0 ≤ T.
This problem is column separable with respect to C. Thus,
we update C = [c1, . . . , cP ] column by column as follows:
for i = 1, . . . , P ,

c
(`+1)
i = argmin

c

Z∑
z=1

Qz(i)=1

βz‖li −W (`)
z Pzc‖22

+‖yi −D(`)c‖22, s.t. ‖c‖0 ≤ T

(8)

2Setting Qz rectangular instead of square is more succinct. However, we
adopt the square case for the convenience of presenting our algorithm.

3In the following parts, we omit Qz in LQz for the convenience of pre-
senting our algorithm. This does not affect the optimization procedure
due to the nature of Qz .

where Qz(i) denotes the ith diagonal element of Q. This
problem can be rewritten as

c
(`+1)
i = argmin

c
‖x−U

(`)
i c‖2F , s.t. ‖c‖0 ≤ T, (9)

where U
(`)
i = (D>(`), . . . ,

√
βz(W

(`)
z Pz)

>, . . . )> and
x = (y>i , . . . ,

√
βzl
>
i , . . . )

> for all possible zs subject to
Qz(i) = 1. This is a classic sparse coding problem which
is solved by OMP [29].

3.3.2 Dictionary refinement

After the sparse codes have been updated, the refinement of
dictionary becomes the following problem:

D(`+1) = argmin
D

‖Y −DC(`)‖2F , s.t. ∀j, ‖dj‖2 = 1.

By applying projected gradient descent, we update the dic-
tionary atom by atom as follows: for j = 1, . . . ,M , s

(`)
j = d

(`)
j − 1

µ`
j

∇djF(C(`+1), D̃
(`)
j ;Y ),

d
(`+1)
j = argmin

‖dj‖2=1

‖dj − s
(`)
j ‖2,

(10)

where µ`j is the step size, F(C,D;Y ) = ‖Y −DC‖2F ,

D̃
(`)
j = [d

(`+1)
1 , · · · ,d(`+1)

j−1 ,d
(`)
j ,d

(`)
j+1, · · · ,d

(`)
m ],

The problem (10) has a closed-form solution

d
(`+1)
j = s

(`)
j /‖s(`)j ‖2. (11)

3.3.3 Classifier training

With the sparse codes fixed, the training of classifiers is
about solving the following problem:

W (`+1)
z = argmin

W
‖L−WM (`)

z ‖2F +
γz
βz
‖W ‖2F ,

where M
(`)
z = PzC

(`)Qz . This is a ridge regression prob-
lem with the explicit solution given by

W (`+1)
z = LM (`)>

z (M (`)
z M (`)>

z +
γz
βz

I)−1, (12)

which can be efficiently computed by the conjugate gradient
method as (M

(`)
z M

(`)>
z + γz

βz
I) is positive definite.

3.4. Classification strategy

Once the dictionary D and the classifiers {Wz}Zz=1 have
been learned, the classification is done as follows. Given
a test sample ytest, we compute the corresponding sparse
code ctest by solving the sparse approximation problem

ctest = argmin
c
‖ytest −Dc‖22, s.t. ‖c‖0 ≤ T, (13)



using OMP [29]. Then the prediction score of ctest on the
zth classifier Wz is computed by

stest
z = WzPzc

test, (14)

and all the scores are voted as follows:

stest =

Z∑
z=1

βz(V ◦ stest
z ), (15)

where V is an operator that sets the maximum element of
the input vector to 1 and sets the remaining elements to 0s.
The label of ytest is finally determined by taking the class
index which corresponds to the maximal value in stest.

Remark - The convergence of the above algorithm cannot
be guaranteed. In fact, the proximal method [2] with theo-
retically guaranteed convergence can be adapted to our set-
tings with very little modifications. However, the theoreti-
cal convergence does not provide any practical benefit and
it indeed performs slightly worse than our algorithm.

4. Experiments
In existing literature, there are various protocols for eval-

uating discriminative sparse coding methods. We adopted
the experimental setting from [13], which uses five datasets
and covers a variety of recognition tasks ranging from face
recognition and object classification to scene classification
and action recognition. The datasets and protocols are de-
tailed in the next subsection.

