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Abstract

While human action recognition from still images finds wide applications in
computer vision, it remains a very challenging problem. Compared with video-
based ones, image-based action representation and recognition are impossible
to access the motion cues of action, which largely increases the difficulties in
dealing with pose variances and cluttered backgrounds. Motivated by the recent
success of convolutional neural networks (CNN) in learning discriminative fea-
tures from objects in the presence of variations and backgrounds, in this paper,
we investigate the potentials of CNN in image-based action recognition. A new
action recognition method is proposed by implicitly integrating pose hints into
the CNN framework, i.e., we use a CNN originally learned for object recogni-
tion as a base network and then transfer it to action recognition by training the
base network jointly with inference of poses. Such a joint training scheme can
guide the network towards pose inference and meanwhile prevent the unrelated
knowledge inherited from the base network. For further performance improve-
ment, the training data is augmented by enriching the pose-related samples.
The experimental results on three benchmark datasets have demonstrated the
effectiveness of our method.
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1. Introduction

Human action recognition aims at recognizing human actions in videos or
still images, which is an active topic in computer vision and has a wide range of
applications, such as surveillance and human computer interaction [1, 2, 3, 4, 5].
Despite of the efforts made in the past decades, action recognition remains a very5

challenging task, where the difficulties arise from the cluttered backgrounds, hu-
man pose variations, occlusions, illumination changes, and appearance changes
in videos. Such difficulties are aggravated for still images, as the motion cues,
which play important roles in expressing human actions in videos [6, 7, 8, 9, 10],
are completely lost in the images. See Figure 1 for an illustration of the diffi-10

culties in image-based action recognition.

1.1. Motivation

To address the aforementioned challenges, we use the-state-of-art deep learn-
ing model, convolutional neural network (CNN), to deal with action recognition.
Our motivation is that CNN has shown its success in learning discriminative15

features from objects, even in the presence of cluttered backgrounds or large
variations in the appearances and poses of objects. However, traditional CNNs
cannot be directly applied to action recognition due to two obstacles:

• Data insufficiency. It is well known that CNN need to be trained on a
huge number of images for satisfactory performance. Nevertheless, unlike20

object recognition, most existing action datasets like Stanford-40 contain
a limited number of training images.

• Overfitting. A simple CNN used for action recognition is likely to overfit
the appearance of objects as it is not equipped with any prior on human
action. For instance, an overfitting CNN might distinguish the action of25

playing volleyball only via detecting the volleyball.

To deal with the problem of data insufficiency, in this paper, we investigate
the transfer of CNN from object recognition to action recognition and design an
effective data augmentation scheme. This work is inspired by the fact that the
training dataset for object recognition is significantly more than that of action30

recognition. However, the CNN learned from objects emphasizes the appearance
of objects and thus using such a CNN as the base network in transfer is likely to
aggravate the aforementioned overfitting problem. To alleviate the overfitting,
we resort to the hints given by poses, which are very important for recognizing
actions, and then we develop a hint-enhanced CNN that can simultaneously35

and effectively utilize the hints from both the appearance and pose for action
recognition from still images.

1.2. Contribution

In this paper, we develop a new CNN for utilizing pose hints in action recog-
nition from still images, which incorporates a task of pose inference into the40

base CNN that originates from object recognition. By exploiting the pose hints,
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Figure 1: Examples of action images in the Stanford-40 dataset. It can be observed that human
performing the same action may look very different, and cluttered backgrounds, human pose
variations, occlusions, illumination changes and appearance changes are often presented in
the images. Our task is to recognize the actions of the people in the images.

the proposed CNN can encode pose cues for action recognition and reduce the
unrelated knowledge inherited from the base network. To improve the perfor-
mance of the transferred network, we augment the data with a pose-sensitive
sampling strategy, where image patches are cropped within or around the hu-45

man bounding box and then used as samples. We evaluated the performance
of the proposed method on three widely-used benchmark datasets, including
the Stanford-40 Actions dataset [11], the PPMI dataset [12] and the VOC 2012
Actions Dataset [13]. The results show the effectiveness of the proposed method
as well as its superior performance to the base network.50

1.3. Organization

The rest of this paper is organized as follows. The related work is described
in Section 2.1. In Section 3, we present the details of the proposed method.
The experimental results are discussed in Section 5, and Section 6 concludes
the paper.55

2. Preliminaries

2.1. Related Work

Many existing methods for action recognition extract high-level action rep-
resentations by exploiting the cues from human-object interaction or human
poses. The methods based on human-object interaction usually describe the60
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relative position, the relative size, as well as the overlap between the person and
object. See [12, 14] for the examples of such kind of methods.

Human pose can be viewed as the spatial configuration of body parts, which
is discriminative to a broad spectrum of actions. For instance, using computer
and climbing can be distinguished by the hand poses. The part-based meth-65

ods (e.g. [15, 16, 17, 18, 19]) are one of most effective methods built upon human
pose, which describe a human pose by the corresponding parts of human body.
Yang et al. [17] build up a graphical model to represent the relations between
different body parts, including the upper-body, legs, left arm and right arm. In
the similar spirit, Yao et al. [18] proposed a 2.5D graph for the representation of70

action, where the nodes corresponding to the key-points of the human body are
represented based on their 3D positions and 2D appearances. Then a minimum
set of dominating images is selected to cover all possible cases for each action
class. A recent popular part-based method is the so-called poselets [20] method.
Briefly speaking, a poselet is a detector for some specific body part, which in75

fact is a linear SVM trained on the clustered image patches that share a salient
pattern of local pose from a viewpoint. Based on the poselets, Maji et al. [16]
proposed the poselet activation vector (PAV) for representing human actions,
which calculates the distribution over the poselets.

