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Supervised Sparse Coding with Decision Forest
Yan Huang, Yuhui Quan* and Tao Liu

Abstract—By jointly conducting sparse coding and classifier
training, supervised sparse coding has shown its effectiveness in
a variety of recognition tasks. However, the existing supervised
sparse coding methods often consider linear classification, which
limits their discrimination in handling highly-nonlinear data. In
this paper, we propose a new supervised sparse coding model by
incorporating decision tree classifiers. Since decision trees can
well deal with the non-linear properties of data, the introduction
of decision trees to sparse coding can noticeably improve the
discrimination of coding. Meanwhile, sparse coding is able to
produce sparse de-correlated features that decision tree is favor
of. For further improvement, we close the loop of sparse coding
and decision tree learning with an ensemble framework, which
alternatively learns a dictionary for sparse coding and a decision
tree for classification. The resulting series of decision trees as
well as series of dictionaries are used to construct a decision
forest for classification. The proposed method was applied to
face recognition and scene classification, and the experimental
results have demonstrated its power in comparison with recent
supervised sparse coding methods.

Index Terms—sparse coding, dictionary learning, decision tree,
decision forest, classification.

I. INTRODUCTION

IN recent years, sparse coding has become one of the most
popular technologies for data analysis. By finding the most

succinct yet effective representation of data in the coding
space, sparse coding is capable of discovering and captur-
ing the intrinsic subspaces of data. With such a capability,
sparse coding has been widely used in pattern recognition,
such as feature selection [1], subspace clustering [2], image
analysis [3] and classification [4–7].

Given a set of input signals, the aim of the sparse coding
is to represent each signal by the linear combination of a few
atoms in a fixed or learned dictionary. The coefficients of the
linear combination are expected to be sparse, i.e., as few atoms
as possible are selected to represent the signal, and thus the
coefficients are also referred to as sparse codes. Generally,
the sparse coding problem, e.g. the very popular method K-
SVD [8], can be formulated as:

min
D,C
‖Y −DC‖2F , subject to ∀i, ‖ci‖0 ≤ T, (1)

where Y ∈ RQ×P is a data matrix consisting of P signals,
C = [c1, . . . , cP ] ∈ RM×P is the coding matrix which
collects the corresponding sparse codes of Y as columns, and
D ∈ RQ×M is the dictionary to be learned for maximizing the
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efficiency of sparse coding. The `0 pseudo norm ‖·‖0 serves as
a sparsity measure by counting the number of nonzero entries,
and the threshold T controls the sparsity degree as well as the
dimensionality of the coding results.

The above sparse coding model only minimizes the data
reconstruction error of coding, which may make the results
short of discriminability in classification tasks. To enhance the
discrimination of the features from sparse coding, the super-
vised sparse coding approaches, e.g. [9–11], joint the sparse
coding process and the classification process by enforcing
some misclassification penalties on sparse codes when learning
dictionaries. In the existing approaches, the linear classifica-
tion is often used, which limits the power of these approaches
to handle the data with highly-nonlinear properties, e.g. the
linear classifier used in [9, 11] is not suitable for classifying
nonlinearly-separable data, and the Fisher discriminant used
in [12] is not suitable for characterizing mixtures of Guassians.

To further improve the performance of supervised sparse
coding in classification, in this paper we propose a new
supervised sparse coding method by incorporating decision
tree classifiers in an ensemble framework, which alternatively
conducts the sparse coding with dictionary learning and the
decision tree construction. The basic idea is that the sparse
codes under the learned dictionary are used as attributes for
training a decision tree in the current stage, and the important
attributes are identified during the construction of the decision
tree for learning a better dictionary in the next stage of sparse
coding. Repeating such a process results in multiple learned
dictionaries as well as decision trees, which are then used
to construct a sparse coding based decision forest via voting.
The proposed method is applied to face recognition and scene
classification, and the experimental results have shown the
effectiveness of the proposed method.

