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ABSTRACT

Learning rate is arguably the most important hyper-parameter to tune when training a neural network.
As manually setting right learning rate remains a cumbersome process, adaptive learning rate algo-
rithms aim at automating such a process. Motivated by the success of the Barzilai-Borwein (BB)
step-size method in many gradient descent methods for solving convex problems, this paper aims at
investigating the potential of the BB method for training neural networks. With strong motivation from
related convergence analysis, the BB method is generalized to adaptive learning rate of mini-batch gra-
dient descent. The experiments showed that, in contrast to many existing methods, the proposed BB
method is highly insensitive to initial learning rate, especially in terms of generalization performance.
Also, the BB method showed its advantages on both learning speed and generalization performance
over other available methods.
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1. Introduction

1.1. Background
In the last decade, deep learning has emerged as one lead-

ing machine learning tool in computer vision. Particularly,
deep neural network (DNN) based learning, including super-
vised approaches (Lu et al., 2017b,a) and unsupervised ap-
proaches (Zhang et al., 2017; Duan et al., 2019), has been used
for solving many long-lasting problems in computer vision with
remarkable success, e.g. image classification, action recogni-
tion and semantic segmentation. DNN-based learning enables
an artificial neural network (NN) to capture intricate structures
of visual data with multiple levels of abstraction.

In DNN, once the architecture of an NN has been designed
for solving a specific problem, the remaining task is to learn
or train the weights of the NN. In the so-called supervised ap-
proach to NN training, the weights of an NN are adjusted with
respect to input data (i.e. training samples) such that the error
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between the output of the NN and the preferred output is min-
imized. More specifically, Let θ denote the set of the weights
of an NN. Consider a training set {(xi, yi)}Ni=1 containing N sam-
ples, where xi denotes the input data and yi denotes its preferred
output. The learning process is then to estimate θ that mini-
mizes the following cost function:

min
θ

L(θ) =
1
N

N∑
i=1

Li(θ), (1)

where Li(θ) = L(xi, yi; θ).
An efficient and effective method to find a good solution of

the problem (1) is critical to the success of DNN. Unfortunately,
the problem (1) is often a very large-scale non-smooth and non-
convex problem. For such a large-scale problem, first-order
methods such as gradient descent are usually preferred. Among
them, the so-called stochastic gradient descent (SGD) method
is dominant in NN training. Instead of using the batch gradient
which leverages over the cost gradients of all training samples
1
N

∑N
i=1 ∇θLi(θ), classic SGD methods only call the cost gradi-

ent of one sample, which could be overly noisy. Therefore, a
prominent approach is using the so-called mini-batch gradient
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descent method (Bottou et al., 2018), which uses a small por-
tion of training samples for gradient estimation. The update of
a mini-batch gradient descent method reads as follows:

θt+1 = θt −
ηt

|Bt |

∑
i∈Bt

∇θLi(θt), (2)

where θt denotes the estimate at Iteration t, Bt denotes the index
set of the samples randomly chosen from the training set at It-
eration t, |Bt | denotes the cardinality of the set Bt, and the value
ηt > 0 is called learning rate. Mini-batch gradient descent is
of core practical importance to NN training. In practice, the
gradient ∇θLi(θ) is calculated by using a technique called back-
propagation. When training a DNN, the learning rate ηt is ar-
guably the most important hyper-parameter for achieving good
performance, which requires rigorous tune-up (Bengio, 2012).
Learning rate has profound effect on the convergence of NN
training, as well as generalization performance of the trained
NN. In order to make the algorithm converge, one often seen
practice is to set learning rate to be decreasing over time.

