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Abstract

This paper addresses the problem of defocus map esti-
mation from a single image. We present a fast yet effective
approach to estimate the spatially varying amounts of defo-
cus blur at edge locations, which is based on the maximum
ranks of the corresponding local patches with different ori-
entations in gradient domain. Such an approach is moti-
vated by the theoretical analysis which reveals the connec-
tion between the rank of a local patch blurred by a defocus-
blur kernel and the blur amount by the kernel. After the
amounts of defocus blur at edge locations are obtained, a
complete defocus map is generated by a standard propaga-
tion procedure. The proposed method is extensively eval-
uated on real image datasets, and the experimental results
show its superior performance to existing approaches.

1. Introduction

Conventional cameras produce images with best sharp-
ness when the objects of a scene are exactly on the focal
plane of focusing module. The further is an object away
from the focal plane, the more blurred it appears in the im-
age, as shown in Fig. 2 (a). Such a phenomenon is called
defocus (or out-of-focus) whose blur amount is related to
the translation of the object away from the focal plane along
optical axis, as illustrated in Fig. 1. More specifically, when
an object is placed at the focal distance df , all light beams
from any point of the object will converge to a single sensor
point, which leads to image pixels with best sharpness. In
contrast, the light beams from the points with the distance
d 6= df will arrive at a region with multiple sensor points,
which leads to blurred image pixels. Such a region is called
circle of confusion (CoC).

Defocus amount and scene depth. The defocus amount
of a pixel, denoted by c, is defined as the diameter of CoC
([8]). The defocus amount c is related to the scene depth,
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Figure 1: Illustration of focus and defocus [37].

denoted by d, as follows:

c =
|d− df |

d

f20
ns(df − f0)

, (1)

where ns is the stop number and f0 is the focal length.
Clearly, the defocus amount c monotonically increases
when the scene depth f increases. Thus, for an image I cap-
tured for the scene with varying depth, the defocus amount
is spatially varying. We define the defocus map of an image
as the matrix c whose (i, j)-th entry c[i, j] is the defocus
amount of the pixel at [i, j].

Defocus amount and blur kernel. Defocus map is also
closely related to the image degradation caused by out-of-
focus, as it measures the blur amount of each pixel of an
out-of-focus image. For example, as the blurring effect is
often modeled as local averaging weighted by 2D isotropic
Gaussian functions, local regions of defocused image can
then be modeled by the convolution between sharp image
regions and isotropic Gaussian kernels with spatially vary-
ing standard deviation (s.t.d.), denoted by σ[i, j]. The s.t.d.
σ[i, j] is equivalent to the defocus map c[i, j] up to a con-
stant, i.e. σ[i, j] = κ0c[i, j] for some global constant κ0.
See e.g. [7, 9, 25] for more details. In other words, defo-
cus map is equivalent to the s.t.d. of spatially varying blur
kernels of an out-of-focus image.

Applications. Since defocus map provides essential in-
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Figure 2: Demonstration of defocus map estimation and its application to in-focus/defocused region segmentation. (a) Input;
(b) Defocus amount estimation on edge points (normalized to [0, 1]) by the proposed method; (c) Complete defocus map
estimation (normalized to [0, 1]); (d)In-focus regions detected using the defocus map.

formation of image degradation caused by out-of-focus, it
has been used in many applications in image processing and
computational photography; e.g. image quality assessment
[31], image deblurring [14, 27], image refocusing [33, 34]
and defocus magnification [2, 34].

Moreover, for an image pixel, Equation (1) provides a
closed-form relationship between its defocus amount and its
scene depth. It can be seen that the defocus amount mono-
tonically increases when scene depth increases, as long it is
larger than the focus distance. In other words, the defocus
map of an image can be used as the ordinal depth map of a
scene. Ordinal depth map can see its wide applications in
computer vision and computer graphics. For example, de-
focus map has been used for depth estimation [5, 26], image
segmentation [29, 12] and image matting [15]. See Fig. 2
for an illustration of defocus map estimation and the result-
ing segmentation of in-focus regions.

1.1. Related work

Based on how many input images are available, exist-
ing approaches for defocus estimation can be classified into
two categories: multi-image approach (e.g. [22, 23, 35]) and
single-image approach (e.g. [37, 34, 30, 20]). The multi-
image approaches employ auxiliary equipments (e.g. coded
aperture cameras [35]), or set different camera parameters
for generating multiple images of the same scene, and the
defocus amount is estimated by triangulation. The applica-
bility of these multi-image methods is limited, since they
work well only for the static scenes where multiple images
are well aligned and no occlusions exist. As this paper is
about estimating the defocus map from a single input im-
age, we do not give a detailed review on the multi-image
methods but rather focus on the discussion of the single-
image methods.