In recent years, inspired by the success of deep learning in a wide range80

of applications, many researchers have started to investigate the application of
convolutional neural network (CNN) to action recognition. Oquab et al. [21]
used an 8-layer CNN for action classification. Hoai [22] proposed an effective
pooling method for CNN in action recognition based on a geometrical distribu-
tion of regions placed in bounding boxes of images. Gkioxarie et al. [23] trained85

body part detectors on ‘Pool5’ features in a sliding-window manner and com-
bined them with the bounding boxes to jointly train a CNN. They also applied
contextual cues to build an action recognition system [24]. Simonyan and Zis-
serman [25] combined a 16-layer CNN with a 19-layer CNN and trained multiple
linear SVMs on ‘FC7’ features from images with bounding boxes.90

Different from the above methods [21, 22, 25], we introduce poselets into
CNN by integrating an auxiliary pose-inference task into the the training of
CNN, which is for learning features related to human poses. One closely-related
work to ours is the [23] which used deep version of poselets to capture parts
of the human body under a distinct set of poses. The difference between our95

method and [23] is that, poses are directly used as features in [23], while they
are indirectly utilized as hints in our method to regularize the network.

2.2. Convolutional Neural Network

The framework of convolutional neural network (CNN) is first introduced by
LeCun et al. [26] with impressive performance in digit recognition, and soon, its100

variants (e.g. VGG [25], AlexNet [27]) have emerged in multitude. In general,
a CNN is forward network with multiple layers, each of which can be a convo-
lutional layer, a nonlinear activation layer, a pooling layer, or a fully-connected
layer. The fully-connected layer is a classic layer in neural network which ex-
tracts the global information from its input. It is often used as the final layer105
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to be the classifier in the task. The convolutional layer can be viewed as the
weight-sharing version of the fully-connected layer, in which multiple convolu-
tion units are used to encode the local structures of input. The filters used for
convolution in this layer can be learned to adapt to the input. The simplification
from fully-connected layer to convolutional layer not only helps to localize input110

features but also can reduce the model complexity and make the network easier
to train. The activation layer following the convolutional layer is to introduce
nonlinearities to the network for better representational power. The pooling
layer is usually put between two convolutional layers, which is for reducing the
network size and achieving spatial invariance to some degree by down-sampling.115

It can also introduce nonlinearities to the network.
The representational power of CNN comes from its stacking of layers. The

deeper a CNN is, the more complex knowledge it can express. However, training
a deep CNN, e.g. using back propagation, requires a large number of labeled
data which is often lacked in real scenarios. To overcome the problem, one can120

resort to regularization of network, transferring networks from other task, and
data augmentation.

2.3. Multi-Task Learning

Multi-task learning (MTL) refers to a technique where a main learning task
is solved jointly with auxiliary related tasks using a shared input representation.125

MTL has been successfully applied to various applications of machine learning,
from natural language processing [28] to computer vision [29] and drug discovery
[30]. In CNN, one feasible way to introduce MTL is that, allowing different task
to share the convolutional layers while learning task-specific fully-connected
layers for improving the performance. The benefit of using MTL in CNN is that130

it help CNN to learn the features which is is difficult to be learned in the main
task. In this paper, we design an auxiliary task which is to predict the features
as an auxiliary task, and then we integrate the auxiliary task into the CNN.

3. Method

3.1. Overview of the proposed method135

The method proposed in this paper is built upon the VGG network. The
flow chart of the proposed method is summarized in Figure 2. In the training
phase, we train a new deep neural network with action images, using a CNN
pre-trained from the ImageNet dataset as the initial point. For clearness, we
present the details of the proposed method with the following four parts:140

• Network architecture (Section 3.2). We choose the CNN architecture de-
veloped in [25], because it has demonstrated impressive performance in
various image classification tasks, especially in object recognition. We
will show how to transfer it from the source task (image classification) to
our main task (action recognition).145
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Figure 2: Overview of our proposed method. Left: data augmentation strategy introduced in
Section 3.4. Top-right; auxiliary feature extraction for the pose hint task. Bottom-Right: the
proposed deep neural network.

• Learning with hints (Section 3.3). We employ pose estimation as the
auxiliary task in our framework, which is denoted by “FC8 Hint” in Fig. 2.
The task is jointly learned with the action recognition task denoted by
“FC8 Action”, in order to guide the training process towards capturing
more pose information. In particular, we define a joint loss over the two150

tasks for the guidance.
• Data preparation (Section 3.4). To enrich the training set, we crop image

patches from original training images around or within the ground-truth
bounding box in the image, which guarantees the new generated training
images are closely related to the human poses. Moreover, we prepare data155

for the auxiliary task with an efficient scheme.
• Action recognition (Section 3.5). Two action recognition strategies are

applied to the proposed method: (1) predicting action labels using the
softmax scores; (2) training a multi-class linear SVM on the stacked 4096-
dimensional CNN features (denoted as ’4096D feature’) to predict action160

labels.