1.2. Challenges on Learning Rate Setting

The sequence of learning rates has great impact on training
efficiency and generalization performance. If learning rates are
too large, the training process is not stable. In such a case, the
estimate can either overshoot the desired minimum such that
they just osculate around the minimum, or does not converge. If
learning rates are too small, there are also undesired outcomes.
One is related to training inefficiency. Small learning rates
make the training process unnecessarily time-consuming, as it
only slowly updates the estimates. Another is related to poor
generalization performance (Haykin, 1998; Wilson and Mar-
tinez, 2001; Abbas et al., 2010; Smith et al., 2018; Xing et al.,
2018). Such an issue comes from the highly non-convexity
of the problem. Although training an NN does not require
the sequence converges to a global minimum, those local min-
ima with good generalization performance are usually far away
from a random initialization. When using a small learning rate,
the sequence tends to be trapped into a local minimum close to
the initial. In other words, small learning rates might make the
sequence converge to some local minimum whose generaliza-
tion performance is poor (Smith et al., 2018; Xing et al., 2018).

From the discussions above, it can be seen that choosing
right learning rates is very important for training an NN with
good performance. While there are some good guidelines for
manually setting learning rates, it remains a very cumbersome
process. In the past, there have been several adaptive learning
rate methods proposed for automating such a process, e.g. the
widely-used Adam (Kingma and Ba, 2015) and its improved
version AMSGrad (Sashank J. Reddi, 2018). These methods
still have a lot of room for improvement when compared to the
performance achieved by rigorous manual tune-up. It is em-
pirically observed that these methods are sensitive to the initial
value of learning rate. As a result, many trials on setting initial
learning rate need to be done when training NNs, which is very
time consuming. In short, there is certainly the need to have an
automated way of setting good learning rates such that we can
efficiently train an NN with good generalization performance

1.3. Main Ideas and Contributions
Motivated by the importance of learning rate, this paper

aims at developing an adaptive learning rate algorithm for sig-
nificantly reducing computational effort to train an NN with
good generalization performance. In this paper, we transferred
the concept of the well-known Barzilai-Borwein (BB) tech-
nique (Barzilai and Borwein, 1988) in convex optimization to
the setting of adaptive learning rate for training NNs. The mo-
tivation comes from the fact that for the objective function with
second-order continuous derivative, a good step size for the gra-
dient descent is closely related to the eigenvalues of the Hessian
matrix at current iteration. For training an NN, estimating these
quantities are not only difficult but also expensive in terms of
time and storage. The BB method is a well-known technique
in optimization that approximates the secant equation by two
consecutive points to find a nearly Newton step size. In the bi-
variate case, the BB method estimates the curvature along the
gradient orientation to obtain appropriate step sizes.

In this paper, the concept of BB method is generalized to the
mini-batch gradient descent method for training NNs. There are
several advantages of the proposed BB-based adaptive learning
rate over the existing ones:

1. The proposed BB method is insensitive to initial learning
rate, i.e., in a wide range, different initial learning rates do
not impact generalization performance.

2. The proposed BB method has significant gain on the learn-
ing speed over other methods in most cases, as well as
modest gain on generalization performance in some cases.

2. Related Work

Learning rate is known as one of the most important hyper-
parameters when training an NN. However, it is also a difficult
and cumbersome process to find the right learning rate. Before
proceeding, we first introduce some terms used in training NNs.
One epoch refers to one forward pass and one backward pass of
all the training examples. Batch size is the total number of train-
ing examples present in a one forward/backward pass. Iteration
is the number of batches needed to complete one epoch.

In the past, several heuristics have been proposed to set learn-
ing rates, including how to initialize the learning rate and how
to schedule it afterward. The common practice for the initializa-
tion of learning rate takes a trial-and-error strategy. One simple
way for scheduling learning rate is decreasing it after a fixed
period of epochs (step decay) or after the validation accuracy
reaches the plateau for several epochs. Another commonly used
trick is to change the learning rate with respect to the time t or
the epoch k, which includes inverse linear decay over epoch.

