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Abstract—In the era of data science, a huge amount of data
has emerged in the form of tensors. In many applications, the
collected tensor data is incomplete with missing entries, which
affects the analysis process. In this paper, we investigate a
new method for tensor completion, in which a low-rank tensor
approximation is used to exploit the global structure of data,
and sparse coding is used for elucidating the local patterns of
data. Regarding the characterization of low-rank structures, a
weighted nuclear norm for tensor is introduced. Meanwhile,
an orthogonal dictionary learning process is incorporated into
sparse coding for more effective discovery of the local details
of data. By simultaneously using the global patterns and local
cues, the proposed method can effectively and efficiently recover
the lost information of incomplete tensor data. The capability of
the proposed method is demonstrated with several experiments
on recovering MRI data and video data, and the experimental
results have shown the excellent performance of the proposed
method in comparison with recent related methods.

Index Terms—tensor completion, sparse coding, weighted nu-
clear norm, orthogonal dictionary learning

I. INTRODUCTION

IN many data mining and machine learning scenarios,
the collected data are in the form of multi-dimensional

arrays, e.g. multi-spectral images, image patch stacks, videos,
and magnetic resonance imaging (MRI) data, which can be
represented as tensors. The tensor data (i.e. data in the form
of tensor) encodes very rich structural information, and tensor
analysis is widely used in gait recognition [1, 2], object recog-
nition [3], dynamic texture recognition [4], image recovery
[5–7], medical image processing [8, 9], and many machine
learning fields [10–17].

The tensor data collected in real world are often incomplete,
which may be caused by occlusions, noise, partial damages,
difficulties in collection, or data loss during transition. For
example, people may wear sunglasses in surveillance videos.
In recommendation systems, the preferences of users are often
only available partially. Such incompleteness of tensor data
may significantly decrease the quality of the data, making the
analysis process very difficult.

This incompleteness problem can be remedied through
tensor completion, which is to recover the complete tensor
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from the incomplete one. There have been some approaches
proposed for this purpose, which can be roughly classified into
two categories: the matching-based approaches (e.g. [18, 19])
that find optimal patch correspondences to fill the holes in data,
and the low-rank approximation approaches (e.g. [20, 21])
which exploit the low-rank structures of the original tensor
data for the completion. The matching-based approaches are
often designed for inpainting large regions, while the low-rank
approximation approaches are applicable to both damaged
regions and random missing entries.

A. Related Work

This paper focuses on the development of an effective
low-rank approximation approach for tensor completion. In
the following, we first review the existing low-rank tensor
completion methods.

The basic idea of the low-rank approximation approach
is that high-dimensional data are likely to lie in some low-
dimensional spaces, since they often exhibit large similarities.
Such low-dimensionality of data can be well characterized
by low-rank constraints on the data, and hence the global
structure of tensor data encoded in their similarities can be
recovered via low-rank minimization. Nevertheless, unlike the
rank of a matrix, the rank of a tensor has several non-
equivalent definitions which are built upon different types of
tensor decompositions. By using different definitions of rank
of a tensor, different kinds of low-rank tensor completion
approaches have been proposed. Currently, there are mainly
three main types of tensor decompositions: CP decomposition,
Tucker decomposition, and t-SVD decomposition.

CP decomposition [22–26] decomposes a tensor into the
sum of a group of rank-1 factors, and its rank (CP-rank)
is defined as the minimum number of the rank-1 factors.
Based on the CP decomposition, Yokota et al. [25] proposed
a low-rank tensor approximation model with the smoothness
constraints defined by total variation and quadratic variation.
For acceleration, Liu et al. [23] proposed a tensor completion
model based on factor matrix trace norm minimization, in
which the cost of performing singular value decompositions
can be noticeably reduced. Liu et al. [26] used the nuclear
norm with CP decomposition to approximately measure the
CP-rank, which leads to a convex optimization problem. How-
ever, estimating the CP-rank of high-dimensional data is non-
trivial, and for practical problems it is often computationally
difficult to determine the CP-rank or the best low-rank CP
approximation of a tensor data set beforehand [27]. To address
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this issue, Zhao et al. [24] proposed a hierarchical probabilistic
model with a fully Bayesian treatment to determinate the CP-
rank automatically.

In t-SVD decomposition [27–31], a tensor is expressed by
a defined t-product operation of three factors. The structure of
t-SVD is similar to that of SVD applied to a matrix. Based
on t-SVD, Zhang et al. [28] defined the tensor multi-rank and
tensor tubal-rank, which are used to construct the low-rank
tensor completion models. Based on the tubal-rank, Liu et
al. [29] proposed a model similar to [28]. In the same spirit,
Lu et al. generalized the robust principal component analysis
technique from the matrix case to the tensor case [30]. In [31],
the twist tensor nuclear norm is developed based on t-svd and
used to design a convex low-rank tensor approximation model.

Tucker decomposition [32–36] decomposes a tensor into a
core tensor and a set of matrices, and the rank is defined based
on the core tensor. Building upon the Tucker decomposition,
Liu et al. [32] proposed a tensor nuclear norm which is
defined by the rank of the matrix generated by unfolding the
tensor along each mode. Liu et al. [34] proposed a similar
method with much lower computational complexity. Han et
al. [35] modified the tensor nuclear norm to form a truncated
version, which ignores large singular values and thus yields
better approximation to the rank. They also introduced a
sparse regularization framework based on a multi-dimensional
DCT dictionary to construct a minimization model for tensor
completion. Hosono et al. [36] proposed to use the weighted
version of the tensor nuclear norm in a denoising model, as it
is a better surrogate to the rank function than either the nuclear
norm or truncated nuclear norm.