3.2. Network Architecture

Inspired by recent studies on transferring CNN-based visual recognition tasks
(e.g. [21, 22, 23]), we used the CNN model trained on ILSVRC2015 as the source
task and transfered it into our main task (i.e. action recognition). The reason165

that we chose ILSVRC2015 is that many of its object categories including hu-
man are involved in the often-seen object-human interaction in human actions.
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These objects, if recognized correctly, are very useful for recognizing human ac-
tions. For example, the actions of holding an umbrella, throwing an arrow, and
walking the dog can be easily distinguished when umbrella, arrow, and dog are170

recognized first.
For our action recognition task, we designed a deep neural network archi-

tecture in the spirit of VGG [25], which is a popular CNN that has achieved
the state-of-the-art performance in the ILSVRC2015 image classification task
and shown its effective representations in other visual tasks. The designed175

neural network is similar to the 16-layer VGG network (denoted by VGG-16),
which stacks 13 convolutional layers and 3 fully-connected layers. Such a deep
architecture enables the VGG to learn powerful image representations. The
implementation details of VGG-16 and our network will be described in 4.

To transfer the knowledge learned from object categories, we firstly pre-train180

the network weights of VGG-16 from scratch on ILSVRC2015, then we replace
the ‘FC8’ layer with ‘FC8 Action’ and ‘FC8 Hint’ as illustrated in Figure 2.
Moreover, our proposed neural network is trained with action images using the
pre-trained VGG-16 model as the initial point. In the next, we give the details
of our transfer method.185

3.3. Learning with Hints

In our proposal, we jointly conduct two tasks in the neural network for
regularizing the training process and enhancing the representation power, that
is, the main task for image representation and the auxiliary task for pose-hint
enhancement. In this section, we first give the details of how to design the190

auxiliary task and then present how to combine the main task with the auxiliary
task.

3.3.1. Pose-hint Enhanced Module

We borrow the idea of hint learning [31] to address the inconsistency between
the original source network (for object recognition) and the target one (for action195

recognition). The idea is to integrate a special hint to regularize the network
so that the network can learn action-related representations and avoid over-
fitting regarding object appearance. As pose plays an important role in action
expression, we use pose hint in our network. In details, we introduce an auxiliary
pose-inference task to the original network by sharing hidden layers with the200

main task, by which the hint information can be encoded into the representation
of the main task.

Constructing an ideal module for the auxiliary task requires accurate pose
annotation of training data. This is however impractical since it costs too much
effort on annotation. Alternatively, we resort to a tool on pose analysis, which is
called poselet activation vector (PAV) [16] to build the auxiliary task. Roughly
speaking, given an image, the PAV measures the distribution of poselet [20]
(i.e. various types of poses) in the image. Using PAV as a soft label of pose, we
define the auxiliary task as a regression problem that needs to approximate the
PAV of images. More specifically, for an input image I, we denote φpav(I) to
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be its PAV, and φhint(I) to be the output value regarding pose hint. Then the
loss function is defined as follows,

`hint(I) = ‖φhint(I)− φpav(I)‖2. (1)

In the training stage, the PAV features are extracted from all training images
and used as the hint features used by the auxiliary task.

3.3.2. Joint Learning205

As illustrated in Figure 2, we juxtapose the auxiliary task along with the
main task. The auxiliary task and the main task share all previous layers. To
jointly learn the weights of these layers, we use a joint loss function defined as
the weighted combination of loss functions for the two tasks. More specifically,
let M be the network model and D = {(Ii, yi)}Ni=1 be the training set of N
sample images {Ii}Ni=1 with associated class labels {yi}Ni=1, then the joint loss
function is defined as

L(M,D) = Lmain(M,D) + αLhint(M,D) (2)

where α ∈ [0, 1] a weight for balancing two loss terms1, Lmain and Lhint are the
empirical losses for the main task and the auxiliary tasks respectively, which are
defined as below:

Lmain(M,D) = − 1

N

N∑
i=1

(
yi logMmain(Ii)+

(1− yi) log (1−Mmain(Ii))
)
,

(3)

Lhint(M,D) =
1

2N

N∑
i=1

‖Mhint(Ii)− φpav(Ii)‖2, (4)

whereMmain(·) andMhint(·) denote the outputs of the main task (FC8 Action)
and auxiliary task (FC8 Hint) respectively. The model parameters above are
trained or finely tuned using the stochastic gradient descend method. We use
stochastic gradient descent algorithm to optimize L(M,D). After the compu-
tation of the gradient ∂L/∂w, we use the following rule to update the weights210

w.

wt+1 ← wt − λ
∂L
∂wt

(5)

1In practice, α is determined by changing its value with some stride and evaluating the
performance on validation data. See also Section 5.2.1
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In (2), there are two loss functions corresponding to two tasks. One is the
main task for action recognition, and the other is the auxiliary task for pose-hint
enhancement. Such a pipeline belongs to MTL method discussed in Section 2.3.
Therefore, our proposed loss function can be viewed as a multi-task objective215

function (LMTL = L+ αLaux).