There has been a enduring effort on developing the tech-
niques that automate the process of setting learning rates when
training DNNs (Sashank J. Reddi, 2018). Most existing adap-
tive learning rate methods, including the well-known Ada-
Grad (Duchi et al., 2011), RMSProp (Tieleman and Hinton,
2012), Adam (Kingma and Ba, 2015) and AMSGrad (Sashank
J. Reddi, 2018), can be expressed in the following form:

θt+1 = θt −
ηt
√

vt
mt, for t = 1, 2, · · · . (3)
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Figure 1. Performance comparison of four existing methods when using different initial learning rates for training ResNet18 on CIFAR10. It is noted that
for RMSProp, the accuracy curves of η0 = 1 and η0 = 0.1 have very close values that leads to occlusion.

where mt is a descent direction derived from the gradients at
subsequent time-steps {g1, . . . , gT } for updating θt, and the value
ηt√
vt

is the learning rate at time-step t where vt is derived from the
corresponding squared gradients {g2

1, g
2
2, . . . , g

2
T }. However, it is

observed that the performance of these adaptive learning rate
methods are sensitive to initial learning rate. In other words,
different initial learning rates lead to noticeable different train-
ing loss and test accuracy. See Fig 1 for an illustration. As a re-
sult, it requires many trials on setting right initial learning rates
to have an NN trained with fast convergence and good general-
ization performance, which is a very time-consuming process.

Barzilai and Borwein (1988) proposed a strategy to deter-
mine the step size for gradient descent methods, which is often
called BB step size in the literature. It has been successfully
used to solve various types of optimization problems arising
from a wide range of applications, including sparse reconstruc-
tion (Wright et al., 2009) and coherence retrieval (Bao et al.,
2018). The Plain BB method also has been introduced for train-
ing NNs (Plagianakos et al., 2002, 1998), which are restricted
to the non-stochastic gradient descent method. The BB method
is introduced in Tan et al. (2016) to the SGD and its variance
reduced variants SVRG (Johnson and Zhang, 2013) for solving
convex problems. It is also extended in (Ma et al., 2018) for
solving non-convex problems.

It is noted that all existing works on the application of the
BB method for solving non-convex problems are based on the
SVRG, which needs to perform a full gradient evaluation over
the entire dataset per epoch. Such a practice is not used in
practical deep learning for its computational cost, and it is in-

deed high inefficient when training a DNN (Defazio and Bottou,
2018). Different from these existing works, this paper considers
the mini-batch version of SGD, the most often seen one used in
practical deep learning. To the best of our knowledge, this pa-
per is the first one that studies the application of the BB method
in practical DNN training, including the modifications for fit-
ting practical training procedures in deep learning, convergence
analysis and extensive experimental evaluations on several rep-
resentative NN architectures.

3. BB-based Adaptive Learning Rate

3.1. Preliminaries on BB Method
Main idea of the BB method is to use information from the

last iterations to determine the step size in the current iteration.
Consider an unconstrained optimization problem:

min
x∈Rn

f (x),

where f : Rn → R has second-order continuous derivatives.
Let {x1, x2, · · · , } denote the sequence generated by the method:

xt+1 = xt − ηt∇ f (xt), (4)

where ηt > 0 is the step size and the gradient ∇ f (xt) is the
search direction. The gradient descent method is simple, but
only has linear convergence rate when solving strongly con-
vex problems. To achieve quadratic convergence rate, New-
ton’s method uses the search direction H−1∇ f where H denotes
the Hessian matrix of f . As it is very computationally expen-
sive to calculate the inverse of Hessian matrix of a large-scale
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problems, Quasi-Newton methods replace Hessian matrix by an
approximate B ≈ H−1. In Quasi-Newton methods, the approxi-
mation matrix B satisfies the following secant equation:

Bt st = yt,

where {
st = xt − xt−1,
yt = ∇ f (xt) − ∇ f (xt−1).