The single-image approaches attempt to estimate the de-
focus map from a single input image. One effective scheme
is to introduce extra active capture processes for defocus
map estimation by either manipulating illumination con-
ditions [16] or introducing new camera devices [10]. In
recent years, many single-image methods have been pro-

posed, which do not require additional capture processes
and hence can be used for commodity cameras; see e.g.
[2, 37, 34, 30, 20]. As smooth image regions contain little
information of blurriness, most of these single-image meth-
ods take a two-stage scheme, i.e., a sparse defocus map is
first computed by only estimating defocus amount along im-
age edges, and then the full defocus map is constructed by
propagating the available defocus amount estimation to all
image pixels.

Regarding the defocus amount estimation on image
edges, Elder and Zucker [6] modeled defocus around an
edge as a convolution of a step function with a Gaussian
kernel. The s.t.d. of the Gaussian kernel is used for measur-
ing defocus amount, and it is estimated from the distance
between the second derivative extrema of opposite sign in
the gradient direction. Using the same model as [6], Zhuo
and Sim [37] proposed to estimate the blur amount of edge
pixels using the ratio of gradient magnitudes between the in-
put image and a re-blurred image convoluted by a Gaussian
kernel. This method produces very impressive results on
some images. However, it cannot handle image edges well
when two or more edges are very close [37], as re-blurring
will merge these image edges. Recently, Shi [28] proposed
a method based on the sparse representation over a dictio-
nary learned from a set of images with different contents.
Similar concept with pre-defined dictionary (edgelet) was
also proposed in [26], which estimates the blur amount on
a small piece of edge by matching the edge with an edgelet
set. As these two methods were designed to estimate small
blur amount (i.e. the so-called just noticeable blur in [28]),
they are not very suitable for processing the images with
significant defocus blur.

Once a sparse defocus map along image edges is ob-
tained, several methods have been proposed in the past
to generate a full defocus map; see e.g. [2, 37]. Bae et
al. [2] extends the work of [6] by using an inverse diffusion
method to interpolate a full defocus map from the sparse
one, as well as using bilateral filtering to remove the outliers
in the estimates. Zhuo and Sim [37] proposed to use the
matting Laplacian method [11] for propagating the sparse



map, which empirically yields better visual results than the
inverse diffusion method used in [2].

Another alternative single-image approach is to exploit
the frequency information of image edges for defocus esti-
mation; see e.g. [30, 4, 36]. Tang et al. [30] utilizes spec-
trum contrast to estimate the defocus amount at edge lo-
cations. In [4], sub-band decomposition is combined with
Gaussian scale mixtures for estimating the likelihood func-
tion of a given candidate blur kernel. This method is ex-
tended to the continuous domain in [36], and the exten-
sion also incorporates many other processes, including lo-
calized spectrum analysis, color edge detection and smooth-
ness constraints.

1.2. Main idea and contributions

In this paper, we first proposed an effective metric for
defocus amount estimation at edge points. By viewing a
defocused local patch (matrix) as an in-focus patch convo-
luted by an out-of-focus kernel, e.g. an isotropic 2D Gaus-
sian kernel. Our mathematical analysis reveals that the ma-
trix rank of a patch will decrease when the patch is blurred
by a Gaussian kernel, and the matrix rank monotonically
decreases when the s.t.d. of the Gaussian kernel increases.
Moreover, if the in-focus patch satisfies certain properties,
e.g. positive (negative) definiteness, the s.t.d. of the Gaus-
sian kernel can be directly estimated from the matrix rank
of the patch. These results lead to the introduction of a new
rank-based metric for defocus amount on edges.

Secondly, to exploit the rank-based metric for defo-
cus amount, we developed a construction scheme of local
patches in image gradient domain for estimating the defo-
cus amount on image edges. The construction is based on
two observations on the patches of an in-focus image in gra-
dient domain: (1) the local gradient patches centered at edge
points are usually of narrow band with dominant values of
the same sign; and (2) a rank-deficient band matrix is very
likely to be strictly diagonally dominant after being rotated
by 45 degree or 135 degree. In other words, if we sym-
metrically sample the gradient patches which are centered
at an edge point with different orientations, at least one of
these sampled patches is very likely to be positive (negative)
definite. Then, the maximum rank (deficient rank) of such
multi-oriented patches of a defocused edge point will reveal
the s.t.d. of the corresponding Gaussian kernel, i.e. its asso-
ciated defocus amount.

