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Abstract

Dynamic texture (DT) in videos is the combination of texture patterns with motion pat-

terns, and DT recognition is a key step in many vision-related applications. Owing to

the additional challenges arising from the characterization on temporal organizations

of texture elements, the recognition on DTs is more difficult than that on static tex-

tures. In this paper, a DT descriptor for classification is constructed, which examines

the stationary irregularities of spatial and temporal distributions of local binary patterns

in DT slices and encodes the irregularities by lacunarity-based features. The proposed

descriptor has strong robustness to monotonic illumination changes and modest view-

point changes, as well as strong discriminability in classification. In comparison with

histogram-based methods, our approach is capable of encoding spatio-temporal details

on the distribution of DT patterns. It also encodes additional details on the layout of DT

patterns that recent fractal-based methods ignore. The proposed descriptor was applied

to DT classification, and the experimental results show its power on several benchmark

datasets.
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1. Introduction

Advanced video processing technologies become more and more dependent on the

capability of computers to extract stationary patterns from data. For instance, video

description like MPEG-7 relies on descriptors that summarize patterns of contents [1],

and video coding like H26X utilizes motion vectors for improving compression [2]. In5

videos, texture patterns and motion patterns are most often seen, and the combination

of them leads to an interesting type of motion patterns known as Dynamic Texture

(DT) [3–6]. Such patterns are very familiar in natural scenes and motions of textured

objects, such as smoke, flames, clouds, springs, sea waves, swarm of birds, leaves in

wind, humans in crowds, turning pages of book, etc. See Fig. 1 for some examples.10

(a)  Sea wave (b)  Grass (c)  Tree

Figure 1: Examples of DT sequences. Each column shows three DT sequences from the same category, and
for each DT sequence only a pair of key frames are shown.

The representation and recognition of DTs have seen many application, e.g. mul-

timedia content representation and classification[7], content-based video indexing and

retrieval[8], video quality assessment[9], object segmentation in video compression

like MPEG-4[10], video coding[11], animation synthesis[12, 13], lip tracking and

reading[14], facial expression analysis in HCI [15], and action detection in interac-15

tion with video games[16]. The research topics related to DTs range from description

to segmentation and classification. The focus of this paper is on the design of DT
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descriptors for classification.

The categories of DTs are rich. DTs generated from the same material can belong

to different types, e.g., water with a certain dynamic can become rivers, springs, water-20

falls, or sea waves. The category of a DT is determined by both its spatial appearance

and motion pattern, which are complementary to each other. Particularly, by exploiting

the motion feature with the appearance feature, stability and accuracy can be improved

over the single appearance feature of static images. Thus, a useful DT descriptor for

classification should be able to characterize both the spatial appearance and temporal25

dynamics.

The design of an effective DT descriptor is challenging. DT sequences from the

same class may have large variations in both the spatial arrangement and temporal or-

ganization of textual elements. Meanwhile, the descriptor should be robust to a wide

range of environmental changes like changes of viewpoint and illumination. Further-30

more, the computational cost of descriptor is more considerable in DTs, as videos are

much bigger than images.

1.1. Motivation

The primary observation leading to our method is that local DT patterns are likely to

distribute with stationary irregularity over space and time, and such irregularity varies a35

lot along different axes (i.e. the horizontal X axis, vertical Y axis, and temporal T axis)

See the 2D slices in Fig. 2 for an illustration. The irregularity of the sea-wave sequence

along X axis is significantly different to those along the Y axis and the T axis. Thus,

we are inspired to develop a DT descriptor that characterizes the global irregularities

of the spatial and temporal distributions of local space-time patterns in DTs.40

Regarding local DT patterns, we extracted the local space-time patterns of DTs with

multiple robust local binary patterns. Such patterns are invariant to image rotation and

any monotonic gray-scale changes like most illumination changes, and they are also

insensitive to noise. Regarding global irregularities, motivated by the effectiveness of

lacunarity analysis in charactering irregularities of image surfaces and distributions of45

point sets [17], we developed a powerful tool called dynamic lacunarity analysis for

the purpose.
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Figure 2: The stationary and distinct irregularities of the spatial and temporal distributions of local DT
patterns on 2D slices along different axes. The rows from top to bottom correspond to the cases of XY, XT
and YT planes respectively. For each case, we sampled two 2D slices from the DT sequence and show them
in the first two columns. The next two columns show some binary images generated from the slices. The
non-zero elements of the binary images denote the position of certain type of DT patterns which corresponds
to some type of local DT structures. The last column shows the bi-log fitting plots for the scaling behaviors
of the lacunarity of the binary images. The slope and intercept of each fitting line indeed encode the scaling
behaviors of the lacunarity of local patterns and thus can be used as the description of the slices. The
notations of the plots can be referred to Eqn. (7).
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1.2. Contribution

The proposed descriptor has several advantages over the existing ones. Compared

with the fractal-based methods [18–20], the spatiotemporal lacunarity spectrum devel-50

oped in our method is more distinct than the multiple fractal dimensions used in [18–

20], as it considers more details on how pixel sets are spatio-temporally distributed.

Moreover, the local DT pattern encoding scheme used in our method brings two ben-

efits. Firstly, our method enjoys the invariance to any monotonic gray-scale changes

which cover various types of illumination changes. This is in contrast to [18–20] whose55

local descriptors (e.g. intensity and gradient in [18], wavelet coefficients in [20], and

predefined templates in [20]) are sensitive to intensity. Secondly, unlike [20] where

uniform partition is applied to wavelet coefficients, our method bypasses the challenge

from feature bin partition.1 Compared with the histogram-based methods [15, 22–25]

which lose the spatial and temporal details on how local DT patterns are distributed, our60

method is able to encode the irregularities of the spatio-temporal distribution of local

DT patterns. In practice, our descriptor is effective and efficient. With moderate length,

ours shows noticeable improvement in experiments over many existing methods.