The Barzilai-Borwein (BB) method (Barzilai and Borwein,
1988) is motivated from the idea of Quasi-Newton methods,
which replace the approximate matrix Bt by an identity matrix
multiplied by a scale, i.e. η−1

t I. Then the optimal value of ηt

minimizes the least squares error of secant equation:∥∥∥η−1
t st − yt

∥∥∥2
2 ,

and its explicit solution is

ηt =
‖st‖

2
2

s>t yt
.

3.2. The BB Method for Adaptive Learning Rate
3.2.1. Definition of BB-based learning rate

Let ∇LB(θ) denote the mini-batch gradient used in training
neural networks:

∇LB(θ) =
1
|B|

∑
i∈B

∇θLi(θ). (5)

Let k denote the epoch index, and t denote the index of time-
step inside each epoch starting from 1 to T . Then, the sequence
{θk,t}k,t generated from the training is

{θ0,1, θ0,2, . . . , θ0,T︸               ︷︷               ︸
k=0

, θ1,1, θ1,2, . . . , θ1,T︸               ︷︷               ︸
k=1

, · · · }. (6)

In the proposed BB method, the learning rate is only updated
after finishing one epoch, i.e. , the update rule is

θk,0 = θk−1,T , θk,t+1 = θk,t − ηk∇LBk,t (θk,t), (7)

for t = 0, 1, . . . ,T − 1 and k = 0, 1, . . .. There are two quantities
in the BB-method for determining the value ηk: the difference
of points sk and the difference of gradients yk.

The gradient for estimating ηk is defined in the same way as
the Adam method, i.e. the exponential moving average of the
stochastic gradients over the epoch:

gk,t+1 = (1 − β)gk,t + β∇LBt (θk,t), (8)

for t = 0, 1, . . . ,T − 1 and gk,0 = 0, where β is a predefined con-
stant smoothing factor within (0, 1] that controls the degree of
exponential decay. Then, we define the difference of gradients
between two epochs by

yk = gk,T − gk−1,T . (9)

The difference of points over two epochs is defined as the differ-
ence of the last one of two epochs normalized by the iterations:

sk = T−1(θk,T − θk−1,T ). (10)

Now, we have the BB-based learning rate1:

ηk+1 =
‖sk‖

2

|s>k yk |
, (11)

Algorithm 1 BB-based adaptive learning rate
Require: max epochs K, steps per epoch T , batch size |B|,

weighting parameter β ∈ (0, 1], initial point θ0,0, learning
rate η0 = η1, τ0, τmin and τmax.

1: for k ← 0 to K − 1 do
2: if k > 1 then
3: yk−1 ← gk−1,T − gk−2,T
4: sk−1 ←

1
T (θk−1,T − θk−2,T )

5: ηk ←
‖sk−1‖

2

|s>k−1yk−1 |

6: η̂k =

{
ηk if ηk ∈

[
τmin
k+1 ,

τmax
k+1

]
,

τ0
k+1 , otherwise.

7: gk,0 ← 0
8: for t ← 0 to T − 1 do
9: Randomly draw a batch Bk,t

10: θk,t+1 ← θk,t − η̂k∇LBk,t (θk,t)
11: gk,t+1 ← (1 − β)gk,t + β∇LBk,t (θk,t)

12: θk+1,0 ← θk,T

3.2.2. Related convergence analysis
The randomness of stochastic gradient could make BB step

size sometimes too large or too small , and thus it is often used
together with line search. It is suggested in Wang et al. (2014)
to restrict the BB step size when being applied in practice to
guarantee the convergence of stochastic gradient descent based
algorithms. Indeed, based on Bertsekas and Tsitsiklis (2000,
Proposition 3), we have the following convergence analysis of
the mini-batch stochastic gradient descent method.

Proposition 1. Let Lis defined in Eq. (1) be continuous and
differentiable. Given θ0, let {θt} be the sequence generated by
the mini-batch stochastic gradient descent scheme, i.e.