The proposed approach has several advantages over ex-
isting single-image methods in terms of robustness and ac-
curacy.

• Compared to [37, 2], the proposed method does not
require image edges are well separated and thus can
effectively process texture regions.

• Compared to [30], the proposed method does not re-

quire the in-focus region has a dense distribution of
image edges than the out-of-focus region.

• Compared to [26, 28] which focus on images with just
noticeable defocus blur, the proposed method can ef-
fectively process images with significant defocus blur.

These advantages of the proposed method over others are
also justified by extensive experiments on real data.

2. Rank-based metric of defocus amount
We first introduce some notations. Throughout this pa-

per, the indexes of vectors and matrices start with 0. For a
vector g ∈ Rn, let g[j] denote the (j + 1)-th element of g,
‖g‖0 denote the `0-pseudo-norm of g that counts the num-
ber of non-zero entries in g, and ĝ ∈ Cn denote its discrete
Fourier transform (DFT). For a matrix G ∈ Rn1×n2 , let
G[i, j] denote the (i + 1, j + 1)-th entry of G and rank(G)
denote the rank of G. For any X,Y ∈ Rn1×n2 , let X ~ Y
denote the discrete convolution between X and Y .

A defocused image patch can be viewed as the convolu-
tion between an in-focus image patch and an out-of-focus
kernel. The same relationship also holds for the patches
generated in image gradient domain. Through this paper,
we define patches in image gradient domain. In the next,
we establish the rank-based relationship between a gradient
patch and its defocused version. Let U ∈ Rn×n denote a
in-focus patch, I ∈ Rn×n denote the defocus blurred ver-
sion of U , and G ∈ Rn×n denote the associated convolu-
tion kernel. For simplicity, we assume G is symmetric 1. It
is known in linear algebra that a symmetric matrix can be
decomposed into the summation of rank-one matrices:

G =

rank(G)∑
i=1

λigig
>
i (2)

where gis (λis) are the eigenvectors (eigenvalues) of G.

Proposition 1. Consider three matrices U, I,G ∈ Rn×n

related by I = G~ U . Let G =
∑rank(G)
i=1 λigig

T
i . Then,

rank(I) ≤
rank(G)∑
i=1

‖ĝi‖0. (3)

Proof. See Appendix A for the detailed proof.

The isotropic 2D Gaussian kernel arguably is the most
often-seen out-of-focus kernel; see e.g. [2, 8, 37]. An
isotropic 2D Gaussian filter can be expressed as G = gg>

for some 1D Gaussian filter g ∈ Rn. By Proposition 1, the
rank of the defocused patch is less than ‖ĝ‖0. Furthermore,
it is known that the Fourier transform of a Gaussian with
s.t.d. σ is still a Gaussian with s.t.d. 1

σ . For a 2D Gaussian
kernel G = gg>, we have that ‖ĝ‖02. monotonically de-

1Most defocus kernels, e.g. Gaussian and pillbox, are symmetric.
2The implementation of ‖ · ‖0 treats the values less than 10−2 as zero.
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Figure 3: Illustration of the relation between rank(U) and
(a) the size of pillbox k or (b) the s.t.d. σ of Gaussian kernel
.
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Figure 4: (a) Normalized histogram of the number of gra-
dient patches over the rank differences of before- and after-
defocus blurring; and (b) its cumulative curve.

creases when the s.t.d. σ of the Gaussian kernel increases.
Thus, as long as the rank of the in-focus patch is higher
than ‖ĝ‖0, the rank of the defocused patch will decrease.
Another often-seen out-of-focus kernel is the pillbox (disk)
filter; see e.g. [26, 32]. It also has the similar behavior.

See Fig. 3 for an illustration of Proposition 1, where I
is a 20 × 20 identity matrix, and G is the convolution ma-
trix w.r.t. a pillbox kernel or a Gaussian kernel. It can be
seen that the rank of U = I ⊗G decreases when the size k
of the pillbox kernel or the s.t.d. σ of the Gaussian kernel
increases.

The statement of Proposition 1 is also consistent with
the empirical experiments on real images. From the Multi-
focus Image Dataset [17], we randomly sampled 5 × 104

gradient patches with size 9 × 9 at edge points and their
defocused correspondences. Then, the rank difference be-
tween each pair (U, I), i.e. rank(U) − rank(I), is calcu-
lated. See Fig. 4 for the normalized histogram regarding
the number of image patches versus the rank difference. It
can be seen that around 90% in-focus image patches have
their ranks decreased after being blurred by defocus. This
clearly indicates the validity of the statement on the rank
decreasing of defocused patches in Proposition 1.