Besides, Imaizumi et al. [37] developed a convex tensor
completion model based on tensor train decomposition. It
is worth mentioning that tensor completion is related to
matrix completion, as tensor is the generalization of matrix.
Interested readers may refer to [38–45] for the low-rank matrix
completion methods which are related to ours.

B. Contributions

The key in tensor completion is how to relate the unknown
values with the known ones by utilizing the global structures
as well as the local patterns in the tensor. In this paper, we
proposed an effective method for tensor completion, which
simultaneously utilizes a low-rank approximation as the global
guidance, and a sparse representation as the local clue for
tensor completion. For low-rank approximation, we introduce
the weighted nuclear norm with an effective weighting scheme
to measure the rank of a tensor. For sparse representation,
we integrate an orthogonal dictionary learning process into
the sparse coding stage for more effective discovery of the
local patterns of the tensor data. In the experimental results,
the proposed method has shown superior performance when
compared to a number of state-of-the-art methods, while its
computational efficiency is acceptable.

Compared with [32] which only utilizes the global low-
rank structure of tensors, we consider additional local in-
formation of the data set for completion via sparse coding.
Compared with [35] which uses the truncated tensor nuclear

norm for low-rank approximation, we employ the weighted
nuclear norm as the surrogate of rank. The performance of the
truncated tensor nuclear norm minimization is influenced by
the number of truncated singular values, of which the optimal
value is not known in advance. Moreover, this ignores a subset
of singular values which might be useful for the recovery
process. In contrast, weighted nuclear norm minimization
with an adaptive weighting scheme in our method allows
different singular values to be shrunk with different thresholds,
which yields a better approximation to the rank. In addition,
compared to [35], we learn a dictionary instead of using a fixed
dictionary for sparse coding. By using dictionary learning, our
method can learn more meaningful dictionary atoms (e.g., the
atoms in the DCT dictionary is orientation-less and periodic,
while our learned dictionary has more flexibility and adapts to
the data), and recover the local details of data more accurately.

The remainder of this paper is organized as follows. Sec-
tion II introduces the preliminaries of our work, and Sec-
tion III presents the proposed model and the corresponding
optimization approach. Section IV provides details of the
experimental evaluation on the proposed method. The final
section concludes the paper.

II. PRELIMINARIES

A. Notations and Definitions

Throughout the paper, we use the following notations. The
operation ◦ denotes outer product. Tensors are denoted by
uppercase calligraphic letters, matrices and sets are denoted by
uppercase boldfaced letters, vectors are denoted by lowercase
boldfaced letters, and scalars are denoted by normal letters
(lowercase or uppercase). For example, X ∈ RQ1×Q2···×QN

denotes an N th-order tensor, X ∈ RQ1×Q2 denotes a Q1×Q2

matrix, and x ∈ RQ denotes a column vector with Q elements.
For a matrix X , its rank is denoted by rank(X), and its

nuclear norm ‖X‖∗ is defined by the sum of all singular values
of X , i.e.

‖X‖∗ =
L∑
i=1

σi, (1)

where σi is the ith largest singular value of X , and L is the
number of singular values of X . XΩ denotes the elements of
X in the index set Ω. The identity matrix with appropriate
size is denoted by I.

For an N th-order tensor X ∈ RQ1×Q2×···×QN , the mode-n
unfolding operation, or the mode-n matricization, is denoted
by

X(n) ∈ RQn×(Q1×···×Q(n−1)×Q(n+1)×···×QN ),

which is a mapping from X (q1, q2, · · · , qN ) to X(n)(qn, j)
indexed by

j = 1 +

N∑
k=1,k 6=n

(qk − 1)Jk, (2)

where Jk =
∏k−1
m=1,m 6=nQm. The folding operation fold [·]

is the reverse mapping of X(n), that is, fold [X(n)] = X .
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Furthermore, let the operator P denote the following op-
erations: sample p distinct patches in X , with a size of
S1 × S2 × · · · × SN , where p = Q1

S1
× Q2

S2
× · · · × QN

SN
,

then vectorize these patches, and stack them in a matrix. Let
B = P−1 be the inverse operation of P , i.e., stacking the
patches back into a tensor.1 It is easy to verify that both P
and B preserve the Frobenius norm.

Given two equal-size tensors X and Y , their inner product
〈X ,Y〉 is defined as the sum of the products of the corre-
sponding entries of X and Y . The Frobenius norm of X is
then defined by ‖X‖F = 〈X ,X〉

1
2 . The `0-norm2 of a tensor

X , denoted by ‖X‖0, is defined as the number of non-zero
elements in X .

B. Low-rank Tensor Completion

Tensor is a generalization of matrix, which can be viewed
as a multi-dimensional array. The dimensionality of the array
is called the order of the tensor. By this definition, a scalar
is a 0th-order tensor, a vector is a 1st-order tensor, and a
matrix is a 2nd-order tensor. The rank of a matrix can also
be generalized to the rank of a tensor, which can be used to
measure the variation of the data encoded by a tensor. The
rank of a tensor is often defined via the minimum number of
its components under certain types of decomposition. Based
on the different types of decomposition, there are a number
of different definitions for its rank.