A preliminary conference version of this work appeared in [26]. In this paper, we

replaced the original local pattern encoding scheme in [26] with a new one for improv-65

ing the compactness and computational efficiency of the descriptor. The advantage

of the proposed approach over its preliminary conference version [26] is that both the

representation size and computational time are largely reduced while the classification

accuracy decreases very slightly on average.2 Moreover, more details and analysis

have been added in the description of our method as well as the experimental evalua-70

tion. Another prior work of ours is [17] where the lacunarity concept is introduced to

static texture classification. In this paper, we extend the work to the dynamic case and

develop the dynamic lacunarity analysis. In addition, detailed analysis and discussion

1In [20], the uniform partition might produce big quantization error [21], as wavelet coefficients are
usually sparse. In [18, 21], soft uniform bins are used to reduce the quantization error. But it remains an
open question on how to get optimal uniform partition.

2The descriptor length is often an important factor in real applications. With the new local pattern scheme,
the descriptor length is reduced by more than two thirds.
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are given on lacunarity and its resultant features.

2. Related work75

In the past, there has been an abundant literature on DT description and classifica-

tion. Based on whether parameterized models are involved, most existing methods can

be categorized into either parametric or non-parametric methods.

The parametric methods [27–32] model the dynamic patterns of DTs by some un-

derlying physical dynamic systems and then perform classification based on the esti-80

mated parameters of the corresponding models. In the past, a wide range of parametric

models have been used, such as the space-time autoregressive model [27] which ex-

presses each DT voxel as the linear combination of its surrounding ones, the multi-scale

dynamic autoregressive model [33, 34] which considers the space-time autoregressive

model across scales, and the linear dynamical system which is equipped with param-85

eters lying on Stiefel manifold [28] or is combined with bag-of-words system [35].

Though providing good understanding of DTs, the parametric methods need to explic-

itly model the generative systems of DTs, which makes it inflexible to describe the DTs

generated by nonlinear physical systems with complex motion irregularities [18].

In contrast, non-parametric methods do not assume any form of the underlying90

physical systems of DTs, but directly extract statistical features from DT sequences.

A classic type of such approaches is the field-based one where DT classification is

done on the motion field [5, 36–39]. Using the estimated instantaneous motion pat-

terns of DTs, Chetverikov et al. [5] proposed to convert the analysis of spatio-temporal

sequences to that of sequences of static information. Peteri et al. [38] proposed to ex-95

tract six translation invariant features based on normal flow and texture regularity to

describe the dynamics and appearance of DT sequences. A metric of video sequences

is defined in [39] using the velocity and acceleration fields estimated at various spatio-

temporal scales. The main drawback of these methods is their heavy dependence on

the estimation of motion field within video frames, which is sensitive to noise due to100

the ill-posedness of the optical flow estimation problem or is likely to fail in stochastic

dynamics lacking of brightness constancy and local smoothness.
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Regarding robustness of description, some non-parametric approaches (e.g. [15, 22,

25, 40, 41]) collect histogram-based statistics of certain local dynamic patterns. The

performance of such approaches is highly dependent on the spatio-temporal appear-105

ance of DTs captured by local descriptors. The choices of local descriptors vary from

spatio-temporal wavelet coefficients [20, 42, 43] to space-time oriented patterns [23–

25, 44]. Recently, local binary patterns (LBP) [45] has emerged as a simple yet power-

ful local descriptor due to its robustness to monotonic gray-scale changes and moderate

noises. Zhao et al. [15, 46] proposed two types of histogram-based features based on110

the volume local binary patterns and local binary patterns from three orthogonal planes.

Instead of designing the hand-crafted features, Quan et al. [47] proposed to learn local

DT features using an efficient sparse coding model. To further capture the nonlinear-

ities of DT during feature learning, Favorskaya et al. [48] proposed a convolutional

network for the DT recognition. The results of such learning-based approaches are115

impressive but the invariance of the learned features cannot be guaranteed.

There are several recent approaches combining the ideas of non-parametric meth-

ods and parametric methods. To distinguish and utilize the contributions of spatial

patterns and motion patterns in classifying different types of DTs, Ghanem et al. [49]

aggregated two discriminative spatial descriptors with one generative temporal descrip-120

tor by adaptive weighting via maximum margin distance learning. In the similar spirit,

Yang et al. [50] proposed to aggregate various kinds of discriminative spatial features

and generative temporal features via ensemble classifiers for DT classification. The

fractal-based methods [18–20] can be viewed as discriminative methods with gener-

ative motivations, whose basic idea is to treat a DT sequence as being generated by125

some physical dynamic process with spatio-temporal self-similarities in its dynamics

and then apply multi-fractal spectra to characterize such self-similarities without ex-

plicitly defining the dynamic process. Among these three methods, the seminal work

is [18], and the differences of them lie in their local features and the dimension of space

used for computing fractal spectra (i.e. 2D plane or 3D volume).130

The fractal-based approaches [18–20] are the very closely-related work to ours.