Now, suppose we can construct in-focus patch U which
is a positive (negative) definite matrix, then we can establish
the formula which relates ‖ĝ‖0 to the rank of the defocused

patch I . Taking Gaussian kernel for example, we have the
following proposition:

Proposition 2. Consider three matrices U, I,G ∈ Rn×n
related by I = G~U . Suppose that the matrix U is positive
(negative) definite, and G = ggT . Then, we have

rank(I) = ‖ĝ‖0. (4)

Proof. See Appendix B for the detailed proof.

Notice that ‖ĝ‖0 is solely determined by the parameter of
the out-of-focus kernel. Proposition 2 implies that the rank
of defocused patch I can be used for estimating the defocus
amount (e.g. the s.t.d. σ of a Gaussian kernel G), as long as
we can construct the patches that have the same convolution
relationship and are positive (negative) definite.

3. Defocus map estimation
In this section, we develop a scheme of constructing suit-

able patches that are applicable to Proposition 2 and thus
can be used for estimating defocus amount. The key idea
is that a rank deficient matrix can become of full rank by
rotation, which can be done by sampling patches from the
input image with different orientations. In other words, for
each edge point, we sample gradient patches from the input
image with different orientations to ensure that there exists
at least one with full rank among these patches.

As smooth image regions contain little information re-
garding defocus, we first only estimate the defocus amount
on image edge points, which leads to a sparse defocus map.
Such a process is done in image gradient domain. Given a
single gray-scale image I , we first detect all edge points us-
ing some edge detector, e.g., the Canny edge detector [3]. It
is noted that the output of an edge detector is used here only
for getting the set of edge points. The edges themselves are
not used for estimating defocus amount. The gradient of I
on these edge points are then calculated by some gradient
operator ∇.3

For each edge point (i0, j0), we sample totally four (2p+
1)× (2p+ 1) patches from∇I along different orientations,
that is

Q0[i, j] = ∇I[i0 − p+ i, j0 − p+ j] : horizontal;
Q1[i, j] = ∇I[i0 − p+ j, j0 + p− i] : vertical;
Q2[i, j] = ∇I[i0 + i− j, j0 − p+ i] : diagonal;
Q3[i, j] = ∇I[i0 − p+ i, j0 − i+ j] : anti-diagonal.

(5)
Then we define four symmetric matrices {Pk}3k=0 by:

Pk = Qk +Q>k , 0 ≤ k ≤ 3. (6)

3The implementation uses ∇ = ∂
∂x

+ ∂
∂y

, where partial derivatives

are calculated by the filter [1,−1].
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Figure 5: (a) Normalized histogram of the number of gradi-
ent patches over the maximum rank of oriented patches in
in-focus regions; and (b) its cumulative curve.

For a local image region centering at an edge point, its
gradient content usually contains either single or multiple
image edges with different orientations. In the case of sin-
gle image edge, the associated matrix is roughly of narrow
band. It will be rank-deficient only when the orientation of
image edge is far away from diagonal or anti-diagonal. The
four patches with different sampling orientations essentially
guarantee that there exists at least one whose correspond-
ing image edge is close to diagonal or anti-diagonal, i.e.,
one of {Qk}3k=0 will be of full rank. In the case of mul-
tiple image edges with different orientations, the matrix is
more likely to be of full rank, since it is the summation of
multiple matrices associated with single image edge. The
treatment of symmetry, {Pk}3k=0, is likely to even further
increase the rank of a rank-deficient matrix. Such an asser-
tion is also consistent with the statistics done on Multi-focus
Image Dataset [17]. See Fig. 5 for the histogram regarding
the maximum rank of four patches of size 9 × 9 randomly
selected from 106 edge points within in-focus regions of all
images in the dataset4.

By Proposition 2, together with the fact that all these four
patches can be viewed as being blurred by the same out-of-
focus kernel, we have that the defocus blur amount can be
determined by the value of max0≤k≤3 rank(Pk). By numer-
ical simulation, we propose the following formula:

c−1 ∼ − ln(1− max
0≤k≤3

rank(Pk)/n), (7)

where n is patch size. Such an estimation formula is demon-
strated in Fig. 6. The sample defocused image in Fig. 6
is mainly composed of four regions: one in-focus region
and three defocused regions with noticeably different de-
focus amounts, as marked out by four rectangles. See
Fig. 6b for the normalized histogram regarding the num-
ber of edge points versus the maximum rank of the corre-
sponding patches. It can be seen that for most edge points
in in-focus regions, the maximum rank of the constructed

4The rank function was implemented by treating singular value values
less than 10−3 as zero.
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Figure 6: Distribution of maximum ranks of patches of edge
points with different defocus amount. (a) Sample image and
fours regions with different defocus amount; (b) Normal-
ized histogram of the number of edge points from the four
selected regions over the corresponding maximum ranks.

patches is full; for the edge points in defocused regions, the
maximum rank of the constructed patches is of lower value.