Throughout the experiments, we set H1 = H2 = H3 =
H for simplicity. The resultant number of base classifiers
is Z = 3H + 1. The weights of all the classifiers are set
the same, i.e. βz = β and γz = γ for all possible z. Then,
the parameters of our method are reduced to five scalars:
the number of base classifiers Z, the discrimination weights
β and γ, the sparsity degree T , and the dictionary size M .
The parameters β and γ are determined by cross-validation,
M is set to be a multiple of the number of categories on the
dataset, T is set according to [13], and H is set 10 when the
dimensions of input signals are over 1000 and set 8 other-
wise. For initialization, we calculate D(0) and C(0) using
K-SVD and initialize W (0) using (12) with C(0).

4.1. Datasets and protocols

• Ex. YaleB [9]: The extended YaleB dataset contains 2414
images of 38 human frontal faces. There are about 64
images taken under different illumination conditions and
expressions for each person. Each original face image
is cropped to 192 × 168 pixels and then projected onto
a 504-dimensional feature vector by random projection.
The dataset is randomly split into two halves. One half
which contains 32 images per person is used for training,
and the other half for test. We set T = 40 and M = 532.

• AR Face [13]: The AR Face dataset consists of over 4000
frontal images from 126 individuals, in which 26 pictures
were taken in two separate sessions for each individual.
A subset with 2600 images from 50 male subjects and 50
female subjects is used. Each image is cropped to 165×
120 and then projected onto a 540-dimensional feature
vector by random projection. For each person, 20 images
are collected for training and the rest are for test. We set
T = 40 and M = 500.

• Caltech-101 [7]: The Caltech-101 dataset is composed
of 8677 images from 101 object categories and 467 im-
ages from an additional background category. The num-
ber of samples per category is greatly unbalanced, vary-
ing from 31 to 800. The 3000-dimensional SIFT-based
spatial pyramid feature [18] is used to represent each im-
age. We trained on 15 samples per category and tested
on the rest. The dictionary size is set equal to the size of
training set (i.e. 1530). The parameter T is set to 45.

• Scene-15 [18]: The Scene-15 dataset contains 4485 im-
ages of 15 categories of scenes. The number of sam-
ples per category varies from 210 to 410. Similar to the
case in Caltech-101, a 3000-dimensional SIFT-based spa-
tial pyramid feature [18] is extracted from each image.
From each category, 100 images are collected for training
and the rest for test. The parameters are set as follows:
T = 50 and M = 600.

• UCF Action [23]: The UCF Sports Action dataset con-
sists of 150 action videos of 10 categories. The number
of samples per category varies from 14 to 35. The ac-
tion bank feature [27] is extracted from each sample and
then projected onto a 100-dimensional vector by PCA.
The performance is measured by the five-fold cross vali-
dation (i.e. one fold for test and the remaining four folds
for training). We set M = 50 and T = 10.

4.2. Methods for comparison

Our purpose here is not to compete with the top recog-
nition systems like deep networks, but to demonstrate the
improvement of the proposed method over the related ones.
Thus, our method is compared against some recent sparse
coding methods that are closely-related to ours, including4

• SRC [31], sparse representation based classification via
stacking training samples as a dictionary, which was im-
plemented with two different dictionary configurations:
SRC for the case where all training samples are used for
dictionary construction, and SRC* for the case where the
dictionary size is the same as ours;

• K-SVD [1], reconstructive sparse coding via solving (1),
which is applied to classification via a two-stage strategy:
sparse coding followed by single linear classifier training;

4We observed noticeable improvement from state-of-the-art deep networks
over our method. But such a comparison is not fair, as deep networks
learn features from the data while our method uses handcrafted features.