3.4. Data Preparation

3.4.1. Data Augmentation

A deep neural network requires a huge number of training data for satisfac-
tory performance. As the number of action images are limited, we augment the
data by enriching the action images that contain significant pose information.
Firstly, for each training image I of size w× h, we rescale it to wn × hn so that
the shortest side of the image equals 256, and then we randomly crop image
patches with a varying-size window of size s × s, where s = min(wn, hn)/λ for
λ = 1, 1.3, 1.6, 2. Such a multi-scale sampling scheme helps us to generate im-
ages that contain humans of different scales. Secondly, we label the cropped
patches according to the size of overlap area between them and the ground-
truth bounding box in the image. More specifically, let B be the bounding box
of human performing action in I, a sample patch P is treated as positive if it
overlaps significantly with B such that

|P ∩B| ≥ 0.3|P | and |P ∩B| ≥ 0.6|B|,

where | · | indicates the area of a box. The sample patches violating the above
criterion are treated as negative. A positive patch is assigned to the same action220

class as I while a negative one is labeled as background.
By collecting all negative samples over the whole training set, we build up

a special class named ‘background’, in which the sample patches have little
discriminative information for action recognition. Note that the number of
background patches is much larger than other positive action patches, which225

may cause an unbalance problem during training. To deal with this problem,
we only sample 10% of background patches in training. It is also noted that all
samples are resized to 224× 224. Finally, our augmentation scheme boosts the
number of “action” samples by 15 times on average.

3.4.2. Pose Hint Organization230

We use PAV [16] for the auxiliary task. The PAV method is about the distri-
bution of poselets, and a poselet is a body part detector trained from annotated
data of joint locations of people in images. In details, a poselet is an SVM
classifier that is trained to detect certain kind of patches. In implementation,
we chose 150 poselets to obtain the auxiliary PAV features.235

The computation of PAV for an image in our method is detailed as follows.
To eliminate the effect of cluttered background, each image is cropped into
multi-scale patches so that each of the patches has sufficiently large intersection
area with a given bounding box of human body. In concrete, the intersection
area should be larger than 15% of the area of human bounding box, so that240
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Conv1_1 Conv1_2 Pooling1 Conv2_1 Conv2_2 Pooling2Original Image

Conv3_1Conv3_2Conv3_3Pooling3Conv4_1Conv4_2Conv4_3
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Figure 3: Illustration of the process of extracting the 4096D feature. Each small square figure
denotes a feature map. Due to the limitation of space, for each convolutional layer and pooling
layer, we randomly choose 16 feature maps for the illustration. For the fully-connected layers
(“FC7” and “FC8”), we show two types of feature maps. One is the output of fully-connected
layer, and the other is the histogram of the output value.

every patch contains a part of human body. Then the PAV is extracted from
each patch, and the final PAV of the image is the average of all PAVs of the
cropped patches.

3.5. Action Recognition

After the proposed neural network is trained, we use two strategies for recog-245

nizing actions from new images: (1) predicting action labels using the softmax
scores, i.e. “FC8 Action”; (2) predicting action labels using a multi-class linear
SVM trained on the stacked 4096D image features. The first strategy treats the
network as a classifier unified with a feature extractor, while the second strategy
considers the network as a pure feature extractor.250

The details of the second strategy is as follows. The last fully-connected
layers (“FC8 Action” and “FC8 Hint”) are removed, and the 4096D image fea-
tures are extracted from the activations of the penultimate layer “FC7”. Given
a training image I, image patches are cropped by the scheme described in Sec-
tion 3.4. Then we feed the image patches into our feature extractor to extract255

4096D features and then aggregate them with L2-normalization to obtain the
final 4096D features. Such a process of feature extraction is illustrated in Fig. 3.
After that we train a multi-class linear SVM on the extracted features. During
test, given a test image Itest, we first obtain its 4096D features and make a
prediction by the trained SVM.260

4. Implementation Details

4.1. Network Configuration

We use the VGG-16 model as the basic model to design our neural network.
The network configuration of VGG-16 is shown in Table 1. The size of con-
volutional kernel is set to 3 × 3 for all convolutional layers. All hidden layers265
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Table 1: Network configurations. The size of kernel is 3 × 3 in all convolutional layers. For
brevity, the ReLu activation function is not shown in this table.

Layer Type Channel/Size MaxPooling Dropout

input input 224× 224 × ×
1 1 conv 64 × ×
1 2 conv 64

√
×

2 1 conv 128 × ×
2 2 conv 128

√
×

3 1 conv 256 × ×
3 2 conv 256 × ×
3 3 conv 256

√
×

4 1 conv 512 × ×
4 2 conv 512 × ×
4 3 conv 512

√
×

5 1 conv 512 × ×
5 2 conv 512 × ×
5 3 conv 512

√
×

FC6 full-connected 4096 ×
√

FC7 full-connected 4096 ×
√

FC8 full-connected Num. of Classes × ×

use the rectification (ReLU) activation function. The max pooling is performed
over 3 × 3 spatial windows with stride 2. The training is regularized by using
dropout for the first two fully-connected layers with dropout ratio 50%. The
number of neuron units of “FC8 Action” is set the same as the number of action
classes, and the dimension in “FC8 Hint” is 150.270

4.2. Training

The network weights are learned via the mini-batch stochastic gradient de-
scent with momentum. The batch size is set to 256 and the momentum is set
to 0.9. The weight decay and dropout are used to regularize the training, and
the L2 multiplier is set to 5 × 10−4. The training procedure of VGG-16 fol-275

lows the standard procedure [25]. In details, the learning rate is initially set to
10−2, and then decreased according to a factor of 10 when the accuracy on val-
idation set do not show further improvement. In our experiment, the learning
rate is decreased 3 times, and the learning is stopped after 370K iterations (74
epochs). In the training of both the model and our neural network, the learning280

rate decreased to 10−4 after 3000 iterations, and the training stopped after 10K
iterations. Meanwhile, other hyper parameters are set to the same values as
VGG-16 [25].