The benefits of incorporating sparse coding and decision
tree are two-way. On the one hand, by generating a tree
model with an iterative attribute splitting process, the decision
tree can well handle the nonlinear properties of data in
classification. Moreover, the decision tree enjoys both the
discriminability and the robustness to deal with irrelevant
features [13]. Thus, by utilizing the feedback from the decision
tree, the effectiveness of the sparse coding process can be
significantly improved. On the other hand, the construction
of a decision tree is actually to divide the feature space with
disjoint hyper-rectangles. As a result, the lower correlation
of the dimensions of input signals have in the feature space,
the shallower and the more efficient a decision tree becomes.
Fortunately, the sparse coding with dictionary learning can
effectively de-correlate the input data in the coding space, as
the data are aligned to their subspaces in sparse representations
with the learned dictionary atoms as the coordinate axes.
In other words, the dimensions of the features from sparse
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coding have lower the correlation than those of the original
ones. Therefore, the use of sparse coding for preprocessing
can noticeably improve the compactness and efficiency of the
decision tree. Such a benefit is illustrated in Fig. I.
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Fig. 1. The motivation of combining sparse coding and decision tree. (a) The
raw data. (b) The sparse coding results using model (1) on the data in (a) with
two dictionary atoms and sparsity level T = 1, where each axis corresponds
to one dictionary atom. (c) Many rectangles are needed to well capture the
decision boundary of the two classes of data in (a). (d) Only two rectangles
are able to perfectly capture the decision boundary of the two classes of
data in (b). (e) The decision tree constructed from (a). (f) The decision tree
constructed from (b) which is much shallower than that of (e).

II. OUR METHOD

A. Basic idea and framework

The real data often has high correlations among their
dimensions due to redundancy, e.g., two pixels in an image
patch tend to show positive correlations in their intensities.
As discussed in Fig. I, the sparse coding can yield more
succinct representation with lower correlation, which is ben-
eficial to the improvement of the efficiency of the decision
tree. On the other hand, when dealing with non-linear data,
the reconstructive sparse coding cannot guarantee obtaining
a linearly-separable representation from the data. Existing
methods such as [9, 11, 14] incorporate linear classifiers into
sparse coding models to induce the linear separability in the
results. Yet, these methods cannot guarantee that the coding
results are linearly separable. This problem can be remedied
by introducing some nonlinear classifiers.

Inspired by the two aspects above, we unify the sparse
coding and the decision tree construction in a computational

framework. Basically, the sparse coding module (i.e. sparse
encoder) and decision tree construction module (i.e. tree
constructor) are alternatively conducted to iteratively improve
the performance of each module. For further improvement,
we borrowed the idea of ensemble learning [15] to construct
a powerful framework, which integrates multiple learners
to obtain better prediction. At each stage of our proposed
framework, with the sparse codes fed by the sparse encoder,
the tree constructor learns a compact decision tree, and then
the tree constructor feeds back the classification results to
the sparse encoder, including the misclassified data as well
as the effectiveness score of each dimension of the sparse
representation (i.e. the discrimination of a dictionary atom) in
classification. According to the feedback, the sparse encoder
re-samples a set of training data to learn a new dictionary
with some good atoms inherited from the previous stage, and
then feeds forward the sparse code of the selected data under
the learned dictionary to the tree constructor. Such a process
is repeated until the classification accuracy is sufficiently high
or it reaches the maximal iteration number. After the iteration,
the learned dictionaries and the constructed decision trees are
combined to generate a sparse coding based decision forest. In
the next, we will detail each step of the proposed framework.