θt+1 = θt − ηt∇LB(θt),

where ∇LB(θt) is defined in Eq. (5). Define wt = ∇L(θt) −
∇LB(θt). Assume E(‖wt‖

2) ≤ A(1 + ‖∇L(θt)‖2) for some con-
stant A and the learning rate satisfies

∞∑
t=1

ηt = ∞ and
∞∑

t=1

(ηt)2 < ∞. (12)

Then, we have limt→∞ ∇L(θt) = 0.

The proof is done by directly checking the conditions of
Bertsekas and Tsitsiklis (2000, Proposition 3). In order to guar-
antee the convergence of the mini-batch stochastic gradient de-
scent method, one sufficient condition is letting the sequence of
learning rates satisfies the decay property (12).

1In stochastic setting, the calculated learning rate η might be negative.
Therefore, we use the absolute value for the BB formula.
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Therefore, when we apply the BB method to generate learn-
ing rates, we impose a bound constraint on the BB-based learn-
ing rate ηk as follows.

η̂k =

{
ηk, if ηk ∈

1
k+1 [τmin, τmax],

1
k+1τ0, otherwise,

(13)

where k denotes the index of epoch, τmin, τmax, τ0 are predefined
constants. Clearly, the learning rate {̂ηk} determined by Eq. (13)
satisfies constraint (12) for convergence. See Algorithm 1 for
the description of the BB method for adaptive learning rate.

Remark. In practice, it is very rare that the learning rates gen-
erated from the BB-method is out of the bound interval with de-
fault values. For instance, when training VGG on the dataset
CIFAR10 with τmax = 10 and τmin = 0.1, only 1/150 of the
BB-based learning rates are out of the bound interval.

4. Experiments

This section is devoted to performance evaluation of the pro-
posed BB method for adaptive learning rate on several repre-
sentative NN architectures on the task of classification.

4.1. Configuration of experiments
All the experiments are conducted in PyTorch, using the de-

fault parameters if no specifications are provided.

4.1.1. Datasets
For evaluation, the proposed BB methods are used

for training neural networks for the task of classifica-
tion. Five benchmark datasets are used in the experiments,
namely, MNIST2 (LeCun et al., 1998), CIFAR10 and CI-
FAR1003 (Krizhevsky and Hinton, 2009), ImageNet(a.k.a.
ILSVRC-2012) (Russakovsky et al., 2015) and its downsam-
pled variant ImageNet-32-324 (Chrabaszcz et al., 2017). The
configuration of these five datasets is summarized in Table 1.
For all the five datasets, the input images are normalized by
mean and standard deviation per channel. In the CIFAR10 and
CIFAR100 datasets, we performed data augmentation with ran-
dom horizontal flipping additionally. The training-test splitting
in our experiment was based on official requirements.

4.1.2. NN Models
The methods are applied on several representative NN mod-

els. For classic and shallow NNs, the following models are
tested: a multilayer perceptron (MLP) with two fully connected
layers on MNIST, and a convolutional neural network (CNN)
named LeNet (LeCun et al., 1998) with ReLU activation func-
tion on CIFAR10. For deep NNs, the following models are
tested5: VGG (Simonyan and Zisserman, 2014) and Residual

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html
4http://image-net.org/download-images
5The models used in this paper is a reduced version with less layers and

less nodes for computational efficiency, which has been implemented in official
release of PyTorch and are widely used in the study of deep learning.

Neural Networks (ResNet) (He et al., 2016) (We use ResNet18
for CIFAR datasets and ResNet50 for ImageNet datasets). The
configuration of the models used in the experiments is summa-
rized in Table 2. For MLP and LeNet, we initialize the weights
with the method proposed by LeCun et al. (2012). As for VGG
and ResNet, we follow the same weight initialization strategy
as the original paper, except the weights of convolutional lay-
ers, which use the normal initialization proposed by He et al.
(2015) instead.