In the previous step, we only estimate the defocus
amounts of edge points detected by Canny edge detector.
The obtained defocus map is then sparse. To reconstruct
the full defocus map, we follow other two-stage defocus
map estimation methods, e.g., Zhuo and Sim [37], to prop-
agate the available defocus amount at edges to the whole
image by the matting Laplacian method [11]. The propaga-
tion is done by keeping the resulting defocus amount close
to the given ones at edge points, and meanwhile keeping the
discontinuities of defocus map consistent with that of image
edges. Interested readers can refer to [11] for more details.
As the defocus estimations on edge locations might be oc-
casionally erroneous, same as [2, 37], we also use bilateral
filtering [19] to pre-process the sparse defocus map before
being inputed to the matting Laplacian method. The whole
algorithm for defocus map estimation is summarized Alg. 1.

Algorithm 1 Defocus map estimation

1: INPUT: Defocused image I .
2: OUTPUT: Defocus map σ.
3: Calculating gradient image∇I .
4: Constructing a set of edge points using Canny edge de-

tector.
5: for each edge point do
6: Constructing four oriented symmetric patches by

(5) and (6).
7: Calculating the maximum rank of four patches.
8: end for
9: Constructing a sparse defocus map by (7) using the

maximum rank of patches on each edge point.
10: Reconstructing the full defocus map σ by the matting

Laplacian method [11].
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Figure 6: Examples of test images.

In gradient domain, for a focused patch centered at an
edge point, the corresponding image edge is usually of nar-
row band with large values along the edge and nearly zero
values in neighboring smooth regions, and these gradient
values are of the same sign. The following proposition says
that as long as the image edge is close to diagonal and the
patch is symmetric, the patch will be positive definite.

Proposition 3 ([13]). A strictly diagonally dominant sym-
metric matrix with positive (negative) diagonal entries is
positive (negative) definite.

From the construction scheme (5)–(6) of patches on edge
points, it can be seen that all constructed patches {Pk}3k=0

are symmetric. If the image edge is close to diagonal, it
remains close to diagonal in the patch P0; if the image edge
is close to anti-diagonal, it will be close to diagonal in the
patch P2; if image edge is close to vertical (horizontal), it
will be close to diagonal in the patch P2 (P3). Thus, we
are very likely to have a patch out of these four which is
positive (negative) definite. See Fig. 5 for an illustration.

By Proposition 2, together with the fact that all these four
patches can be viewed as being blurred by the same out-of-
focus kernel, we have that the defocus blur amount can be
determined by the value of max0≤k≤3 rank(Pk). By numer-
ical simulation, we propose the following formula:

c−1 ∼ − ln(1− max
0≤k≤1

rank(Pk)/n), (7)

where n is patch size. Such an estimation formula is demon-
strated in Fig. 7. The sample defocused image in Fig. 7
is mainly composed of four regions: one focused region
and three defocused regions with noticeably different de-
focus amounts, as marked out by four rectangles. See
Fig. 7b for the normalized histogram regarding the num-
ber of edge points versus the maximum rank of the corre-
sponding patches. It can be seen that for most edge points
in focused regions, the maximum rank of the constructed
patches is full; for the edge points in defocused regions, the
maximum rank of the constructed patches is of lower value.

3.2. Construction of full defocus map

In the previous step, we only estimate the defocus
amounts of edge points detected by Canny edge detector.
The obtained defocus map is then sparse. To reconstruc-
t the full defocus map, we follow other two-stage defocus
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Figure 7: Distribution of maximum ranks of patches of edge
points with different defocus amount. (a) Sample image and
fours regions with different defocus amount; (b) normalized
histogram of the number of edge points from the four select-
ed regions over the corresponding maximum ranks.

map estimation methods, e.g., Zhuo and Sim [36], to prop-
agate the available defocus amount at edges to the whole
image by the matting Laplacian method [11]. The propaga-
tion is done by keeping the resulting defocus amount close
to the given ones at edge points, and meanwhile keeping the
discontinuities of defocus map consistent with that of image
edges. Interested readers can refer to [11] for more details.
As the defocus estimations on edge locations might be oc-
casionally erroneous, same as [1, 36], we also use bilateral
filtering [18] to pre-process the sparse defocus map before
being inputed to the matting Laplacian method. The whole
algorithm for defocus map estimation is summarized Alg 1.