When training the VGG-16, a sub-image with fixed size 224×224 is randomly
cropped from the selected 256×256 image. Then it undergoes random horizontal285

flipping and RGB jittering. In training, all sampled patches are resized into
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224× 224 before they are fed into network (as described in 3.4). Our method is
implemented based on the Caffe toolbox [32] with the NVIDIA Tian X GPU.

4.3. Test

During, given a test image It, we use the data augmentation described in290

Section 3.4 to sample test image patches. Subsequently, these patches undergo
random horizontal flipping and RGB jittering before they are fed into network.
As mentioned in 3.5,two recognition methods are used to make predictions. In
the first method, the class scores for It are then obtained by averaging the scores
( from “FC8 Action”) across the sampled patches. In the second method, we295

first extract 4096D image features for the test image patches. Then, the global
average pooling is carried out on the resulting features, and this produces a
4096D feature. Finally, we make a prediction by running the trained SVM on
the normalized 4096D features.

5. Experiments300

We evaluated the proposed method by applying it to action classification
and comparing the results with several state-of-the-art methods. The evalua-
tion is carried out on three public benchmark datasets, including Stanford-40
Actions [11], PPMI [33] and PASCAL VOC 2012 Actions [13]. For fair compar-
ison, the results of all the compared methods are from the standard evaluation305

protocols. We also evaluated the effectiveness of different components in our
method, including the auxiliary task, the augmentation data, and the balancing
parameter. Then we tested the influence of the size of data to our method.

In order to check the contribution of different modules in our method, we gen-
erate two variants from the proposed method as the baseline methods. Through-310

out the paper, we use the notations to denote different versions of our method
as follows.

• Base: the baseline model which is trained without the auxiliary task.
• Base + Hint: the proposed method with the auxiliary task and softmax

prediction.315

• Ours: the complete version of the proposed method.

5.1. Classification on Real Datasets

5.1.1. Stanford-40 Dataset

The Stanford-40 dataset [11] contains 9532 images with 40 diverse daily
human actions, such as applauding, brushing teeth, jumping, holding umbrella,320

riding horse, using computer, etc. The images in each class have large varia-
tions regarding human pose, appearance, and background clutters, as shown in
Figure 4. We built up 10 splits from the dataset. In each split, we randomly
selected 100 images for training and used the remaining images for test. Then
the mean average precision (mAP) is calculated as the criterion to measure the325

performance of the compared methods.
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Figure 4: Example images from the Stanford-40 dataset, with one image per action class.
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Figure 5: Average precision at each class on the Stanford-40 dataset.

Table 2: Comparison of the proposed method with Poselets [16], Yao et.al. [11], Khanet.al. [19],
and Simonyan [25] regarding mAP. The bold font indicates the best performance.

Methods
Poselets Yao Khan Simonyan

Base Base+Hint Ours
[16] [11] [19] [25]

mAP (%) 11.25 45.57 51.90 72.40 71.57 76.73 80.69

We compare the results of our method with [16, 11, 19, 25]. The details of
these compared methods are as follows:

• Poselets [16]: a part-based method using the PAV features.
• Yao et al. [11]: a method learning a set of sparse bases of action attributes330

and parts.
• Khan et al. [19]: a method combining color and shape descriptors.
• Simonyan and Zisserman [25]: a deep learning method which combines a

16-layer network with a 19-layer network and trains a linear SVM on the
FC7 features.335

The mAP results are shown in Table 2, in which our method achieves the
best performance among all the compared methods. Compared with [16, 11, 19]
which are built upon the hand-designed features such as HOG and color descrip-
tors, our network can learn the deep features which are much more adaptive to
data. Compared to the baseline method (without hints), the proposed method340

has more than 5% accuracy improvement, which demonstrates the effectiveness
of the auxiliary task. Such effectiveness is further demonstrated by the superior
performance of our method to the deep learning method [25].

To investigate the performance of our methods in different action classes,
we show the average precision on each class in Figure 5 and compared our345

results with [11]. It can be seen that our method achieves superior performance
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Figure 6: Confusion matrix (%) on the Stanford-40 dataset.

on all the 40 action classes. The performance of our method varies a lot on
different classes, ranging from 96% on “holding an umbrella” to 47% on “waving
hands”. In the recognition of “fixing a bike”, “fixing a car”, “playing violin”,
“pushing a cart”, “taking photos”, “blowing bubbles”, “brushing teeth”, “cutting350

trees”, “cooking”, “looking through a microscope”, “looking through a telescope”,
and “pouring liquid”, our method works very well. The reason is the human
pose changes little in these actions and the objects are very big (e.g. umbrella
and bike), which make it easy to utilize hints from poses as well as objects to
distinguish human actions.355

The objects interacted with human are very small on some action classes,
e.g. “drinking”, “taking photos”, “texting message”, “washing dishes”, “read-
ing” and “phoning”. In these cases, our method still performs better than [11],
as our hint-enhanced neural network can well utilize the pose cues for action
recognition. When action classes share similar human poses and the objects are360

very small, our method may not work well, as the poses are somehow confusing
in such scenarios. See the confusion matrix in Figure 6 as well as some con-
fusing pairs in Figure 7, which includes “blowing bubble” and “brushing teeth”,
“running” and “jumping”, as well as “cooking” and “cutting vegetables”. To
overcome this weakness, we can resort to context information to distinguish365

fine-gained poses. We will discuss this issue in Section 5.1.3 and Section 6.
To further study the behavior of our method, we visualize the score maps

in Figure 8, which shows the representative high-score images and the corre-
sponding response maps, in which for each action class we compute a response