Two representative tensor decompositions include the CP
decomposition and Tucker decomposition, both of which are
generally expressed as a sum of outer products of vectors.
Given an N th-order tensor X ∈ RQ1×Q2×···×QN , the CP
decomposition on X can be regarded as a generalization of the
matrix singular value decomposition (SVD) to tensor, which
yields

X =

M∑
i=1

λia
(1)
i ◦ a

(2)
i ◦ · · · ◦ a

(N)
i , (3)

where ◦ denotes the outer product which implies that
X (q1, q2, · · · , qN ) =

∑M
i=1 λia

(1)
i (q1)·a(2)

i (q2) · · ·a(N)
i (qN ),

M is expected to be the minimum number of rank-1 tensors
needed to express X , and it is called the CP-rank of the tensor
X , and a(k)

i is a vector in RQk .
In comparison, the Tucker decomposition expresses X as

X =

M1,M2,··· ,MN∑
i1=1,i2=1,··· ,iN=1

λi1,i2,··· ,iNa
(1)
i1
◦ a(2)

i2
◦ · · · ◦ a(N)

iN
, (4)

where (M1,M2, · · · ,MN ) is viewed as the multi-linear
rank of the tensor X . By simple manipulation, the decom-
position (4) can be rewritten using a core tensor S ∈
RM1×M2×···×MN as follows:

X = S ×A(1) ×A(2) × · · · ×A(N), (5)

1Without loss of generality, we assume Qi
Si

is an integer for all i. Otherwise,
we can extend the tensor to meet this requirement.

2According to [46], `0-norm is neither a norm nor a pseudo-norm. We call
it a norm here for convenience.

where {A(n) ∈ RQn×Mn , n = 1, 2, · · · , N} is the set of factor
matrices with A(n) = [a

(n)
1 , · · · ,a(n)

Mn
], and × denotes the

tensor product. The mode-n tensor product of the tensor S by
a matrix A(n) is expressed as

(S ×A(n))(m1,m2, · · · ,mn−1, qn,mn+1, · · · ,mN )

=
∑
mn

S(m1,m2, · · · ,mN ) ·A(n)(qn,mn).
(6)

The low-rank tensor completion problem can be formulated
as follows:

min
X

rank(X ), s.t. XΩ =MΩ, (7)

where Ω is an index set, in which the elements of M in the
set Ω are given and the remaining elements are missing. The
rank function is non-convex, which makes the minimization
problem difficult to solve. A popular alternative to the rank
is the nuclear norm which relaxes the former to its convex
surrogate. Consider the Tucker decomposition, one possible
relaxation scheme is as follows [32]:

min
X
‖X‖∗, s.t. XΩ =MΩ, (8)

where the tensor nuclear norm ‖X‖∗ is defined by

‖X‖∗ =
N∑
i=1

αi‖X(i)‖∗, (9)

with αi ≥ 0 and
∑N
i=1 αi = 1. To improve the approximation

to the rank, the truncated nuclear norm is generalized from
the matrix to the tensor case in [35].

The low-rank tensor completion models focus on exploiting
the global features of the data for completion, as the rank of a
tensor is determined by all its entries. However, these models
do not consider the local structure of the data which is very
important in many applications (e.g. local smoothness of a
video sequences in space and time).

C. Sparse Coding and Dictionary Learning

In the last two decades, sparse coding and dictionary
learning [47–53] have become important techniques for dis-
covering the low-dimensional structures of high-dimensional
data. Sparse coding aims at expressing the given data with a
dictionary (i.e. a set of atoms), such that the linear combination
of a few dictionary atoms can approximate the data well. In
other words, a signal y is expressed with a dictionary D as

y ≈Dc, (10)

where the coefficient vector c is sparse (i.e., most entries are
zeros). The sparsity pattern of c combined with the dictionary
can reveal the essential structure of the data and leads to a
compact representation.

The dictionary for sparse coding can be analytic (like
wavelets) or learned from data. In general, dictionary learn-
ing can noticeably improve the representational power of a
dictionary and leads to better sparsity in sparse coding, as
the learned dictionary is adapted to the data. The plain sparse
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coding model with dictionary learning is often formulated as
follows:

argmin
D,{ci}

K∑
i=1

‖yi −Dci‖22 + λi‖ci‖0, (11)

where {yi} ⊂ RZ is a set of signals to be approximated, ci
is the sparse code of yi, D = [d1,d2, · · · ,dE ] ∈ RZ×E is
a dictionary which often has the constraints ‖dj‖2 = 1, 1 ≤
j ≤ E, and {λi} is the set of balance factors.

In many applications, over-complete dictionaries are used,
as the redundancy of the dictionary facilitates the finding of
sparse solutions. However, the more redundant the dictionary
is, the higher the computational cost becomes. A balance
between performance and computational cost can be achieved
by using orthogonal dictionaries. In fact, recent studies [54, 55]
have shown that using an orthogonal dictionary can lead to a
very efficient algorithm, while achieving comparable perfor-
mance to that of a redundant dictionary in image restoration.

It is worth mentioning that traditional sparse coding ap-
proaches are developed with respect to the matrix form, and
they are not applicable to general tensor data. Thus, there are
some recent works that investigate sparse coding techniques
for tensor data, which are referred to as tensor sparse coding;
see e.g. [4, 56–60].

III. OUR METHOD

In this section, we present our method, which aims at
simultaneously utilizing the global structures and local patterns
of data for tensor completion. We first present the mini-
mization model of our method in Section III-A, and then a
numerical algorithm is proposed in Section III-B for solving
the minimization problem.