4.1.3. Methods for comparison
The proposed adaptive learning rate method is compared

to several adaptive learning rate methods that are widely
used in practice on MNIST and CIFAR datasets: Ada-
Grad (Duchi et al., 2011), RMSProp (Tieleman and Hinton,
2012), Adam (Kingma and Ba, 2015) and AMSGrad (Sashank
J. Reddi, 2018). We also compared the proposed method with
the Nesterov Accelerated Gradient (NAG, a.k.a. SGD with Nes-
terov momentum) method (Sutskever et al., 2013), as it has
been used as the preferred optimization algorithms for train-
ing several representative deep neural networks (Simonyan and
Zisserman, 2014; He et al., 2016; Huang et al., 2017).

The initialization of the learning rate is best-tuned by densely
grid search in

[
10−6, 100

]
. Following experimental protocols in

prior works (Kingma and Ba, 2015; Sashank J. Reddi, 2018),
fixed learning rates are adopted for training neural networks.
All methods are implemented using weight decay regulariza-
tion with the regularization parameter λ = 5×10−4. In addition,
we verified the performance of the proposed method for train-
ing ResNet50 on the large-scale image dataset ImageNet. For
ImageNet-32-32, the proposed method is compared with NAG
with learning rate initialized with 0.01 and dropped by a factor
of 0.5 every 10 epochs following Chrabaszcz et al. (2017). For
ImageNet, following He et al. (2016) and Goyal et al. (2017),
the proposed method is compared with NAG whose learning
rate initialized with 0.1 and dropped by a factor of 0.1 every 30
epochs. The weight decay regularization with the regularization
parameter λ = 1 × 10−4 is used.

4.1.4. Configuration of the BB method
For the proposed BB method, the weighting parameter β =

4/T . The parameter τ0 = 1 for all tasks, while τmax = 3, τmin =

0.33 for shallow networks and τmax = 10, τmin = 0.1 for deep
NNs. Considering that the learning rate to achieve good per-
formance generally does not exceed 1 in practice, we could
set ηmax = k∗ + 1 to ensure that the maximum learning rate
during training is as close as possible to 1 but not more than
1, where k∗ is the index of the epoch when the learning rate
exceeds 1 for the first time. For Example, k∗ = 6 for train-
ing VGG in CIFAR10. For the lower bound, we simply set
τmin =

1
τmax

. The size of mini-batch is 128 for MNIST and
CIFAR datasets (Sashank J. Reddi, 2018; Loshchilov and Hut-
ter, 2017) and 256 for ImageNet datasets (Chrabaszcz et al.,
2017; He et al., 2016; Goyal et al., 2017). We conduct the
experiments in the setting of supervised learning. In fact, the
proposed method is also applicable to the related optimization
problem arising from those unsupervised deep learning tasks
such as Zhang et al. (2017); Duan et al. (2019).
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Table 1. The characteristics of the datasets
Dataset MNIST CIFAR-10 CIFAR-100 ImageNet-32-32 ImageNet

#Training set 60,000 50,000 50,000 1,281,167 1,281,167
#Test set 10,000 10,000 10,000 50,000 50,000

Resolution 28×28 32×32 32×32 32×32
original size varies;

crop to 224×244
#Classes 10 10 100 1000 1000

Table 2. The characteristics of the models

Model MLP LeNet VGG ResNet18
ResNet50 for

ImageNet-32-32
ResNet50 for

ImageNet
#Layer 2 5 11 18 50 50

#Convolutional layer N/A 2 8 17 49 49
Convolutional kernel N/A 5×5 3×3 1×1, 3×3 1×1, 3×3 1×1, 3×3 , 7×7

#Fully connected layer 2 3 3 1 1 1
#Fully connected unit 1024,1024 400, 120, 84 512, 512, 512 512 512 512

Batch Norm - - + + + +
#Trainable parameters 1,863,690 62,006 9,756,426 11,173,962 25,549,352 25,557,032
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Figure 2. Performance comparison of BB with different initial learning
rates for training ResNet18 on CIFAR10. For comparison, the result from
AdaGrad is shown in dashed lines.