B. Training stage
Let {(yi, ti)}Pi=1 denote the given training samples, where

yi ∈ RQ is the feature vector, and ti ∈ {1, 2, . . . ,K}
is the class label for total K classes. For convenience, let
Y = [y1, . . . ,yP ] and t = [t1; . . . ; tP ]. In the training
stage, the sparse coding phase and decision tree construction
phase are alternatively iterated. At the nth iteration, the
learned dictionary, the corresponding coding matrix, and the
constructed decision tree are denoted by D(n), C(n), and T (n)

respectively. The total number of iterations is denoted by N .
Given a feature x ∈ RM with proper dimension, a decision
tree T predicts the label l ∈ {1, 2, . . . ,K} of x by l = T (x).

1) Sparse coding: In the initial sparse coding phase
(i.e. n = 1), we conduct sparse coding on the input data Y
by solving the minimization of problem (1), that is

[D(1),C(1)] = argmin
D,C

‖Y −DC‖2F ,

subject to ∀i, ‖ci‖0 ≤ T.
(2)

There are many effective numerical solvers available for this
problem. In this paper, we use an efficient alternating iterative
scheme, which iteratively updates the sparse code C via the
OMP algorithm [16] and calculates the dictionary atoms via
the proximal method [17]. In the later phases (i.e. n ≥ 2),
with the feedbacks (i.e. discriminative atoms D

(n−1)
0 and

misclassified samples Y
(n−1)
0 ) from the decision tree T (n−1),

we conduct the sparse coding as follows:

[D(n),C(n)] = argmin
D,C

‖[Y , βY (n−1)
0 ]− [D

(n−1)
0 ,D]C‖2F ,

subject to ∀i, ‖ci‖0 ≤ T,
(3)

where β ∈ R is a weight. Note that Y (n) = [Y , βY
(n−1)
0 ]

equals to re-sampling the samples from Y that is misclassified
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in T (n−1) and β is the weight for controlling the emphasis on
the misclassified samples in the current phase. This problem
can be solved by a simple modification on the aforementioned
alternating iterative scheme, where we do not update the fixed
dictionary atoms during the dictionary learning process.

At the end of each sparse coding phase, we obtain the
dictionary D(n) and sparse coefficient matrix C(n). Then we
store D(n) and use C(n) to train the decision tree T (n).

2) Tree construction: In the tree constructor phase, we use
the sparse code matrix C(n) of Y (n) from the sparse encoder
as input features, as well as the corresponding label vector
t(n) for supervision, to train a decision tree T (n). In other
words, we view each atom of the learned dictionary D(n) as
an attribute and employ C(n) as the values on these attributes.
Formally, we write this process as

T (n) = fittree(C(n), t(n)), (4)

where fittree denotes a decision tree constructor. Regarding
this task, there are many efficient approaches available. For
simplicity, we choose the traditional approach CART [18] in
this paper. Other new approaches can also be used for possible
improvement. Briefly speaking, the key in the decision tree
construction is the criterion of the node splitting on attributes.
In CART, a binary classification decision tree is generated
from the input variables by splitting the nodes with the Gini
index g defined by

g(p) =

K∑
k=1

pk(1− pk) = 1−
K∑

k=1

p2k, (5)

where p = [p1, · · · , pK ] and pk is the probability of kth class
on a certain node. In essence, the Gini index g measures the
impurity of an attribute.

After the decision tree T (n) is obtained, we can get two
types of feedbacks, including the misclassified samples in
T (n) and the intermediate attribute splitting results. The mis-
classified samples are collected as Y

(n)
0 and used for the

re-sampling in the next sparse coding phase. The attribute
splitting results encode much information about the discrim-
inability of the learned dictionary D(n), and we utilize the
information to collect discriminative dictionary atoms as D(n)

0

and feed back them to the sparse encoder, which is done by:
1) The first S attributes (i.e. dictionary atoms) used in

node splitting are selected as the discriminative ones.
Since the number of samples used for earlier attribute
splitting is larger than that in the latter one, the earlier
an attribute is used for splitting, the more discriminative
the corresponding dictionary atom is.

2) The attributes which repeat more than R times in split-
ting test are also regarded as the discriminative ones.