15



cut_vegetables labeled as cookingsmooking labeled asdrinking

blowing_bubble labeled asbrushing_teeth jumpingrunning labeled as

Figure 7: Examples of the images misclassified on the Stanford-40 dataset. In each misclassi-
fied pair, the left image is mislabeled as the action class of the right image. We can see that
each misclassified image has a similar pose with its correspondence.

map by averaging the scores of all sampled patches covering a given pixel of the370

test image. The top-rank false score maps are shown in Figure 9. We randomly
selected 8 classes due to space limit. From the response maps we can find that
the high-score response of regions locate the discriminative human poses when
the involved object is small or the actions do not involve objects. For exam-
ple, armed-with-a-mop is the discriminative pose of class “cleaning the floor”,375

and covered by high-score regions (as shown in the third row of Figure 8). In
addition, high-score regions focus on the involved object which is easy to be
recognized, such as “guitar” (“playing guitar”) and “TV” (“watching TV”).

To further demonstrate the correlation between response maps and recogni-
tion accuracy, we manually count the correct locations of discriminative human380

poses and we call the counting as location accuracy. Figure 10 illustrates the
curves of location accuracy and mAP, where the dash lines divide action classes
into three groups. We can find that the high location accuracy of action classes
ensures the high recognition accuracy in the first two groups. In the last group
(from “cutting trees” to “writing on board”), the same phenomenon is also ob-385

served except for the classes “fishing”, “fixing a car”, “pushing a cart” and
“watching TV”. This is because the involved objects in these classes are easy to
recognize and they play important roles in recognition. Therefore, the location
accuracy of discriminative poses or objects has positive correlation with the
recognition accuracy, as shown in Figure 10. In conclusion, the visualization of390

score maps has demonstrated that our method can provide an estimate of the
action location in the image and encode pose information.
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Figure 8: High-score images and the corresponding response maps on the Stanford-40 dataset.
The people of interest are marked with red box. Each row denotes a different class form other
rows.
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Figure 9: Top-rank false score maps on the Stanford-40 dataset. The people of interest are
marked with red box.
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Figure 10: The correlation between mAP and location accuracy, which is calculated on the
Stanford-40 dataset. The dash lines divide action classes into three groups: actions without
objects (from “applauding” to “waving hands”), actions with small objects (from “blowing
bubbles” to “writing on a book”), and actions with big objects (from “cutting trees” to “writing
on board”).
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Table 3: mAP(%) of compared methods on the PPMI dataset. The bold font indicates the
best performance.

Method
Poselets SPM Grouplet Yao Simonyan

Base Base+Hint Ours
[16] [34] [33] [11] [25]

mAP (%) 23.40 40.00 42.00 48.00 74.35 72.50 77.80 82.2

5.1.2. PPMI Dataset

The People Playing Musical Instruments (PPMI) dataset [12] contains 4800
images of humans interacting with 12 musical instruments, including bassoon,395

cello, clarinet, erhu, flute, French horn, guitar, harp, recorder, saxophone, trum-
pet, and violin. The images in the dataset are already cropped and centered
to mainly contain the people of interest. A very important property of this
dataset is that there are images of people playing the musical instruments as
well as images of people holding the instruments without playing. Therefore,400

there are actually 24 classes in the dataset. Some images from the dataset are
shown in Figure 11. It can be seen that the images in PPMI are highly diverse
and cluttered.

The protocol on PPMI is similar to that of the Stanford-40 dataset. That
is, we built up 10 splits for training and testing our method. In each split, we405

randomly selected 100 normalized images from each class for training, and the
remaining 100 images are used for test. Besides the Poselet method [16] and
the deep learning method (VGG) [25] that have been used on the Stanford-
40 dataset in last subsection, we select additional three existing methods for
comparison, including410

• SPM [34]: the classic spatial pyramid matching method.
• Grouplet [33]: a method utilizing the structured information of an image

by encoding a number of discriminative visual features and their spatial
configurations.

• Yao et al. [12] a random field method which encodes the mutual context415

of the objects and human poses in human-object interaction.

The results are shown in Table 3. It can be seen that the proposed method
outperforms the traditional methods by a significant margin. Again, the pro-
posed method achieves significant accuracy improvement over the baseline meth-
ods and the deep learning method [25]. All these performance improvements420

come from the power of the auxiliary task that boosts the network to encode
the cues of human pose.

We also show the mAP at each class in 4, and the confusion matrix is shown
in Figure 12. It can be seen that most classes of holding instrument are misclas-
sified as the corresponding classes of playing instrument, such as “with bassoon”425

and “play bassoon”. This is because images of each such class pair share the
same musical instrument, which implies cues from objects are useless. It is also
interesting to calculate from Table 4 the accuracy in recognizing the action of
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Table 4: Average precision (%) of compared methods at each class on the PPMI dataset. The
bold font denotes the best recognition performance.