A. Model

The basic idea of the proposed method is to introduce the
weighted nuclear norm for a tensor to characterize the global
low-rank structure of the data, and use a sparse representation
with dictionary learning to capture the local patterns of the
data. Based on this idea, our model is formulated as follows:

min
X ,D,C

‖X‖∗,W ,α +
β

2
‖X − B(DC)‖2F + λ‖C‖0

s.t. XΩ =MΩ, D
>D = I,

(12)

where X ∈ RQ1×Q2×···×QN is the incomplete tensor to be
recovered, B is the tensor patch re-constructor defined in
Section II-A, D is an orthogonal dictionary to be learned,
C is the set of sparse codes from X under D, β, λ > 0 are
the balance factors, M is a latent tensor, and XΩ = MΩ

means that the elements of X and M on the support Ω are
equal.

The weighted tensor nuclear norm ‖X‖∗,W ,α is defined by

‖X‖∗,W ,α =

N∑
i=1

αi‖X(i)‖∗,wi , (13)

where W = [w>1 ,w
>
2 , · · · ,w>N ]>, wi ∈ RJi is the weighting

vector for the weighted nuclear norm of X(i), i = 1, · · · , N ,

Ji is the total number of the singular values of X(i), α =

[α1, · · · , αN ] is subject to αi ≥ 0 for all i and
∑N
i=1αi = 1,

and ‖X‖∗,w is the weighted nuclear norm for a matrix, which
is defined as

‖X‖∗,w =

J∑
j=1

σjw(j), (14)

where σj is the jth largest singular value of X , and J is the
total number of singular values. Motivated by [36, 43], we
define the weight vector wi as

wi = δ/
(
σ(X(i)) + ε

)
, i = 1, 2, · · · , N, (15)

where δ ∈ R+ is a constant, σ(X(i)) ∈ RJi is the vector of
singular values of X(i), and ε is a small value to avoid division
by zero. As X(i) is unknown, we iteratively updatewi. In other
words, in the kth iteration, we calculate w(k)

i by

w
(k)
i = δ/

(
σ(X (k)

(i) ) + ε
)
, i = 1, 2, · · · , N. (16)

It is effective to determine the weights using our proposed
strategy, since larger singular values represent more important
components of the data and should be shrunk less. Thus, we
assume the weights are inversely proportional to the singular
values.

There are two components in the model (12). The first
component ‖X‖∗,W ,α is to enforce a low-rank structure on the
recovered result X , which is to use global similarity as well
as the low-dimensionality of data for the recovery. The second
component β2 ‖X −B(DC)‖2F +λ‖C‖0 is to enforce sparsity
on the recovered result X , i.e., the local patches of X can
be sparsely represented by some dictionary D, which is used
to elucidate the local patterns in the tensor for better results.
In order to improve the effectiveness of sparse representation,
we propose to learn the dictionary D. As shown in [54, 55],
using an orthogonal dictionary can lead to a speedup without
a noticeable performance loss in data recovery. Thus, we also
introduce a sparsity constraint to the dictionary. The learned
dictionary in the proposed model is adaptive to the local
structure of the data. The sparse representation framework of
using a third-order tensor for illustration is shown in Figure 1.

= × 

p

X1 X2 XnS1×S2×...×SN

X1

X2

Orthogonal dictionary Sparse coefficientsPatch matrix  P(X)

A tensor X is divided into p cuboids. The size 

of each cuboid is S1×S2×...×SN.

Fig. 1. The procedure of determining the sparse codes
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The benefits of our model can be summarized into two
aspects. Regarding the low-rank approximation with the
weighted tensor nuclear norm, it can enforce a low-rank
structure for the data. The weighted tensor nuclear norm is
better than the truncated or original tensor nuclear norm in
terms of its capability to approximate the rank, and it can
capture the global information of the data well by considering
the singular values. Regarding the sparsity regularization with
the learned dictionary, it can effectively discover the local
structural information, and utilize the information for tensor
completion. The sparsity constraint also helps to eliminate the
artifacts of the reconstructed data, as can be observed in the
experiments.

B. Framework of Algorithm

We utilize the Alternating Direction Method of Multipliers
(ADMM) to solve the proposed minimization model in (12).
Since the ith-mode unfolding X(i) for i = 1, · · · , N are
dependent on each other, the optimization problem (12) is
inseparable with respect to each X(i). Thus, we first introduce
a series of auxiliary tensors G1, · · · ,GN , and reformulate the
problem (12) as follows:

min
X ,D,C

N∑
i=1

αi‖Gi,(i)‖∗,wi +
β

2
‖X − B(DC)‖2F + λ‖C‖0

s.t. X = Gi, i = 1, · · · , N,
XΩ =MΩ, D

>D = I.
(17)

Then, the augmented Lagrangian function of (17) is given by

L(X ,Gi,C,D,Yi) =
N∑
i=1

αi‖Gi,(i)‖∗,wi + 〈X − Gi,Yi〉

+
β

2
‖X − Gi‖2F +

β

2
‖X − B(DC)‖2F

+ λ‖C‖0,
(18)

where β > 0 is a penalty parameter, and Yi is a Lagrangian
multiplier. ADMM solves the problem (17) with the following
scheme:

X (k+1) = argmin
XΩ=MΩ

L(X ,G(k)i ,C(k),D(k),Y(k)
i ),

G(k+1)
i = argmin

Gi
L(X (k+1),Gi,C(k),D(k),Y(k)

i ),

C(k+1) = argmin
C

L(X (k+1),G(k+1)
i ,C,D(k),Y(k)

i ),

D(k+1) = argmin
D>D=I

L(X (k+1),G(k+1)
i ,C(k+1),D,Y(k)

i ),

Y(k+1)
i = Y(k)

i + β(X (k+1) − G(k+1)
i ).