Compared with these methods, this paper aims at developing a new kind of global in-

tegration method via the lacunarity analysis instead of fractal spectrum analysis, which
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plays an important role in DT classification system and yields superior performance

over the description based on fractal spectrum.135

3. Preliminaries

3.1. Local binary patterns

Local binary patterns (LBP) is one type of local features that has been widely-used

in computer vision. The original LBP operator [51] forms labels for image pixels by

thresholding the 3 × 3 neighborhood of each pixel with the center value and summing

the resultant binary numbers weighted by powers of two. This operator can be adapted

to the neighborhoods of different sizes. Let (P,R) denote a circular symmetric neigh-

borhood denoted with P sampling points and radius R.3 Then the modified operator is

defined as follows [45]:

LBPP,R(c) =

P−1∑
p=0

s0(gp − gc) ∗ 2p, (1)

where gc is the gray value of the center pixel c, gp (p = 0, 1, ..., P − 1) is the gray value

of the neighbor of c indexed by p, and sa(y) is the thresholding function defined as

follows:

sa(y) =


1, if y ≥ a;

0, if y < a.
(2)

See Fig. 3 for some examples of LBPs which correspond to different image structures.

The operator LBPP,R is not invariant to image rotation, as the indices of neighbor-

ing pixels are fixed. To overcome such a weakness, the rotation-invariant LBP opera-

tor [52], denoted by LBPri
P,R, aligns the neighboring pixels by circularly rotating each

LBP code into its minimum value, which is done via

LBPri
P,R(c) = fP(LBPP,R(c)) (3)

3The pixel value of a sampling point is bi-linearly interpolated if the point does not lie at the integer
coordinates.
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SpotFlat/Spot Line end Edge Corner

Figure 3: Image structures corresponding to different LBP patterns

with

fP(x) = min{g(x, p) | p = 0, 1, ..., P − 1}, (4)

where g(x, p) performs a bit-wise circular right shift on x by p times. For example, the

bit sequences 10110011, 11001110 and 10011101 are three different rotated instances140

of the same pattern and they become the same sequence (i.e. 00111011) after rotational

shifting.

For classification, unstable patterns are useless and even harmful. In practice, the

unstable patterns often contain frequent bitwise jumps in their binary codes. To elim-

inate such patterns, the uniform LBP scheme considers a measure U on the jump fre-

quency of binary code, which counts the number of bitwise transitions from 0 to 1

or vice versa when the bit pattern is considered circular. Then the new LBP operator

LBPriu2
P,R [45] is defined by

LBPriu2
P,R (c) =


LBPri

P,R(c), if U(LBPP,R(c)) ≤ 2;

P + 1, otherwise.
(5)

In other words, the operator LBPriu2
P,R packs all the non-uniform patterns whose measure

values are more than two. Thus, it is called uniform LBP operator with rotational in-

variance. The discard of non-uniform patterns also benefits the feature length reduction145

as well as the robustness to noises.

The robustness of LBP to noises can also be improved by setting the threshold a

of sa(y) in defining LBP to be a small positive value τ instead of zero. This scheme

can reduce the sensitivity of the uniform or near-uniform regions to perturbation. In
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this scheme, the sign of (gc − gp) should be treated separately. Then the positive and

negative LBPs [53] are defined as follows:4


LBP+τ

P,R(c) =
∑P−1

p=0 sτ(gp − gc) ∗ 2p;

LBP−τP,R(c) =
∑P−1

p=0 s−τ(gp − gc) ∗ 2p,

(6)

It is noted that all the aforementioned LBPs are invariant to monotonic gray-scale

changes like many illumination changes, as such changes do not change the sign of

(gc − gp). Also note that the calculation of these LBPs can be accelerated via look-up

tables.150

3.2. Lacunarity analysis

While histogram has been a widely-used tool for constructing global features, it

does not encode the spatial or temporal distribution of local features. As an alterna-

tive, recent fractal-based methods (e.g. [18–21]) use multiple dimensions to encode

irregularities of distribution of local features, which have demonstrated their effective-155

ness in characterizing both static and dynamic textures. The basic idea of fractal-based

methods is that surfaces of textures exhibit strong self-similarities which can be well

described in fractal geometry.

Besides fractal dimensions, there are other fractal tools that can be used for describ-

ing irregularities of distribution. One of them is the so-called lacunarity which early

was used in [54] for natural scene description with limited performance and recently

has been exploited for classifying texture images in [17]. Compared with fractal di-

mension, lacunarity considers more details on the irregularity of distribution. Given a

point set B, let n(B, r,m) be the number of r-mesh squares5 that intersect m points in

B.6 Then the lacunarity of B at scale r, denoted as Λr(B), is defined as follows [55]:

Λr(B) =
Em[n2(B, r,m)]

(Em[n(B, r,m)])2 , (7)

4In many scenarios, this scheme is called local ternary patterns.
5The r-mesh squares refer to the non-overlapping adjoint squares with side length equal to r.
6In the case of fractal dimension, m is only considered as a binary variable, i.e. m = 0 and m > 0. Thus,

only the squares with m > 0 will contribute to the calculation of fractal dimension.
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where Ey[x] is the expectation value of x over variable y. By using Dy(x) = Ey(x2) −

[Ey(x)]2 where Dy(x) is the variance of x over variable y, we can rewrite (7) as

Λr(B) =
Dm[n(B, r,m)]

(Em[n(B, r,m)])2 + 1. (8)

In other words, Λr(B) is a dimensionless representation of the variance to mean ratio

which measures statistical dispersion. Smaller Em[n(B, r,m)] implies the squares in160

the mesh contain fewer points on average and hence bigger lacunarity, while bigger

Dm[n(B, r,m)] implies larger diversity of point distribution and hence lacunarity, and

vice versa. Under certain scale, the point sets with different irregularities of distribution

would have distinct lacunarity. See Fig. 4 for some examples.