Method
SPM Grouplet Yao

Base Base+Hint Ours
[34] [33] [12]

Playing Bassoon 37 30 42 84 86 92
Playing Cello 41 41 50 95 74 81
Playing Clarinet 39 43 45 78 73 85
Playing Erhu 48 43 54 89 88 87
Playing Flute 41 47 53 55 80 79
Playing F. horn 44 38 52 77 90 90
Playing Guitar 40 50 52 89 79 88
Playing Harp 44 36 45 85 84 84
Playing Recorder 45 49 36 71 64 82
Playing saxophone 42 49 47 91 94 93
Playing Trumpet 39 53 47 90 80 86
Playing Violin 43 50 51 87 90 94

With Bassoon 38 41 47 46 62 64
With Cello 42 32 54 35 66 78
With Clarinet 39 39 48 75 82 83
With Erhu 35 35 41 59 63 77
With Flute 48 49 45 51 60 76
With F. horn 36 53 43 82 83 91
With Guitar 34 41 42 52 79 69
With Harp 38 33 47 89 85 88
With Recorder 42 52 52 61 69 68
With saxophone 36 36 50 68 77 82
With Trumpet 39 43 48 68 76 74
With Violin 35 30 45 64 82 81

Total 40 42 48 73 78 82

playing (holding) instrument, which is calculated by the average precision of all
action classes related to playing (holding) instrument. The accuracy regarding430

playing instrument is 81.8%, while the accuracy regarding holding instrument
is much lower, i.e. 73.7%. Such a performance gap is due to the fact that the
human poses vary a lot within each class of holding instrument.

We also study the score maps by visualization. Figure 13 shows the rep-
resentative high-score images and the corresponding response maps, and the435

top-rank false score response maps are shown in Figure 14. Similar conclusion
to that on Stanford-40 can be made from these results.

5.1.3. PASCAL VOC Action Dataset

The PASCAL VOC 2012 dataset, which contains about 10000 images from 10
action classes, including jumping, phoning, playing instrument, reading, riding440
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Figure 11: Examples images from the PPMI dataset, with one image per action class.
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Figure 12: Confusion matrix (%) on the PPMI dataset.

Figure 13: High-score images and the corresponding response maps for the PPMI dataset.
The people of interest are marked with red box.
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Figure 14: Top-rank false score maps on the PPMI dataset. The people of interest are marked
with red box.

bike, riding horse, running, taking photo, using computer, and walking. It also
contains a class called other which excludes the above 10 types of actions and
it is used to test the robustness to clutters. Some images from this dataset are
shown in Figure 15. The dataset provides a training set, a validation set, and
a test set. In our evaluation, we combine the training set and validation set for445

training, and the test set is used for testing.
We compare our method with six approaches from the PASCAL challenge.

Besides the Poselet method[16] and the deep learning method [25] which have
been used in last subsections, the other four methods for comparison include

• Gkioxiari [23]: a part-based method which trains body part detectors450

on Pooling5 features with sliding window and combines them with the
bounding boxes to jointly train a CNN.

• Oquab [21]: a deep learning method which trains an 8-layer network on
ground-truth boxes.

• Hoai [22]: a deep learning method which uses an 8-layer network to extract455

FC7 features from regions at multiple locations and scales.
• R*CNN [35]: region-based CNN which combines the bounding boxes and

its context to investigate the problem of action recognition.

The results are shown in Table 5. Compared with the part-based approaches [16,
23], the proposed method achieves the superior recognition performance on all460

the classes. Note that [23] use the same base network as ours. The difference
is that it directly apply pose inference (i.e., the whole human pose is divided
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Figure 15: Example images from the PASCAL VOC 2012 dataset. Here we show one image
per action class.

into three parts, and features are extracted from each part and merged as the
final features), while we incorporate pose inference into the base network in
an implicit way. Such an implicit way help to the base network to learn more465

powerful features.
Compared with the baseline method (without hints), the proposed method

has 2.5% accuracy improvement. From the results, we observed that the im-
provement mainly comes from the classes “phoning”, “reading”, “taking photo”
and “walking”. This demonstrates the necessity of introducing the auxiliary470

task. Compared with [21, 22, 25], our method also achieved the better recogni-
tion performance on all classes. This implies our learned pose-related features
are discriminative to different types of action. Compared with R*CNN, our
approach show superior performance for the classes with action-specific poses,
such as “riding bike”, “riding horse” and “running”. However, in many types of475

VOC 2012, the human poses of the same type of action have very big variations
but similar contexts. Regarding such types of action, our method is inferior to
R*CNN. One reason is that R*CNN is able to encode the context information
which our method ignores. In order to demonstrate that our method can per-
form as well as R*CNN when combing context information, we modified our480

method to include the context features which are the same from R*CNN [35],
and then we tested the performance of the modified version (denoted by“Ours
+ Context”) of our method on the VOC-2012 dataset. As shown in Table 5, the
improved version of our method can achieve better performance than R*CNN.
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Table 5: mAP (%) of compared methods on the PASCAL VOC 2012 dataset. The bold font
denotes the best performance.