C. Forest generation and test stage

The sparse coding phase and decision tree phase are alter-
natively iterated until the stopping criterion is satisfied. As a
result, we obtain a series of dictionaries D(1), · · · ,D(N) with
improved representative power and a series of decision trees
T (1), · · · , T (N) that can form a powerful decision forest. The

decision forest is constructed and used as follows. Given a test
sample ytest, we first conduct a series of sparse coding under
{D(n)}Nn=1 by solving

c
(n)
test = argmin

c

1

2
‖ytest −D(n)c‖2F ,

subject to ‖c‖0 ≤ T,
(6)

for n = 1, · · · , N . Each of these problems can be solved by
the OMP algorithm [16]. Then the decision trees are assembled
into a decision forest F which is defined by

F(ytest) = argmax
k=1,··· ,K

N∑
n=1

w(n)δ(T (n)(c
(n)
test )− k). (7)

where δ(x) = 1 if x = 0 and 0 otherwise, and each decision
tree T (n) is weighted according to its classification accuracy
a(n) in training as follows:

w(n) = 0.5 ∗ log(a(n)/(1− a(n))). (8)

Note that the classification accuracy a(n) is calculated as the
ratio between the number of correct predictions and total
number of predictions in T (n).

III. EXPERIMENTS

Our method was evaluated with face recognition and scene
classification. For the convenience of presentation, we denote
the proposed method in the following by SCDF (Sparse
Coding based Decision Forest). In order to demonstrate the
benefits of combining sparse coding and decision tree, we
constructed two baseline methods for the comparison with
SCDF: (1) the decision tree method used in our method, which
is denoted by DeTree; and (2) the decision tree method based
on the sparse codes obtained from the original input feature,
which can be viewed as one loop in the proposed method
and is denoted by SC-DeTree. Besides, we compared our
method with Joint [14], DLSI [19], FDDL [12], L0DL [17],
K-SVD [8], D-KSVD [11], LC-KSVD [10], EasyDL [20],
MCDL [5]. Through all the experiments, the parameters of
the baseline methods are finely tuned for fair comparison.

A. Face recognition on AR-Face

Face recognition is to identify the face images from different
known persons. In our experiment, the AR-Face database [21]
was chosen for the evaluation, which consists of a set of
frontal-view face images with different facial expressions, il-
luminations, and occlusions. Following the standard protocols
used for evaluating sparse coding based classification methods,
e.g. [5, 9, 10, 20], we used a subset including 100 individuals
and total 2600 face images from the database. Each face image
was first cropped to 165 × 120 and then randomly projected
onto a 540-dimensional feature vector. Then the subset was
randomly divided into two disjoint subsets, one including 20
persons for training and the rest for test.

The parameters of the proposed method were set as follows:
the dictionary size M = 500, the number of iterations N =
400, the sparsity level T = 18, the resampling weight β =
0.01, and the parameters S and R for discriminative atom
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selection were set to 4 and 2 respectively. The recognition
results of all compared methods on the AR-Face dataset are
listed in Table I, where the variances (if available) are reported
over 20 runs.

TABLE I
FACE RECOGNITION RESULTS (%) ON AR-FACE.

Method Accuracy Method Accuracy Method Accuracy

Joint [14] 88.24 K-SVD [8] 86.5 MCDL [5] 95.21 ± 1.20
DLSI [19] 89.80 D-KSVD [11] 88.80 DeTree 21.83 ± 1.08
FDDL [12] 92.00 LC-KSVD [10] 93.70 SC-DeTree 58.67 ± 0.97
L0DL [17] 94.40 EasyDL [20] 94.40 SCDF 96.17 ± 0.70

B. Scene classification on Scene-15

Scene classification is to assign the class label to each image
based on the scene environments it contains. In our evaluation,
the Scene-15 dataset [22] with a wide range of outdoor and
indoor scenes was chosen. There are 15 scene categories and
total 4485 scene images on the Scene-15 dataset. The images
in the dataset are around in the resolution of 250 × 300,
with 210 to 410 images per class. We randomly selected 100
samples in each category for training, and the rest for test. The
3000-dimensional SIFT-based spatial pyramid features [22]
extracted from the original images were used as the input.