1

Λ3 = 1.170 Λ3 = 1.641 Λ3 = 2.211

Figure 4: Lacunarity values of three different binary images. The first row shows three binary images with
different irregularities of distribution. The second row shows the corresponding lacunarity values of these
images under scale r = 3. The third row shows the corresponding histograms (i.e. n(B, r,m) w.r.t. m) in the
calculation of lacunarity. It can be seen that under certain scale the binary images with a wider range of gap
sizes incline to be more lacunar.

In [17], the behavior of Λr(B) over scale r is assumed to exhibit power law for

texture images, that is

Λr(B) ∝ (
1
r

)P(B), (9)

where P(B) is a scale-independent exponent encoding the irregularity of B. By taking
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logarithm on both sides of Eqn. (9), we obtain

ln Λr(B) = P(B) ln r + L(B), (10)

where L(B) is a scale-independent scalar which encodes the structure of B. In imple-165

mentation, both P(B) and L(B) can be estimated with bi-logarithmic least square fitting

over a finite sequence of box sizes that are often set to be consecutive integers. Intu-

itively, the value of exp(L(B)) can be interpreted as a scale-independent measure on the

size of lacunarity for objects with identical P(B). In other words, for the objects which

cannot be well distinguished by P(B), we can use L(B) as a discriminative comple-170

ment to P(B). Examples are objects with similar irregularities, such as homogeneous

regions, edges and corners. See Fig. 5 for an illustration.

1

L(B) = 0, P (B) = 0 L(B) = 0, P (B) = 1.00 L(B) = 0, P (B) = 1.99

Figure 5: Three texture primitives with identical P(B) but distinct L(B).

4. Our Method

It can be observed from Fig. 2 that the distributions of local DT patterns in the

spatial and temporal domains exhibit significant differences on the 2D slices sampled175

from different planes (i.e., one spatial plane denoted by XY and two space-time planes

denoted by YT and XT respectively) while being similar on the slices along the same

axis. Thus, we characterize the distribution of local DT patterns on each spatial and

temporal plane. Then the resultant feature vectors are integrated along the X, Y and T

axis respectively.180
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More concretely, our method examines the spatio-temporal distribution of local

DT patterns from three orthogonal planes respectively. To fully exploit the stable DT

patterns on the 2D slices sampled from different planes, we extract local binary pat-

terns with three efficient encoding schemes, which resist to illumination changes and

provide a natural way for partitioning feature bins. Then we calculate the lacunar-185

ity spectra regarding the distribution of each pattern along each axis. This process is

called dynamic lacunarity analysis. As the distributions of local DT patterns on slices

are similar along the same axis, for robustness, the resultant slice-wise feature vectors

are averaged along each axis respectively and then concatenated as the final descriptor.

We call our descriptor as spatial-temporal lacunarity spectrum (STLS). Our method is190

outlined in Fig. 6, which consists of four steps: DT sequence slicing, space-time pat-

tern encoding, lacunarity analysis, and feature integration. Each step will be detailed

in the following subsections.

The notations used throughout the paper are as follows: bold letters are used for

matrices and vectors, regular letters for scalars (such as vector components and dimen-195

sions), and calligraphic English alphabets for operators and sets.

X

Y

T
XY

t

XT

y

YT

x

p0 1P

DT sequence V

Feature

X

Y

X

T

Y

T

Sequence slicing Space-time 
pattern encoding

Feature 
integration

Pipeline of slice-wise processing

log(𝑟)

log(Λ𝑟(𝑩))

log(𝑟)

log(Λ𝑟(𝑩))

𝑃 𝑩
L 𝑩

𝑃 𝑩
L 𝑩

0

,P R ,P R


,P R



1P

log(𝑟)

log(Λ𝑟(𝑩))

𝑃 𝑩
L 𝑩

Figure 6: Outline of dynamic lacunarity analysis. Given a DT sequence, the 2D slices are sampled along
the X, Y, and T axes. Then for each 2D slice, three types of local pattern encoding schemes are applied,
resulting in multiple binary images generated by pixel-wise classification. Finally, lacunarity analysis is
applied to each binary image via bi-logarithmic least square fitting on the calculated lacunarities over a finite
sequence of box sizes. The resulting lacunarity features on the 2D slices are collected as the final DT feature.
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4.1. Sequence slicing

A sequence V ∈ RM×N×K of DT is considered as a 3D cube with the X, Y and T

axes. Considering the co-occurrence statistics along the T axis, V can be viewed as a

stack of XY slices. Similarly, V can be viewed as a stack of XT slices or YT slices,

depending on the selected axis. As illustrated in Fig. 2, slices sampled along different

axes exhibit stationary but distinct behaviors. This inspires us to extract the appearance

or motion-appearance features of V from all 2D slices sampled along the three axes.

With this purpose, we first apply three slicing operators LT , LY and LX to decompose

V into slices along the T, Y and X axes respectively, which are defined as follows:


LT

t ◦ V = V(:, :, t), t = 1, . . . ,K;

LY
y ◦ V = V(:, y, :), y = 1, . . . ,N;

LX
x ◦ V = V(x, :, :), t = 1, . . . ,M.

(11)

As a result, we can obtain three types of slices, i.e., {LT
t ◦ V}Kt=1, {LY

y ◦ V}Ny=1, and

{LX
x ◦ V}Mx=1.