We develop an iterative alternating algorithm based on the
above scheme, which is summarized in Algorithm 1. In the
following we will provide details on each step of the algorithm.

Algorithm 1 The proposed method for tensor completion

Input:
The observed tensor M, maximum number of iterations
kmax, the index set of the known elements Ω.

Output:
The reconstructed data X .

1: Initialization: αis, λ,X (0)
Ω =MΩ,X (0)

Ω
,G(0)i = 0,Y(0)

i =

0,D(0),C(0), ε, β.
2: While not meeting the stop criterion do
3: Update X (k+1) by Eq. (20);
4: Update the weights w(k+1)

i by Eq. (21);
5: Update G(k+1)

i by Eq. (23);
6: Update C(k+1) by Eq. (26);
7: Update the dictionary D(k+1) by Eq. (29);
8: Update Y(k+1)

i by Eq. (30).
9: end while

10: return X (k+1).

C. Detailed Steps of Algorithm

1) Calculation of X (k+1): When G(k)i , C(k), D(k), Y(k)
i

are available, the calculation of X (k+1) is as follows:

X (k+1) =argmin
XΩ=MΩ

L(X ,G(k)i ,C(k),D(k),Y(k)
i )

=argmin
XΩ=MΩ

N∑
i=1

〈
X − G(k)i ,Y(k)

i

〉
+
β

2

∥∥∥X − G(k)i

∥∥∥2
F
+
β

2
‖X − B(D(k)C(k))‖2F

=argmin
XΩ=MΩ

N∑
i=1

∥∥∥∥∥X − G(k)i +
Y(k)
i

β

∥∥∥∥∥
2

F

+ ‖X − B(D(k)C(k))‖2F .
(19)

This is a least-square problem which has the explicit solution
given by


X (k+1)

Ω
=

1

N + 1
· {

N∑
i=1

(G(k)i − Y
(k)
i

β
)

+ B(D(k)C(k))},
X (k+1)
Ω =MΩ,

(20)

where Ω denotes the complement of Ω, i.e. the index set of
the missing values.

2) Calculation of G(k+1)
i : After X is updated, we update

the weightswi in the weighted tensor nuclear norm as follows:

w
(k+1)
i = δ/[σ(X (k+1)

(i) ) + ε], i = 1, 2, · · · , N. (21)
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Then, when X (k+1), C(k), D(k), Y(k)
i have been calculated,

we compute G(k+1)
i as follows:

G(k+1)
i =argmin

Gi
L(X (k+1),Gi,C(k),D(k),Y(k)

i )

=argmin
Gi

αi‖Gi,(i)‖∗,w(k+1)
i

+
〈
X (k+1) − Gi,Y(k)

i

〉
+
β

2
‖X (k+1) − Gi‖2F

=argmin
Gi

αi‖Gi,(i)‖∗,w(k+1)
i

+
β

2
‖X (k+1) − Gi +

Y(k)
i

β
‖2F

=argmin
Gi

αi‖Gi,(i)‖∗,w(k+1)
i

+
β

2
‖Gi,(i) − (X (k+1) +

Y(k)
i

β
)(i)‖2F .

(22)
The above problem has the following closed-form solution:

G(k+1)
i = fold [UiSαi

β w
(k+1)
i

(Σ)V >i ], (23)

where (X (k+1)+
Y(k)
i

β )(i) = UiΣV
>
i is the SVD of (X (k+1)+

Y(k)
i

β )(i), and Sw(Σ) is the generalized soft-thresholding op-
erator defined with the weight vector w as follows:

Sw(Σ)(i, j) =

{
max

(
Σ(i, j)−w(i), 0

)
, i = j;

0, i 6= j.
(24)

3) Calculation of C(k+1): After X (k+1), G(k+1)
i , D(k),

Y(k)
i are obtained, C(k+1) is computed by

C(k+1) =argmin
C

L(X (k+1),G(k+1)
i ,C,D(k),Y(k)

i )

=argmin
C

β

2
‖X (k+1) − B(D(k)C)‖2F + λ‖C‖0

=argmin
C

β

2
‖P[X (k+1) − B(D(k)C)]‖2F + λ‖C‖0

=argmin
C

β

2
‖P(X (k+1))−D(k)C‖2F + λ‖C‖0

=argmin
C

β

2
‖D(k)>P(X (k+1))−C‖2F + λ‖C‖0,

(25)
This problem can be solved by

C(k+1) = H√
2λ
β

(
D(k)>P(X (k+1))

)
. (26)

where Hθ(·) denotes the element-wise hard thresholding op-
erator defined by

Hθ(x) =

{
x, |x| > θ,

0, otherwise.
(27)

4) Calculation of D(k+1): After obtaining X (k+1), G(k+1)
i ,

C(k+1) and Y(k)
i , we compute the dictionary D(k+1) as

follows:

D(k+1) =argmin
D>D=I

L(X (k+1),G(k+1)
i ,C(k+1),D,Y(k)

i )

=argmin
D>D=I

‖X (k+1) − B(DC(k+1))‖2F

=argmin
D>D=I

‖P[X (k+1) − B(DC(k+1))]‖2F

=argmin
D>D=I

‖P(X (k+1))−DC(k+1)‖2F ,

(28)

This problem has an explicit solution given by [34, 54]:

D(k+1) = UV >, (29)

where P(X (k+1))C(k+1)> = UΣV > is the SVD of the
matrix P(X (k+1))C(k+1)>.