Algorithm 1 Defocus map estimation

1: INPUT: Defocused image I .
2: OUTPUT: Defocus map σ.
3: Calculating gradient image∇I .
4: Constructing a set of edge points using Canny edge de-

tector.
5: for each edge point do
6: Constructing four oriented symmetric patches by

(5) and (6).
7: Calculating the maximum rank of four patches.
8: end for
9: Constructing a sparse defocus map by (7) using the

maximum rank of patches on each edge point.
10: Reconstructing the full defocus map σ by the matting

Laplacian method [11].

4. Experiments
In this section, the proposed method is evaluated on the

real images which were collected from the defocus image
dataset [36] and the RetargetMe dataset [23], as well as
from on-line resources. See Fig. 6 for the samples from the
tested dataset. The dataset covers most often-seen defocus
scenarios, e.g. the image ”Bottle” whose focus foreground
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Figure 7: Examples of test images.

4. Experiments
In this section, the proposed method is evaluated on the

real images which were collected from the defocus image
dataset [37] and the RetargetMe dataset [24], as well as
from on-line resources. See Fig. 7 for the samples from
the tested dataset. The dataset covers most often-seen defo-
cus scenarios, e.g. the image ”Bottle” whose in-focus region
contains both cartoon regions and textures and whose defo-
cused regions have four depth layers, the image ”Forest”
whose both in-focus and defocused regions contain many
small edges, the image ”Flower” whose the in-focus regions
have less edges than the defocused regions.

The proposed method is compared to five other recent
defocus map estimation methods with code available on-
line, including Bae et al. ’s method [2] (Bae), Zhuo et al. ’s
method [37] (Tang), Tang et al. ’s method [30], Shi et al.’s
method [28] (Shi-I) and Shi et al.’s method [26] (Shi-II). All
of these methods have codes published online. The results
of these compared methods on the test datasets are directly
cited from the literature if possible and re-produced other-
wise using published codes with rigorous parameter tuning.

The parameters of the proposed method are set the same
for all test images. In the estimation of defocus amount on
edge points, the patch size is set to 9×9, and the rank func-
tion is implemented by treating singular values less than
10−1 as zero. In the completion of full defocus map, the
implementation of the matting Laplacian method [11] is ex-
actly the one used in [37] with the default parameter setting
(i.e. the key parameter λ = 10−3)5. See Fig. 9 for an illus-
tration of the results from the two stages.

4.1. Visual comparison of defocus map

Fig. 9 showed the results of defocus amount estimation
for image ”Petunia” on edge points from the proposed one
and Zhuo’s et al.’s methods for comparison. While both
used the same map completion method in the second stage,
the outcomes are rather different owing to the different re-
sults in the first stage. Zhuo et al. ’s method produced er-
roneous estimation on the in-focus region, i.e. the petunia
contains blur texture as indicated in white rectangle which
is not blurred by defocus, and such errors worsen the ac-
curacy of estimated defocus map. In contrast, our method
produced a more accurate depth map which indicts a more
accurate estimation of defocus amounts on edge points.

5http://github.com/phervo/ProjetRD48/tree/
master/Sources/Matlab/DefocusEstimation_Sources
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Figure 8: Precision and recall curves of in-focus/defocused
region segmentation using the defocus maps generated by
different methods.

Methods Bae Zhuo Tang Shi-I Shi-II Ours
Fβ-measure 0.78 0.84 0.78 0.84 0.75 0.86

Table 1: The largest Fβ-measure each method got.

See Fig. 10 for the comparison of the results from differ-
ent methods on three sample images. More results can be
found in the supplementary materials. It can be seen that the
proposed method noticeably outperformed the other com-
pared methods in terms of the accuracy of ordinal depth and
the boundaries of ordinal depths. In comparison, the perfor-
mance of Bae et al.’s method and Tang et al.’s method in
general is not satisfactory. Zhuo et al.’s method is overall
the second best, but it did not handle texture regions well.
For example, it produced erroneous estimation on in-focus
region of the image ”Bottle” and the image ”Forest” with
a very dense distribution of image edges. Regarding Shi-
I and Shi-II, both methods claimed that they are specifically
designed for stimating small (just noticeable) defocus blur.
Such a claim is also consistent with experimental observa-
tions, as they did not perform well on images with large
defocus blur, e.g. the images ”Bottle” and ”Flower”.