In the latter stages, slices along different axes are separately processed. By this200

slicing scheme we can capture rich discriminative features in both spatial and spa-

tiotemporal planes. Such a scheme has also been used in other existing methods

(e.g. [19, 41]). However, independently processing slices along different axes indeed

much weakens the rotation invariance of the descriptor. For example, rotating the cam-

era by 90 degrees about the optical axis will swap the slices along horizontal and ver-205

tical axes. When the rotation is not along the optical axis, plenty of existing methods

(e.g. [20, 34, 49]) also have limited robustness to the rotation, as these methods involve

slicing operations in either local or global manner and the slices are not well aligned

under the rotation. In other words, all the aforementioned methods implicitly assume

there only exists modest camera rotation in data or registration of data has been done.210

Fortunately, such an assumption is often true in practical applications, e.g., when taking

videos from natural scenes like rivers and seas we seldom generate a rotated version,

and when analyzing facial expression we usually fix the camera. The assumption is

also supported by the experimental results from existing literature, where many of the

14



aforementioned methods still perform well in real datasets.215

4.2. Slice-wise pattern encoding

The second step of our method is to locate different kinds of local DT patterns on

each DT slice. To strike the balance of discriminability and robustness, we combine the

ideas from the uniform rotation-invariant local binary patterns LBPriu2
P,R with the positive

and negative local binary patterns LBP+(−)τ
P,R [53] given in Eqn. (5) and (6) respectively.

Define J+τ
P,R and J−τP,R to be

J+τ
P,R(c) =


fP(LBP+τ

P,R(c)), if U(LBP+τ
P,R(c)) ≤ 2;

P + 1, otherwise,
(12)

and

J−τP,R(c) =


fP(LBP−τP,R(c)), if U(LBP−τP,R(c)) ≤ 2;

P + 1, otherwise.
(13)

These two operators calculate the uniform rotation-invariant codes on the positive and

negative LBP maps. Note that the sign-less LBP defined in Eqn. (5) characterizes

local structures of DTs in a different way from the positive and negative LBPs. See

an illustration of such difference in Fig. 7. In other words, sign-less LBP provides

additional information over the positive and negative ones. For further discrimination

of features, we also consider

J0
P,R(c) = LBPriu2

P,R (c) (14)

in our local pattern extraction process.

For a DT slice I, we generate the code maps C+, C− and C0 by applying J+τ
P,R, J−τP,R

and J0
P,R to I respectively: 

C+ = J+τ
P,R ◦ I;

C− = J−τP,R ◦ I.

C0 = J0
P,R ◦ I.

(15)

Benefiting from the properties of LBPriu2
P,R and LBP+(−)τ

P,R , the pattern code maps C+, C−

15
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(a) (b) (c) (d)

Figure 7: Coding results by different schemes. (a) Original images; (b) Code map by J−; (c) Code map by
J0; (d) Code map by J+. Different colors denote different code values.

and C0 enjoy both the robustness to illumination changes and resistance to random

noises.220

Given a pattern code map C (C+, C− or C0) generated from a 2D slice I, we partition

all its voxels into groups based on the code values and then generate multiple binary

images, each of which corresponds to the spatial-temporal distribution of one type of

local DT pattern on I. In details, we define Mp as the operator to extract a binary

image from a given pattern code map C with respect to the code value p:

(Mp ◦ C)(x) =


1, if C(x) = p;

0, otherwise.
(16)

Each binary image encodes the locations of local DT patterns of certain type in the

slice I.

4.3. Lacunarity analysis on binarized feature slices

With the extracted binary images from each 2D slice, the next step is to character-

ize the distribution of each type of local patterns. We adopt the lacunarity analysis to225

this task, as the stochastic self-similarities which exist in a wide range of DTs (e.g. the

amplitude of temporal frequency spectra of many video sequences like camera move-

ments, weather and biological movements by one or more humans, indeed fits power-

law models [18, 21, 56–58]) can be well characterized with lacunarity-based features.

Given a binary image B from slice I, we view B as a set of pixels existing at

the positions of the non-zeros, and then define an operator D which calculates the
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lacunarity-based features on B as follows:

D ◦ B = [P(B), L(B)]. (17)

Then the lacunarity-based features calculated from all the binary images that corre-

spond to I are gathered as the description for the slice. For convenience, we define the

operator SτP,R for this process as follows:

SτP,R ◦ I =

[ P+1⊎
p=0

D ◦Mp ◦ J
+τ
P,R ◦ I,

P+1⊎
p=0

D ◦Mp ◦ J
−τ
P,R ◦ I,

P+1⊎
p=0

D ◦Mp ◦ J
0
P,R ◦ I

]
,

(18)

where
⊎

denotes vector concatenation.230

Compared with the fractal dimension used in previous fractal-based methods, the

lacunarity in the proposed method considers more details of distribution. Recall the

variable n(B, r,m) in the calculation of lacunarity, which considers the mass of points

falling into the intersection. In the case of fractal dimension, m degrades to a binary

variable which corresponds to whether the intersection between the mesh and point235

set is empty. Thus, our lacunarity-based features can be more distinct than the fractal-

dimension-based ones. See an example in Fig. 8, which shows that our lacunarity-based

features can reflect the changes of gaps in binary images.

4.4. Feature integration

Considering the similarity of pattern distribution in the DT slices along the same

axis, we calculate the mean vector of the descriptions of all slices along the X, Y

and T axis respectively. This averaging operation both reduces the complexity and

enhances the robustness of the resultant features. Finally, our STLS descriptor for DT

description, denoted by F , is defined as the concatenation of all the three mean vectors,
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Fractal Dim of B = 1.46 Fractal Dim of B = 1.46
P(B) = 0.20, L(B) = 0.53 P(B) = 0.23, L(B) = 0.67

Figure 8: Two binary images with different irregularities of point distribution. Both two images have the
same fractal dimension calculated by the box-counting method [20, 21, 59], while their lacunarity-based
features computed by Eqn. (10) with scale range [2, 8] are different.

i.e.,

F ◦ V =

[
1
K

K∑
t=1

SτP,R ◦ L
T
t ◦ V,

1
N

N∑
y=1

SτP,R ◦ L
Y
y ◦ V,

1
M

M∑
x=1

SτP,R ◦ L
X
x ◦ V

]
.