• Joint [24], unifying classifier learning and sparse repre-
sentation into one optimization framework;

• D-KSVD [37], simultaneously learning a dictionary and
a linear classifier by solving (3) and (4) via K-SVD;

• L0DL [2], a convergent sparse coding method that jointly
learns a single classifier and a dictionary;

• LC-KSVD [13], sparse coding with label consistency reg-
ularization (5) and single linear classifier training (4);

• DLSI [26], class-specific dictionary learning with inco-
herence control on dictionary atoms;

• FDDL [35], Fisher discriminant dictionary learning;
• LLC [30], coding with locality but not sparsity of codes.

In the next, we denote our method by EasyDL (Ensemble
Classifier based Dictionary Learning; ’EC’ and ’easy’ are
homophones). For fair comparison, the dictionary sizes of
all the compared methods except SRC are set the same.

4.3. Results and analysis

Overall performance. The classification accuracies of all
the compared methods are summarized in Table 1. It can
be seen that our method is very competitive among all the
compared methods. In the evaluation on face recognition,
EasyDL outperformed all other compared methods except
SRC. The impressive performance of SRC is attributed to
its large dictionary size. It can be found from the results of
SRC* that, the performance of SRC decreases dramatically
when the dictionary size gets small.

Regarding object classification, our method achieved the
best result. We tested the performance on the smaller-size
training sets. The results show that EasyDL performs con-
sistently well, even in the case where training samples are
insufficient, e.g., accuracy of 54.4% is achieved using 5
samples for training. The most competitive method to ours
is LC-KSVD, which can be viewed as an ensemble-based
method during learning, as shown in Section 3.1. In com-
parison, EasyDL achieved better results by integrating all
base learners for classification and learning compact dictio-
naries without explicit assignment of labels. We also tested
the performance of our method on Caltech with 30 train-
ing samples per class and compared it with all the meth-
ods reviewed in [4]. The results show that our method per-
forms worse than [4] with a gap of 1.86%, but outperforms
other compared methods. It is noted that [4] tackles the fea-
ture pooling stage in image classification, which is different
from ours, and our method can be used as a classification
module and combined with [4] for improvement.

On Scene-15 and UCF, EasyDL performs slightly better
than FDDL and shows noticeable improvement over other
compared methods. The Fisher discriminant used in FDDL
is optimal only when signals from each category are sam-
pled from the normal distribution, implying that FDDL is

vulnerable to outliers presented in training data. In con-
trast, EasyDL tackles imperfectness of data by using ensem-
ble classifiers. Therefore, noticeable performance improve-
ment of EasyDL over FDDL is observed on other datasets.

In summary, all the experimental results demonstrate the
effectiveness of our method.
Contribution of ensemble components. The performance
of EasyDL was tested with the identical projection plus
different combinations of the other three ensemble com-
ponents (i.e. feature selection, random projection and data
subsampling). The results on Extended YaleB are listed in
Table 3. It is seen that a single component yields moderately
good results, and further performance improvement can be
gained by combining different ensemble components. This
verifies the necessity of using different types of ensemble in
EasyDL. Notice that the improvement by the combination
of feature selection and random projection is very marginal,
as these two components are similar in that they are both for
subspace ensemble. Also notice that the subspace ensemble
and subsample ensemble are complementary in EasyDL, as
noticeable improvement can be observed from the combina-
tion of data subsampling and feature selection (or random
projection). We also varied the value of H and tested the
performance changes of EasyDL. The results are shown in
Fig. 2(d). We can see that the performance of EasyDL in-
creases with more classifiers involved, and it becomes satu-
rate when H is sufficiently large.
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Figure 2. Influence of parameter selection in EasyDL.