5) Calculation of Y(k+1)
i : After X (k+1), G(k+1)

i , C(k+1),
D(k+1) are calculated, we compute Y(k+1)

i by:

Y(k+1)
i = Y(k)

i + β(X (k+1) − G(k+1)
i ). (30)

D. Initialization

To begin, the above algorithm requires the initial estimates
of C and D, which are obtained as follows. The initial
dictionary D(0) ∈ R(S1×S2×···×SN )×(S1×S2×···×SN ) is set to
a multi-dimensional DCT dictionary. The initial estimate X (0)

is generated by setting all elements of XΩ to the mean value
of the elements of MΩ , and XΩ =MΩ . The initial sparse
code C(0) is computed by solving

min
C

β

2
‖P(X (0))−D(0)C‖2F + λ‖C‖0. (31)

Same as (26), this problem has the explicit solution given by

C(0) = H√
2λ
β

(
D(0)>P(X (0))

)
. (32)

IV. EXPERIMENTS

In this section, we evaluated the proposed method by ap-
plying it to tensor completion. We consider third-order tensor
data of three different types: color images, MRI volume data
and video data. The evaluation was conducted using Matlab
R2012b (64bit) on a PC with an Intel Core i5-4590 CPU
(3.30GHz) and 8GB memory. In the remainder of the paper,
we denote our method as WTNNDL.

A. Test Data

We select six test images which are shown in Figure 2
to evaluate the performance of the proposed method on
the recovery of color images. The size of each image is
255 × 255 × 3. Regarding the evaluation on MRI, we use
the MRI volume dataset called CThead, which is a subset
of the datasets in the “University of North Carolina Volume
Rendering Test Data Set” archive.3 The size of the dataset
is 252 × 252 × 99. See Figure 3 for some samples from
this dataset. Regarding the evaluation on videos, we used

3downloaded from http://graphics.stanford.edu/data/voldata/.
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four videos which are respectively selected from the classes
of Biking, BabyCrawling, JugglingBall and Lunges from the
UCF-101 action dataset [61]. In the simulation, we use a third-
order tensor representation, and the color videos are converted
to grayscale videos. The size of each video is 240×320×80.
See Figure 4 for the test data.

Airplane Facade House

Lena Peppers Sailboat

Fig. 2. Test images

Fig. 3. Sample slices from MRI dataset

Biking

BabyCrawling

JugglingBall

Lunges

Fig. 4. Test videos

B. Protocols

Given the original complete data M (ground truth) and the
recovered data X from the incomplete one, two criteria are

used for measuring the quality of the recovered results. One
is the relative square error (RSE) defined as

RSE (X ,M) = 20 ∗ log10(‖X −M‖F )/‖M‖F . (33)

The other is the peak signal-to-noise ratio (PSNR) defined as

PSNR(X ,M) = 10 ∗ log10(TV
2
max/‖X −M‖2F ), (34)

where Vmax corresponds to the upper bound of the voxel value
in M which is set to 255 in the experiment, and T denotes
the total number of voxels in M.

For comparison, we selected four state-of-the-art approaches
which have published results or available codes, including
• SPC-QV [25]: integrating CP decomposition for incom-

plete tensors and the efficient selection of models for
minimizing the tensor rank, with the quadratic variation
constraint to promote smoothness.

• HaLRTC [32]: utilizing a general tensor nuclear norm
defined on Tucker decomposition for low-rank tensor
completion.

• FaLRTC [32]: using a smoothed version of the tensor
nuclear norm with an accelerated numerical algorithm for
the low-rank approximation of tensor.

• TTNNL1 (TTNN+3DDCT) [35]: using the truncated
tensor nuclear norm for low-rank approximation, and
a `1-sparse regularization term combined with the 3-
dimensional DCT bases. For clarity, we denote it as
TTNN+3DDCT in the following.

To analyze the effectiveness of each component in the pro-
posed approach, we construct three baseline methods for
comparison, including
• WTNN: constructed from the proposed method by dis-

carding the sparse coding module. This method is used
to test the effectiveness of sparse coding.

• TTNNDL: constructed by replacing the weighted nuclear
norm in the proposed method with the truncated tensor
nuclear norm.

• WTNN+3DDCT: constructed by discarding the dictio-
nary learning process and fix the dictionary to be the
initial dictionary (i.e. 3-dimensional DCT).

The parameters of the different algorithms are finely tuned for
ensuring fairness of the comparison. For clarity, the compo-
nents in all the compared methods are listed in Table I.

TABLE I. Components in the compared methods

Methods Surrogate of rank Type of dict.
SPC-QV CP decomposition n/a
HaLRTC traditional nuclear norm n/a
FaLRTC smoothed version of nuclear norm n/a

TTNN+3DDCT truncated nuclear norm DCT
TTNNDL truncated nuclear norm learned dict.
WTNN weighted nuclear norm n/a

WTNN+3DDCT weighted nuclear norm DCT
WTNNDL weighted nuclear norm learned dict.