Method
CNN

Jumping Phoning
Playing

Reading
Riding

Layers Instrument Bike

Poselets [16] - 59.3 32.4 45.4 27.5 84.5
Gkioxari [23] 16 83.7 63.3 87.8 64.2 96.0
Oquab [21] 8 74.8 46.0 75.6 45.3 93.5
Hoai [22] 8 82.3 52.9 84.3 53.6 95.6
Simonyan [25] 16&19 89.3 71.3 94.7 71.3 97.1
R*CNN [35] 16 91.1 83.8 92.2 81.2 96.9
Base 16 88.2 69.0 92.5 66.7 97.1
Base+Hint 16 89.2 72.9 92.3 73.1 97.3
Ours 16 89.7 76.3 94.0 75.3 97.9
Ours+Context 16 92.5 84.3 94.3 82.7 98.0

Method
Riding

Running
Taking Using

Walking mAP(%)
Horse Photo Computer

Poselets [16] 88.3 77.2 31.2 47.4 58.2 55.1
Gkioxari [23] 96.7 88.9 75.2 80.0 71.5 80.7
Oquab [21] 95.0 86.5 49.3 66.7 69.5 70.2
Hoai [22] 96.1 89.7 60.4 76.0 72.9 76.3
Simonyan [25] 98.2 90.2 73.3 88.5 66.4 84.0
R*CNN [35] 98.4 93.1 84.3 90.9 77.9 89.0
Base 97.5 91.8 75.2 86.0 69.0 83.3
Base+Hint 98.2 92.5 80.0 87.6 75.4 85.9
Ours 98.4 94.1 82.3 89.5 77.6 87.5
Ours+Context 98.3 94.8 84.1 91.5 77.8 89.8
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5.2. Influence Analysis485

5.2.1. Influence of the parameter α

A critical parameter of our method is the parameter α defined in the Equa-
tion (2), which is used to balance the penalty of the main task and the auxiliary
task. We investigate the influence of the parameter α by changing the value
from 0 to 1 with stride 0.001 on each dataset, and then plot the resultant mAP490

in Figure 16. As shown in the Figure 16, our method is not sensitive to small
changes of α and the optimal α on each dataset is in similar scale.

0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 0.09 0.1
67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

alpha

m
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 

 

Stanford40
PPMI
VOC2012

Figure 16: Influence of the parameter α to mAP (%).

5.2.2. Influence of the Data Augmentation and Auxiliary Task

To demonstrate that both the proposed hint-enhanced network and the data
augmentation scheme really work, we evaluated the influence of the auxiliary495

task and data augmentation on the Stanford-40 dataset, by using configurations
of modules of our method. The results are shown in Table 6.

It can be observed from Table 6 that the data augmentation strategy can
noticeably improve the recognition performance by about 2%, and the auxiliary
task can also boost the generalization ability of the proposed method. It can500

be also seen that the “Com” strategy almost has no benefit over the “Deep”
strategy. For example, in “AugCS” outperforms “AugDS” by 0.17% . However,
when using the auxiliary task with PAVs, “AugHS” has better accuracy of
3% over “AugCS”. In summary, the proposed data augmentation scheme and
auxiliary task can steadily boost the performance.505

It is worth noting that SVM achieves better performance compared with
softmax, as shown in Table 6. This is not surprising, as the SVM classifier is
more local than the softmax classifier. Think of the case where two examples
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Table 6: The influence of the auxiliary task on the Stanford-40 dataset. The bold font indicates
the best performance. “AugData” means the deep model is trained using augmentation data.
“Hint” means we use hint task to boost deep model. “Deep” denotes the 4096D deep features,
and “Com” is the combined features which are obtained by concatenating “Deep” (4096D
features) with PAVs. Meanwhile, “SVM” is a multi-class linear classifier, as well as “Softmax”.

Method AugData Hint Deep Com SVM Softmax mAP
NAug × × × × ×

√
71.57

NAugDS × ×
√

×
√

× 75.27
NAugDS × × ×

√ √
× 75.31

Aug
√

× × × ×
√

76.45
AugDS

√
×

√
×

√
× 77.40

AugCS
√

× ×
√ √

× 77.57
AugH

√ √
× × ×

√
78.32

AugHS
√ √

× ×
√

× 80.69

xi and xj from the 1st class achieves the scores [20,−10,−10] and [20, 19, 19]
respectively. The loss of these examples in SVM is closer than that in softmax.510

This is often useful. Think of the example that a “walking” classifier is likely to
spend most of its “effort” on the difficult problem of separating “walking” from
“running”, which should not be influenced by the examples of “fixing a car”.

5.2.3. Influence of Size of Data

It is well known that CNN may overfit small data sets. Therefore, we evalu-515

ate the influence of the size of the data set to the performance of the proposed
method by varying the size of the Stanford-40 dataset. We randomly chose
N images within each class for training and 20 images for validation, where
N is set to [1, 5, 10, 20, 30, 40, 50, 60, 70, 80] respectively. The results are shown
in Figure 17, from which we can observe that the generalization ability of the520

proposed model increases fast as the the size of data set increases.

6. Conclusion

In this paper, we proposed a new method for action recognition in still im-
ages via incorporating human pose hints into the convolutional neural network.
The incorporation is implemented by jointly conducting the image recognition525

task and the pose hint enhancement task by using a weighted loss function.
We applied high-level pose descriptions as the auxiliary features to designing
the auxiliary task for hint enhancement. We evaluated our method on three
challenging benchmark datasets, and our method achieved the state-of-the-art
results. We also verified the effectiveness of the components in the proposed530

network, such as the influences of the auxiliary task, the augmentation data,
and the balancing parameter.
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In the future, we would like to integrate other useful hints into our network,
such as hints from context and human-object-interaction, to achieve further
improvement. In addition, we would like to incorporate the pose estimation535

into our method, and design an end-to-end method.
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