4.2. Quantitative Evaluation

The most often-seen application of defocus map estima-
tion is in-focus/defocused region segmentation, as defocus
map provides an estimation of defocus amount. See Fig. 9
for illustration. Same as [28], we quantitatively evaluated
the accuracy of defocus map, using the quality measurement
of in-focus/defocused region segmentation on the tested de-
focus image dataset6. The dataset contains (i) 704 images
with defocused regions and (ii) truth of segmentation map
which are manually done. The defocused regions of the im-
ages from this dataset have a wide range of blur degrees
from small HLblur to large blur.

Each image is segmented into a sharp region and

6http://www.cse.cuhk.edu.hk/˜leojia/projects/
dblurdetect/dataset.html

http://github.com/phervo/ProjetRD48/tree/master/Sources/Matlab/DefocusEstimation_Sources
http://github.com/phervo/ProjetRD48/tree/master/Sources/Matlab/DefocusEstimation_Sources
http://www.cse.cuhk.edu.hk/~leojia/projects/dblurdetect/dataset.html
http://www.cse.cuhk.edu.hk/~leojia/projects/dblurdetect/dataset.html


a blurred region by applying simple thresholding (with
threshold value Tseg) to the defocus map. The segmenta-
tion results then are evaluated via precision and recall:

precision = |R ∩Rg|/|R|, recall = |R ∩Rg|/|Rg|,

where R, Rg denote the pixel sets corresponding to the seg-
mented blurred region and the ground truth, and | · | denotes
the size of the set. The precision and recall curves of all
methods for comparison were generated with respect to dif-
ferent thresholds Tseg . See Fig. 8 for the precision and re-
call curves of all methods. It can be seen that most of the
time, our method has the highest precision among all meth-
ods. Also, in terms of the Fβ-measure [21] (β2 was set to
be 0.3 as in [18, 1]), which is defined as the weighted har-
monic mean of precision and recall, the proposed method
outperforms all other methods. See Table 1 for the details.
This indicates the advantage of the proposed method over
others when being used for in-focus/defocused region seg-
mentation.

5. Conclusion

This paper presented a simple yet effective method for
estimating the defocus map from a single input image. Mo-
tived by the theoretical analysis that reveals the connection
between the ranks of local patches and the defocus amount,
we developed a rank-based metric for estimating the defo-
cus amount along edge points by constructing specific local
patches at edge points. A full defocus map is then recon-
structed by a standard procedure. The proposed defocus
map estimation method has many advantages over the exist-
ing ones, and extensive experiments also show the proposed
one noticeably outperforms those related works.

A. Proof of Proposition 1

Proof. By eigenvalue decomposition, we have

G =

rank(G)∑
i=1

λiGi

whereGi = gigi
> and gis (λis) are the eigenvectors (eigen-

values) ofG. Then, by the linearity of convolution operator,

rank(G~ U) = rank(

rank(G)∑
i=1

λi(Gi ~ U)).

Moreover, by the definition of 2D circular convolution, we
have for 0 ≤ x, y < n,

Gi ~ U [x, y]

=

n−1∑
p=0

n−1∑
q=0

U [p, q]Gi[(x− p) mod n, (y − q) mod n]

=

n−1∑
q=0

( n−1∑
p=0

U [x, y]gi[(x− p) mod n]
)
gi[(y − q) mod n].

In other words, the convolution by a rank-one matrix can be
viewed as running a 1D convolution along columns (rows)
followed by running another 1D convolution along rows
(columns). Such a convolution can be expressed in the ma-
trix form:

Gi ~ U = G̃iUG̃
∗
i ,

where G̃i ∈ Rn×n is the circulant matrix defined by
G̃i[p, q] = gi[(p − q) mod n], for i = 0, 1, . . . ,m. It is
known that

F∗G̃iF = Σ(ĝi),

where Σ(ĝi) denote the diagonal matrix with k + 1-th di-
agonal entry ĝi[k]. Then, by the fact that F is unitary, we
have

rank(

rank(G)∑
i=1

λiGi ~ U) = rank
( rank(G)∑

i=1

λiΣ(ĝi)FUF∗Σ(ĝ∗i )
)
.

By standard rank inequality (see e.g. [13]), and the fact that
F is unitary, we have

rank
( rank(G)∑

i=1

λiΣ(ĝi)FUF∗Σ(ĝ∗i )
)

≤
rank(G)∑
i=1

rank
(
λiΣ(ĝi)FUF∗Σ(ĝ∗i )

)
≤

rank(G)∑
i=1

min
(
rank(Σ(ĝi)), rank(Σ(ĝ∗i )), rank(U)

)
.