The parameters of the proposed method were set as follows:
the dictionary size M = 450, the number of iterations N =
350, the sparsity level T = 8, the resampling weight β =
0.01, and the atom selection parameters S = 22 and R = 2.
The classification accuracies of all compared methods on the
Scene-15 dataset are shown in Table II, where the variance (if
available) is reported over 20 runs.

TABLE II
SCENE CLASSIFICATION RESULTS (%) ON SCENE-15.

Method Accuracy Method Accuracy Method Accuracy

Joint [14] 88.20 KSVD [8] 86.70 MCDL [5] 97.35 ± 0.31
DLSI [19] 92.46 D-KSVD [11] 89.10 DeTree 70.45 ± 1.02
FDDL [12] 98.35 LC-KSVD [10] 92.90 SC-DeTree 81.80 ± 1.45
L0DL [17] 93.1 EasyDL [20] 98.46 SCDF 98.58 ± 0.20

C. Result analysis and discussion

The above results have demonstrated the effectiveness of the
proposed method, where the proposed method outperformed
all the other compared methods on the datasets. Particularly,
since the Joint, D-KSVD and LC-KSVD methods combine the
linear prediction penalty with sparse coding, the improvement
of the proposed method over these three methods does show
the benefits of introducing the nonlinear classification instead
of the linear one into sparse coding. It is worth noting that our
method yielded better results than two recent sparse coding
methods, i.e. EasyDL and MCDL. These two methods also
use the idea of ensemble learning, where a number of linear
classifiers are integrated to handle the nonlinear properties of
data. The improvement of the proposed method over these two

methods actually indicates that integrating a decision forest
into sparse coding can better handle nonlinearities of data than
the ensemble of simple linear classifiers.

The comparison with the baseline methods also supports the
motivation of our method. It can be seen that, when handling
data with high correlation, the simple decision tree classifier
does not work well, e.g. only 21.83% accuracy gained on the
AR-Face dataset. Combining the decision tree with the sparse
coding can noticeably boost the performance, which indicates
the benefits of using sparse representation for decision tree.

There are two important parameters in our experiments: the
sparsity level T which is about the dimension of the space
that the data lies at and the number of iteration N which
determines the number of decision trees used for the ensemble.
In order to evaluate the effects of these two parameters to the
performance of our method, we conducted the experiments for
parameter analysis, where T or N is sequentially increased
while freezing other parameters to observe the change of
classification accuracy. The results are shown in Fig. 2, from
which we can see that our method shows stability to the
setting of T and N in a reasonable range. It is observed that
when T is too small, the performance is low. This is because
small T cause large reconstructive error. When T reaches
a moderate value, the performance becomes optimal. As T
increases, the performance drops a bit due to the fact that when
T goes beyond the true dimension of data, the learned decision
forest become overfitting. It can be also observed that, with
the increase of N , the performance is improved accordingly.
When N is sufficiently large, the performance saturates and
becomes stable. This clearly demonstrates the benefits of using
the ensemble strategy in our method.
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Fig. 2. The influence of parameters to the performance of the proposed
method, including (a) the sparsity level and (b) the number of decision trees.

IV. CONCLUSIONS

In this paper, we proposed a supervised sparse coding
approach by combining sparse coding and decision tree con-
struction by alternatively conducting one module according to
the feedback from the other. With an ensemble strategy, the
proposed approach generates a series of dictionaries for sparse
coding and multiple decision trees as a forest for classification.
We evaluated the performance of the proposed approach with
face recognition and scene classification. The power of the
proposed approach has been demonstrated by its improvement
over the state-of-the-art ones as well as the baselines. In future,
we would like to investigate more ensemble techniques for
sparse coding.
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