C. Implementation Details

In the implementation of our method, the dictionary was
initialized by multidimensional DCT. The procedure will stop
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TABLE II. PSNR values of the recovered results on the MRI data (dB)

Sampling Rate 10% 20% 30% 40% 50% 60% 70% 80% 90%
HaLRTC 22.90 26.42 29.11 31.61 34.17 36.74 39.49 42.93 47.36
FaLRTC 22.82 26.42 29.14 31.60 34.14 36.78 39.62 42.99 47.41

TTNN+3DDCT 28.19 30.37 32.50 34.61 36.71 38.92 41.24 43.85 47.53
TTNNDL 29.14 33.44 36.28 38.22 39.97 41.44 43.47 45.15 48.25

WTNN 30.70 34.03 36.50 38.46 40.64 42.58 44.66 47.05 50.73
WTNN+3DDCT 31.46 34.51 37.03 39.12 41.20 43.07 44.96 47.37 50.88

WTNNDL 31.75 34.99 37.33 39.31 41.26 43.12 45.06 47.51 51.27

TABLE III. Negative RSE of the recovered results on the MRI data (-dB)

Sampling Rate 10% 20% 30% 40% 50% 60% 70% 80% 90%
HaLRTC 9.59 13.11 15.80 18.29 20.86 23.43 26.18 29.60 34.07
FaLRTC 9.51 13.11 15.83 18.29 20.83 23.47 26.30 29.68 34.11

TTNN+3DDCT 14.88 17.05 19.19 21.30 23.40 25.61 27.92 30.54 34.20
TTNNDL 15.83 20.12 22.96 24.91 26.65 28.13 30.14 31.84 34.94

WTNN 17.39 20.72 23.19 25.14 27.33 29.27 31.34 33.72 37.39
WTNN+3DDCT 18.15 21.20 23.72 25.81 27.89 29.76 31.65 34.07 37.59

WTNNDL 18.39 21.78 24.02 26.00 27.94 29.82 31.74 34.19 38.06
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Fig. 5. Left: The convergence curves of different methods on
‘Lena’. Right: The convergence curves of WTNNDL on test
images.

when the maximum number of iterations is reached, or there
is no further change in the norm of the tensor data. The
parameters in the numerical algorithm were set as follows:
the maximum number of iterations kmax = 500, ε = 10−16

and δ = 1000, the initial value of the penalty factor β =
10−6. In the proposed model, the constants αis were set as
α1 = α2 = α3 = 1/3. To obtain the best performance,
the parameters S1, S2, S3 and λ of the proposed method
are determined by manual tuning. We also applied cross-
validation [62, 63] to adjust the parameters. The parameter
values are S1 = S2 = S3 = 3, λ = 1.5 for the color
images, S1 = S2 = S3 = 9, λ = 0.02 for the MRI data,
and λ = 0.1, S1 = S2 = S3 = 8 for the video data.

D. Results and Analysis

For color image completion, the incomplete data is gen-
erated by randomly sampling the pixels of the images, with
different sampling ratios ∈ {40, 50, 60, 70, 80, 90%}. The
results obtained by different methods are plotted in Figure 6. It
can be seen that WTNNDL performs better than the competing
methods, which demonstrates the capability of the proposed
method. In contrast to multi-dimensional DCT, the dictionary
learned by the proposed method can discover better local
patterns and thus lead to less artifacts. See more visual results
in the supplementary materials.

TABLE IV. PSNR of the recovered ‘Airplane’ utilizing the
proposed methods with l2-norm, l1-norm and l0-norm(dB)

Sampling Rate l2-norm l1-norm l0-norm
40% 31.09 34.14 34.72
50% 34.24 36.59 37.85
60% 37.52 39.61 40.41
70% 40.96 42.77 43.26
80% 44.57 46.18 46.48
90% 49.22 50.22 50.74

We are interested in the effectiveness of introducing the
`0-norm into our model. Thus, we construct two baseline
methods by replacing the `0-norm with the `1-norm or the
`2-norm for regularization, and evaluate their performance.
Table IV summarizes the PSNR values of the recovered image
‘Airplane’ using the baseline methods. The results on more test
images are included in the supplementary materials. It can
be seen from the results that the performance using the `2-
norm decreases significantly, which demonstrates the benefit
of using sparse representation in the proposed method. The
`1-norm regularization yields similar performance as the `0-
norm case, with a slight decrease. This is not surprising as
the `1-norm can be viewed as the convex relaxation of the
`0-norm in sparse representation.

Since a theoretical proof regarding the convergence of our
algorithm is not available, we study its convergence curves.
The plots of the negative logarithm of the stopping criterion
‖X (k+1)−X (k)‖F

‖M‖F of different methods on the image ‘Lena’
based on a sampling ratio of 60% are plotted on the left side
of Fig. 5.4 The right side of Fig. 5 shows the convergence
curves of the proposed method under different test images. It
can be seen from both figures that the value of the stopping
criterion becomes stable as the number of iteration increases.
This indicates that the algorithm works stably.

In the MRI completion task, we generated the missing
entries by randomly sampling the voxels from the original data
with the sampling rate varying from 10% to 90%. The results
of PSNR and RSE are summarized in Table II and Table III

4We exclude SPC-QV for comparison as it uses a different stopping
criterion.
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respectively, and the best results are denoted in bold. It can be
seen that our method achieves the best performance among all
the compared methods. In particular, we notice that WTNN,
WTNN+3DDCT and WTNNDL, which are all based on the
weighted tensor nuclear norm, exhibit superior performance
when compared to other methods which use the traditional
tensor nuclear norm or truncated tensor nuclear norm. This
demonstrates that the weighted tensor nuclear norm in the
proposed method is more effective than the traditional tensor
nuclear norm and truncated tensor nuclear norm.