(19)

Recall that (P,R) and τ are the parameters for both the positive and negative LBPs and240

the sign-less LBP. These parameters can be set different for different types of LBP

and for different axes. For simplicity, we set them the same for all axes and all LBP

coding schemes. In practice, we use multiple (P,R)s to improve the discriminability of

features.7

To illustrate the power of our STLS descriptor, we calculated it on the three types245

of DT sequences shown in Fig. 1 with (P,R, γ) = (8, 5, 5). The results are shown in

Fig. 9, which demonstrates both the inter-class discrimination and intra-class similarity

of our method.

7This strategy does not change the outline of our method, as it only adds more binary images to the
second step of our method.
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Figure 9: Illustration of the power of our method via comparing the STLS descriptors on three types of DT
sequences shown in Fig. 1.

5. Experimental Evaluation

In this section, we present a detailed experimental evaluation on our method, which250

is conducted on two public benchmark datasets with several breakdowns. Instead of

using single-scale LBPs, we used multiple (P,R)s in the test for performance improve-

ment. The scales Rs are defined as a series of integers which start from 1 and is in-

creased by a factor of 1.5, which is very common for multi-scale representation. To

obtain a compact representation, only four scales, i.e., 1, 2, 3, 5, are used. The sampling255

number P in each scale is set to be a multiple of 4, i.e., 4, 16. When the scale R is large,

multiple Ps are considered for the purpose of allowing more freedom in large scale.

The parameter τ is set to 5, as suggested in [53]. According to the aforementioned pro-

tocol, the parameters {(Pi,Ri, τi)}i are set to be (4, 1, 5), (16, 2, 5), (16, 3, 5), (16, 5, 5)

in multi-scale local pattern encoding. The box sizes used for calculating lacunarity260

spectra are set to be integers from 2 to 8. With this setting, our method finally gener-

ates a 1080-dimensional DT descriptor for each DT sequence. In implementation, we

used look-up tables for accelerating the local pattern coding process and used integral

images for accelerating the calculation of mass histogram in lacunarity.

5.1. Datasets and configurations265

There are mainly two public DT datasets for evaluating DT classification meth-

ods: the UCLA dataset [4] and the DynTex dataset [38, 49]. Note that constructing
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Table 1: Configurations of different breakdowns of the test datasets

Dataset Breakdown
#Samples
#Classes #Classes

#Training set
#Classes

UCLA

UCLA-50 4 50 3
UCLA-9 4∼108 9 2
UCLA-8 4∼20 8 2
UCLA-7 8∼240 7 4

UCLA-SIR 8 50 4

DynTex

Basic 10 35 9
PlusPlus 100 36 50

Alpha 20 3 5
Beta 7∼20 10 5

Gamma 7∼38 10 5

DT sequences is much more difficult than taking photos of static texture images, thus

only a limited number of DT datasets are available in current research. To remedy this

problem, many studies rearrange the datasets to generate different breakdowns (i.e. sub270

datasets) for evaluation. The configurations of all these breakdowns used in our ex-

periment are summarized in Table 1 and will be detailed in the following subsections.

To remove the benefits of color to classification, all color slices of DT sequences were

converted to gray-scale images throughout the experiment.

5.1.1. The UCLA-DT Dataset275

The UCLA-DT dataset has been widely used in many previous studies (e.g. [4, 23,

28, 35, 49]). It originally contains 50 DT categories, each with four video sequences

captured from different viewpoints. Each video sequence includes 75 frames with

160 × 110 pixels. Figure 10 shows some samples from the dataset. For the purpose of

reuse as well as adding challenges and reducing ambiguity in evaluation, the dataset is280

reorganized into five different breakdowns for evaluating DT classification algorithms:

• 50-Category [49]: The original 50 categories are directly used for classification,

with 75% samples (i.e. 3 sequences) per category as training set.

• 9-Category [49]: The original 50 DT categories are clustered to 9 categories by285
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1

fire fountain water boiling sea waterfall flower smoke

Figure 10: Sample snapshots taken from the UCLA-DT dataset.

combining the sequences from different viewpoints. Then 50% samples (i.e. two

training sequences) per category are used for training.

• 8-Category [35]: The 9 categories of above are further reduced to 8 categories by

removing the category which contains too many sequences. One half of samples

per category are used for training.290

• 7-Category [23]: The 400 sequences are obtained by cutting 200 video se-

quences into non-overlapping parts. These sequences were represented into 7

categories. For training 4 samples per category are used.

• Shift-invariant recognition (SIR) [23]: Each of the original 200 video sequences

is cut into non-overlapping parts. Specifically, each sequence is spatially parti-295

tioned into left and right halves and 400 sequences are obtained in the end. The

test was implemented by comparing the sequences only between different halves

to test the shift-invariance of the descriptors. Note that the intra-class variations

in this setting is much larger than other settings.