Together with rank(Σ(ĝi)) = rank(Σ(ĝ∗i )) = ‖ĝi‖0, we
have (3).

B. Proof of Proposition 2
Proof. Using the same arguments as the proof of Proposi-
tion 1, we have

rank(G~ U) = rank(Σ(ĝ)(FUF ∗)Σ(ĝ∗)).

As F is unitary and U is positive (negative)-definite, the
matrix FUF∗ is also positive (negative) definite. Define
r = ‖ĝ‖0. Without loss of generality, expressing Σ(ĝ) by

Σ(ĝ) =

[
Σĝ 6=0 0

0 0

]
, FnUF

∗
n =

[
A B
B∗ C

]
,
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Figure 9: Defocus map estimation experiment using a real image. Defocus map is normalized to [0, 1]. Our detected in-focus
region achieves largest Fβ-measure 0.988, while Zhuo et al.’s achieves 0.966.

(a) Input image (b) Bae [2] (c) Zhuo [37] (d) Tang [30] (e) Shi-I [28] (f) Shi-II [26] (g) Ours

Figure 10: Comparison of defocus map estimated by the tested methods.

where Σĝ 6=0 is the r × r principal sub-matrix whose diag-
onal entries are the non-zero entries of ĝ, and thus is non-
singular. Then

Σ(ĝ)FUF ∗Σ(ĝ∗) =

[
Σĝ 6=0AΣĝ∗ 6=0 0

0 0

]
,

Recall that a principal sub-matrix of a positive (negative)
definite matrix is also positive (negative) definite. Thus,
both Σĝ 6=0 and A are r × r non-singular matrices. So, we
have rank(G ~ U) = rank(Σĝ 6=0AΣĝ∗ 6=0) = r. The proof

is done.

Acknowledgment. This work was partially supported by
Singapore MOE AcRF Research Grant MOE2012-T3-1-
008 and R-146-000-229-114. Yuhui Quan would like to
thank the support by National Natural Science Foundation
of China (Grand No. 61602184) and Science and Technol-
ogy Program of Guangzhou (Grand No. 201707010147).



References
[1] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned salient region detection. In CVPR, pages
1597–1604. IEEE, 2009.

[2] S. Bae and F. Durand. Defocus magnification. In CGF, vol-
ume 26, pages 571–579. Wiley Online Library, 2007.

[3] J. Canny. A computational approach to edge detection.
TPAMI, (6):679–698, 1986.

[4] A. Chakrabarti, T. Zickler, and W. T. Freeman. Analyzing
spatially-varying blur. In CVPR, pages 2512–2519. IEEE,
2010.

[5] P. P. Chan, B.-Z. Jing, W. W. Ng, and D. S. Yeung. Depth es-
timation from a single image using defocus cues. In ICMLC,
volume 4, pages 1732–1738. IEEE, 2011.

[6] J. H. Elder and S. W. Zucker. Local scale control for edge
detection and blur estimation. TPAMI, 20(7):699–716, 1998.

[7] P. Favaro and S. Soatto. A geometric approach to shape from
defocus. TPAMI, 27(3):406–417, 2005.

[8] E. Hecht. Optics, 4th. Addison-Wesley, 3, 2002.
[9] A. Kubota and K. Aizawa. Reconstructing arbitrarily fo-

cused images from two differently focused images using lin-
ear filters. TIP, 14(11):1848–1859, 2005.

[10] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image
and depth from a conventional camera with a coded aperture.
TOG, 26(3):70, 2007.

[11] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solu-
tion to natural image matting. TPAMI, 30(2):228–242, 2008.

[12] R. Liu, Z. Li, and J. Jia. Image partial blur detection and
classification. In CVPR, pages 1–8, 2008.

[13] G. Marchuk. Methods of numerical mathematics.
[14] B. Masia, A. Corrales, L. Presa, and D. Gutierrez. Coded

apertures for defocus deblurring. In SICG, 2011.
[15] M. McGuire, W. Matusik, H. Pfister, J. F. Hughes, and F. Du-

rand. Defocus video matting. In TOG, volume 24, pages
567–576. ACM, 2005.

[16] F. Moreno-Noguer, P. N. Belhumeur, and S. K. Nayar. Active
refocusing of images and videos. TOG, 26(3):67, 2007.

[17] M. Nejati, S. Samavi, and S. Shirani. Multi-focus image fu-
sion using dictionary-based sparse representation. Informa-
tion Fusion, 25:72–84, 2015.
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