4.2. Experimental results
4.2.1. Robustness to initial learning rate

Most existing adaptive learning rate methods are sensitive to
initial learning rate. This experiment is to illustrate the robust-
ness of the proposed BB method to initial learning rates. From
Figure 2, It can be seen that the BB method is much less sen-
sitive to the initial learning rate than other adaptive learning
rate do in terms of learning. More importantly, the BB method
is insensitive to initial learning rate in terms of generalization
performance. This property enables the users to avoid unneces-
sary many trials on initial learning rate for achieving high test-
ing accuracy. In the following experiments, we uniformly use
η0 = 0.1 throughout all experiments, thanks to its insensitivity
to generalization performance.

4.2.2. Experiments on training shallow NNs
Figure 3 shows the results of training a multilayer percep-

tron on MNIST. It can be seen that all optimization algorithms
achieve close to 99% accuracy on MNIST. Among them, the
BB method achieves the lowest training loss and the highest
test accuracy. Figure 4 shows the results of training shallow
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Figure 3. Performance comparison of different methods for training MLP
on MNIST.

CNN (LeNet) on CIFAR10. The NAG, a first-order method,
has the best performance in both training and testing for LeNet.
The performance of the BB method is better than that of the
AdaGrad, and is comparable to other adaptive learning rate al-
gorithms. It is noted that the optimization problem for training a
LeNet on MNIST is of quite small scale. It has only 0.06M pa-
rameters to train, which is 1/400 of that of ResNet50. For such
a small-scale problem, it attenuated the advantage of the pro-
posed method over step-size efficiency, since the BB method is
for approximating second-order method. In addition, one weak-
ness of second-order methods, such as Newton method, is that
they sometimes attract to saddle points more often than first-
order methods do (Dauphin et al., 2014).

4.2.3. Experiments on training DNNs
Figure 5–6 show the results of training VGG on CIFAR10

and CIFAR100. On both datasets, the training error and testing
accuracy obtained by VGG are generally worse than ResNet18.
It can be seen that after 25 epochs, the BB still has the lowest
training error and the highest test accuracy than other compared
methods. For other methods, AdaGrad has the lowest training
error on CIFAR10; on CIFAR100, NAG has the lowest training
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Figure 4. Performance comparison of different methods for training LeNet
on CIFAR10.
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Figure 5. Performance comparison of different methods for training VGG
on CIFAR10.

error. In terms of test accuracy, other methods are comparable.
Figure 7–8 show the results of training ResNet18 on CI-

FAR10 and CIFAR100 respectively. It can be seen that on
both datasets, the BB method is significantly better than other
methods, as shown in both the final and the middle results.
The results of AdaGrad are inferior to BB. Figure 9 and Fig-
ure 10 show the results of training ResNet50 on ImageNet-32-
32 and ImageNet respectively. Classification task on ImageNet-
32-32 is more difficult than on its original version due to the
downsampling from 224 to 32. On both datasets, the proposed
method could achieve lower training loss and higher test accu-
racy than NAG, the widely used methods for training DNNs on
ImageNet.

5. Conclusions

In this paper, we proposed an adaptive learning method for
automating the training of NNs. The paper generalizes the
well-established BB method in convex optimization to solve
the training problem in neural network learning. It is shown
that in contrast to many existing adaptive learning rate methods,
the BB method is insensitive to initial learning rate, especially
in terms of generalization performance, which significantly re-
duce computational effort to training an NN. The proposed BB
method also achieves faster learning speed as well as better gen-
eralization performance in various scenarios. In conclusion, the
BB method has the potential for automating the process of set-
ting right learning rate when training NNs.
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Figure 6. Performance comparison of different methods for training VGG
on CIFAR100.
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Figure 7. Performance comparison of different methods for training
ResNet18 on CIFAR10.
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