5.1.2. The DynTex Dataset300

The DynTex dataset [60] is a diverse collection of high-quality dynamic texture

videos. It contains more than 650 DT sequences, ranging from struggling flames to

whelming waves, from sparse curling smoke to dense swaying branches. These video

sequences were taken under different environmental conditions involving scaling and

rotation, by using static cameras as well as moving ones. See Fig. 11 for the samples in305

DynTex. The DynTex dataset has been used for DT classification experiments in many

previous studies by different rearrangements.
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• Basic [15]: The basic version of the DynTex dataset contains 35 DT categories,

with 10 samples per category. The samples of each category are generated from

the same original DT sequence in the big DynTex pool by manual panning.310

• PlusPlus [49]: The DynTex++ dataset consists of 36 DT categories, each of

which contains 100 sequences of a fixed size 50 × 50 × 50. The dataset is well-

designed to provide a reasonable benchmark for DT recognition. One half of

samples per category are used for training.

• Alpha/Beta/Gamma [21]: These three datasets are composed of 60/162/275 DT315

sequences divided into 3/10/10 categories. The number of samples each cate-

gory is not uniform. For all these datasets, the training set was constructed by

randomly picking up 5 samples per category. Note that noticeable variations of

illumination, viewpoint changes and appearance can be observed in these set-

tings.320

1

Figure 11: Sample snapshots taken from the DynTex dataset.
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5.2. Classification Results

We compare our method with several recent DT classification approaches, includ-

ing LBP-TOP (Local Binary Patterns from Three Orthogonal Planes) [15], DL-PEGASOS

(Distance Learning method based on the PEGASOS algorithm) [49], SODM (Space-

time Orientation Distribution Matching) [23], DFS+ (Dynamic Fractal Spectrum Plus) [21],325

OTF (Oriented Template based Feature) [19], WMFS (Wavelet-based Multi-Fractal

Spectrum) [20], OTDL (Orthogonal Tensor Dictionary Learning) [47] and ASTF (Ag-

gregated Spatial and Temporal Features) [50]. The preliminary conference version of

our work [26], denoted by PRE, is also included for comparison. Besides, for veri-

fying the improvement of lacunarity analysis over fractal analysis, a baseline method,330

denoted by BASE, was implemented by replacing the lacunarity analysis with fractal

analysis in the proposed framework. The reported results of the compared methods are

available in the literature or obtained by running the codes which are available online

with parameters finely tuned up. The classifier used in the classification stage is the

RBF-kernel SVM. The classification accuracy is reported as the average over a number335

of trials.

Table 2: Classification accuracies (%) of all compared methods on the UCLA-DT dataset.

Method 50-Class 9-Class 8-Class 7-Class SIR

DL-PEGASOS [49] 99.0 95.6 - - -
SODM [23] 81.0 - - 92.3 60.0
DFS+ [21] 100 97.5 99.2 98.6 74.2
OTF [19] 87.1 97.2 99.5 98.4 67.5

WMFS [20] 99.8 97.1 97.0 98.5 61.3
OTDL [47] 99.8 98.2 99.5 99.5 75.2
ASTF [50] 100 - - - -
PRE [26] 99.7 96.8 99.2 98.1 74.9

BASE 99.1 96.2 99.0 97.8 72.3

Ours 99.5 97.4 99.5 98.4 75.5

5.2.1. Results on the UCLA-DT dataset

The classification accuracies on the UCLA-DT dataset are shown in Tab. 2, from

which it can be seen that our method is very competitive. It is noted that with the
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great development of DT classification techniques, the UCLA dataset is losing its chal-340

lenge. Many methods have classification accuracies over 95% on the UCLA dataset

except in the SIR setting. In particular, there is little difference on accuracies among

DFS+, WMFS, ST-PLS and our method in the 7-Class, 8-Class, 9-Class and 50-Class

breakdowns. Even so, such results have still demonstrated the comparable performance

of our descriptor with the state-of-the-art methods and shown our method performed345

consistently well on easy data.
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Figure 12: Confusion matrices by our approach on the UCLA-SIR dataset (left) and the DynTex++ dataset
(right). The horizontal and vertical axes denote the class indices.

Among all the breakdowns, the SIR test is the most challenging as it evaluates the

robustness to viewpoint changes on the descriptor. In this case, our approach outper-

formed all the compared methods. The improvement of STLS over its preliminary

version comes from the use of the improved version of LBPs defined by Eqn. (12)-(14)350

instead of the original ones used in [26]. Also note that the superior performance our

method to BASE, especially in the SIR test, has demonstrated that improvement of la-

cunarity analysis over fractal analysis. The confusion matrix by our method in the SIR

setting is shown in Fig. 12.

By comparing the results of BASE and ours on all the breakdowns, we can verify355

that using lacunarity spectrum analysis indeed bring improvement over fractal spec-

trum analysis.
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5.2.2. Results on the DynTex dataset

The experimental results on the DynTex dataset are summarized in Tab. 3. It can be

seen that our approach is very competitive. The Basic breakdown is the most easy one360

where all the compared methods have accuracies over 96%. On the PlusPlus break-

down, our approach achieved the third best result with 0.2% accuracy less than OTDL

and 0.3% less than PRE. Notice that OTDL only focuses on learning local DT features,

which can be combined with our lacunarity-based global description. The weakness

of OTDL is that it does not work well when the training samples are insufficient. The365

reason that our method performed worse than PRE is that the resolution of samples in

the PlusPlus breakdown is small and our uniform parameters are not suitable for this

case. With finely tunned-up parameters, our method can perform on a par with PRE.

The confusion matrix of our method on the PlusPlus breakdown is shown in Fig. 12.

On the other three breakdowns, our method outperformed other methods except370

ASTF and PRE. The performance gap between our method and our preliminary work

is very small, while ASTF achieved a really good classification accuracy on the Gamma

breakdown. But note that the focus of ASTF is not on developing new types of DT fea-

tures but on feature selection and aggregation using ensemble methods. The accuracy

as well as improvement of ASTF heavily relies on the development of useful DT fea-375

tures, and ASTF can also be combined with our proposed descriptor.