Influence of parameters. We analyze the influence of the
parameters β, T andM by alternatively adjusting one while
fixing the other two. The results on Extended YaleB are
shown in Fig. 2. We can see from Figure 2(a) that the perfor-
mance of EasyDL is not sensitive to β within a small range,
but exhibits some disturbances due to the non-convexity of
the learning model. As β becomes larger, the discrimination



Table 1. Classification accuracies (%) of the compared methods on the test datasets
Dataset SRC SRC* K-SVD Joint D-KSVD L0DL LC-KSVD DLSI FDDL LLC EasyDL

Ex. YaleB 97.20 80.50 93.10 93.88 94.10 95.66 95.00 89.00 91.90 90.70 96.22
AR Face 97.50 68.50 86.50 88.24 88.80 94.40 93.70 89.80 92.00 88.70 94.40

Caltech-101 64.90 64.90 65.20 52.10 65.10 67.58 67.70 61.39 66.80 65.43 68.40
Scene-15 91.80 77.62 86.70 88.20 89.10 88.84 92.90 92.46 98.35 89.20 98.46

UCF Action 90.40 80.62 86.80 86.00 88.10 86.85 91.20 88.74 91.32 87.50 91.40

Table 2. Training time (seconds per iteration) and test time (milliseconds per sample) of the tested methods on five datasets.
Dataset Training time (s) per iteration Test time (ms) per sample

Name Dim×#Sample #Training #Class D-KSVD LC-KSVD FDDL EasyDL D-KSVD LC-KSVD SRC EasyDL

Ext. YaleB 504× 2414 1216 38 2.39 0.83 80.22 21.79 0.10 0.25 30.34 0.43
AR Face 540× 2600 2000 100 2.64 1.20 153.1 64.80 0.06 0.24 91.12 0.50

Caltech-101 3000× 9144 1515 102 14.82 8.52 9891 601.83 0.84 0.85 247.54 1.37
Scene-15 3000× 4485 1500 15 28.47 3.24 60.75 44.64 0.34 0.34 202.83 0.43

UCF Action 100× 150 140 10 0.14 0.01 0.31 0.16 0.04 0.03 0.53 0.30

of sparse codes increases while the representative power of
the dictionary decreases. Thus, an acceptable β should bal-
ance the discrimination and representation. In Fig. 2(b), the
performance of EasyDL drops a lot when T is small. The
reason is obvious: the subspaces of data cannot be fully
characterized by a limited number of atoms, making the
sparse codes lose discriminability. When T is larger than
50, the performance of EasyDL decreases slightly. This
is not surprising as representing samples by many atoms
might cause over-fitting. From Fig. 2(c) we can see that the
classification accuracy increases as the dictionary becomes
larger. But the increment becomes ignorable when the dic-
tionary is sufficiently large.

Table 3. Classification results on the extended YaleB dataset ob-
tained by using different combinations of ensembles.

Ensemble type Switch [Y=Yes, N=No]
Feature selection Y N N Y Y N Y

Random projection N N Y N Y Y Y
Data subsampling N Y N Y N Y Y

Accuracy (%) 94.6 94.8 94.2 96.0 94.7 95.7 96.2

4.4. Efficiency

The computational efficiency of EasyDL is compared to
D-KSVD, LC-KSVD, SRC, and FDDL. All the compared
methods are tested under the same environment: MATLAB
on an Intel Quad-Core CPU. Both the time costs of dic-
tionary learning and classification are reported in Table 2.
In dictionary learning, EasyDL is slower than LC-KSVD
and D-KSVD. The time cost of EasyDL on Extended YaleB
is around seven times of D-KSVD on average, yet accept-
able. In classification, the time cost of EasyDL is slightly
worse than D-KSVD and LC-KSVD but significantly less
than SRC. The scalability of EasyDL is better than FDDL

and SRC, but still with noticeable increase of the computa-
tional time as the scale of problem gets large.

5. Conclusion

As the proverb goes, the wisdom of the masses exceeds
that of the wisest individual. We introduced ensemble clas-
sifier to discriminative sparse coding, where an ensemble
classifier composed of multiple linear predictors is learned
during dictionary learning. The integration of sparse coding
and ensemble classifier learning not only reduces the bias
of classifier but also improves the discriminability of dic-
tionary. The proposed method was tested on several image
classification tasks, and it consistently outperformed many
existing sparse coding approaches. In future, we would like
to further investigate the integration of ensemble learning
and sparse coding, such as ensemble of nonlinear classi-
fiers, iterative ensemble construction during learning, and
unsupervised ensemble learning with dictionary learning.
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