In general, the performance of our method on the DynTex dataset degrades a bit

compared to our preliminary work. However, as can be seen in the next subsection,

our descriptor is much more compact and faster than the preliminary one. Here, the

advantage of the proposed approach which we emphasize over its preliminary version is380

that, both the representation size and computational time are largely reduced while the

classification accuracy exhibits very slight decrease on average. Again, by comparing

the results of BASE and ours on all the breakdowns, we can verify that using lacunarity

spectrum analysis indeed bring improvement over fractal spectrum analysis.

In DT classification, it is interesting to check whether utilizing temporal cues in-385

deed bring improvement to the accuracy. With this purpose, we conducted an additional

test on DynTex++, which was done by discarding the features computed on the XT and
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Table 3: Classification accuracies (%) of all compared methods on the DynTex dataset.

Method Basic PlusPlus Alpha Beta Gamma

LBP-TOP [15] 97.1 89.8 83.3 73.4 72.0
DL-PEGASOS [49] - 63.7 - - -

DFS+ [21] 97.2 91.7 85.2 76.9 74.8
OTF [19] 96.7 89.2 - - -

WMFS [20] 96.5 88.8 - - -
OTDL [47] 99.0 94.7 87.8 76.7 74.8
ASTF [50] - - - - 99.5
PRE [26] 97.9 94.8 89.6 80.9 79.9

BASE 97.5 93.0 86.7 80.2 76.8

Ours 98.2 94.5 89.4 80.8 79.8

YT planes and only keeping the feature computed on the XY plane. The classification

accuracy drops from 94.5% to 86.7%. In other words, the use of temporal features in

our method can significantly improve the classification accuracy. Such a result also390

demonstrates the need of considering motion cues in recognizing textures in dynamic

scenes.

5.3. Efficiency

Our method has demonstrated its discriminative power on the UCLA and Dyn-

Tex datasets. Next, we tested the computational efficiency of our method in terms of395

feature length and running time, DFS+, OTF and WMFS. For fair comparison, all the

compared methods are implemented in MATLAB and tested on the same desktop com-

puter with Intel Xeon E3-1230 V2 3.30GHz CPU and 32GB memory. For the time test,

we report the average running time per sample on the DynTex++ dataset.

The experimental results are listed in Table 4. It can be seen that the length of400

our descriptor are much shorter than our preliminary version. The ratio of lengths is

around 1/3. Such shorter length can benefit the reduction of the time cost in classifier

training. Meanwhile, benefiting from the shorter feature length which saves time in

computing additional lacunarity features, our method is much faster than our prelim-

inary version [26].8 The running time for a DT sequence of PRE is about two times405

8The local pattern coding schemes of both our method and PRE are with efficient lookup-table-based
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as ours. Thus, we can conclude that our method have the same level of discriminative

power as our preliminary version, while have much less computational complexity and

feature length. Compared with other methods, our method do not show advantages in

the feature length and running time. But recall that the performance of our method is

better than these methods.410

Table 4: feature length and running time (s) of several tested methods on the DynTex++ dataset.

Method Feature Length Running Time (s)

LBP-TOP [15] 768 1.2
DFS+ [21] 500 6.6
OTF [19] 290 22

WMFS [20] 702 9.8
PRE [26] 3456 81.1

Ours 1080 39.8

5.4. Influence of parameters

To analyze the influence of parameter setting in the proposed method, we tested the

performance of our STLS descriptor by adjusting one of the parameters (P,R) and τ

while keeping the other unchanged. The test which varies (P,R) and fixes τ was done

on the DynTex PlusPlus, Alpha, Beta and Gamma datasets. The results are shown415

in Fig. 13, from which we can observe that the performance of STLS is not sensitive

to single (P,R) within a reasonably small range, and when combing multiple (P,R)s,

the performance has noticeable increase. The test which adjusts τ while fixing (P,R)

was done on the Alpha, Beta and Gamma breakdowns of DynTex, and the results are

shown in Fig. 14. It can be observed that the performance of STLS exhibits a small420

disturbance when τ is within [1, 8].

implementation. Thus, the main difference in running time comes from how many lacunarity-based features
are to compute, which is directly determined on the number of feature bins, i.e. feature length.
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Figure 14: Influence of selection of τ to the performance of the proposed method on the three breakdowns
of DynTex. Here (P,R) is fixed to be (1, 4).
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6. Conclusion

We developed a powerful DT descriptor by using lacunarity analysis on local bi-

nary patterns along two spatial axes and one temporal axis. The proposed method

decomposes a DT sequence into multiple spatial and temporal binary pattern maps and425

characterizes each feature map with lacunarity analysis. The resulting DT descrip-

tor enjoys both strong robustness and high discriminability. Experiments on several

benchmark datasets have demonstrated the power of our method. The major advantage

of our approach over its preliminary conference version is that both the representa-

tion size and computational time are largely reduced while the classification accuracy430

exhibits very slight decrease on average.

The major limitation of the proposed method is the lack of rotation invariance as it

separately processes slices along different axes. In future, we would like to investigate

the remedy to the rotation invariance of slice-wise processing. As can be seen in the

experiment, existing datasets for DT classification are very limited. Thus, we would435

also build up more challenging DT benchmark datasets for DT classification and pro-

pose new methodologies for evaluating DT classification algorithms. Moreover, we

would like to investigate possible combination of histogram, fractal dimensions and

lacunarity spectrum and its application to dynamic scene recognition.
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