To demonstrate the effectiveness of the dictionary learning
module in the proposed method, we compared the performance
of TTNNDL and TTNN+3DDCT. It can be seen that TTNNDL
has a PSNR improvement of 0.7−3.8 dB over TTNN+3DDCT.
Moreover, the proposed WTNNDL method achieves a higher
improvement over WTNN+3DDCT with a gap of 0.1−0.4 dB.
These improvements come from the capability of the learned
dictionary to reveal the detailed structure of the data.

We visualize the recovered MRI slices by different methods
in Figure 7, with sampling ratios 10%, 20%, and 40%.
It is observed that the reconstructed results by WTNNDL
have a higher quality with less artifacts than the compared
methods. By comparing the visual results of TTNNDL vs.
TTNN+3DDCT, it can also be seen that the results from
dictionary learning are better than that using fixed DCT
dictionaries.

Regarding the video completion, the PSNR values of the
reconstructed video data by different methods are summa-
rized and compared in Table VI under the different sampling
rates (SR) from 10% to 90%. On all the four videos, our
method consistently performs better than the other compared
methods. Similar to the results in MRI data recovery, the
results in video completion demonstrates the effectiveness of
our method. On one hand, the benefits of using the weighted
nuclear norm can be shown by comparing the results of the
proposed method with HaLRTC, FaLRTC, TTNN+3DDCT
and TTNNDL, where a 1.9− 9.7 dB PSNR improvement on
average was observed in WTNNDL. On the other hand, the
improvement of using dictionary learning can be demonstrated
by observing the 2.2−3.6 dB PSNR improvement of TTNNDL
over TTNN+3DDCT, and the 0.4−1.9 dB PSNR improvement
of WTNNDL over WTNN+3DDCT. To further demonstrate
these aspects, we plot the RSE values of TTNN+3DDCT,
TTNNDL, WTNN+3DDCT and WTNNDL on the four videos
in Figure 8.

In addition, we notice that the results of WTNN+3DDCT
are sometimes less satisfactory than those of WTNN from
Table VI. One possible reason could be that the multi-
dimensional DCT dictionary used in WTNN+3DDCT is con-
structed by the tensor product of 1D DCT bases. As a result,
the atoms in the DCT dictionary have no orientations. Such
a property may not be conducive to the representation of
many types of data (e.g., image edges are often not horizontal
or vertical). In contrast, the proposed method can learn a
more meaningful dictionary whose atoms are adaptive to the
local structure of the data. Thus, the proposed WTNNDL can
achieve better results than both WTNN and WTNN+3DDCT.
For visual comparison, we show the recovered results with

sampling rate 30% in Figure 9.

E. Remarks on Computational Complexity

To evaluate the efficiency of the proposed method, we
estimate the computational complexity of the test methods as
follows.

Given an N th-order incomplete tensor X ∈
RQ1×Q2×···×QN , at each iteration the complexity of
HaLRTC is approximated as O(Q1Q2 · · ·QN ). Regarding
TTNN+3DDCT, the computational cost is mainly expended
on the SVD operations and multi-dimensional DCT, and
results in the complexity O(Q3

1 + Q3
2 + · · · + Q3

N +
Q1Q2 · · ·QN (2log(Q1Q2 · · ·QN ) + r1 + r2 + · · · + rN ).
Here rn, n = 1, 2, · · · , N, denotes the number of untruncated
singular values of the mode-n matricization of the tensor.

In contrast, the complexity of WTNN is O(2 (Q3
1 +Q3

2 +
· · ·+Q3

N )), which is due to the SVD decomposition operations
in the updating procedures of Gi and wi. Thus if Q3

1 +Q3
2 +

· · · + Q3
N � Q1Q2 · · ·QN (2log(Q1Q2 · · ·QN ) + r1 + r2 +

· · ·+ rN ), WTNN is more efficient than TTNN+3DDCT.
Regarding TTNNDL, the complexity of the algorithm is

O(Q3
1 + Q3

2 + · · · + Q3
N + Q1Q2 · · ·QNS1S2 · · ·SN ). The

complexity of WTNN3DDCT is O(2 (Q3
1 +Q3

2 +· · ·+Q3
N )+

Q1Q2 · · ·QN (2log(Q1Q2 · · ·QN )+Q1 +Q2 + · · ·+QN )).
In addition, the complexity of our method WTNNDL is
O(2 (Q3

1 + Q3
2 + · · · + Q3

N ) + Q1Q2 · · ·QNS1S2 · · ·SN ).
If S1S2 · · ·SN � 2log(Q1Q2 · · ·QN )+Q1+Q2+ · · ·+QN ,
WTNNDL is more efficient than WTNN+3DDCT. Otherwise,
the complexities of these two methods are in the same order.

In Table V, the average running time of the compared
methods is reported with the sampling rates ranging from 10%
to 90%. It can be seen that our method requires more time in
comparison to HaLRTC and WTNN. This is not surprising
as our method has more components which lead to a more
complex numerical algorithm. Compared to TTNN+3DDCT
and TTNNDL, our method also takes more computational
time because additional operations are required mainly due
to the updating of weights. Compared to WTNN+3DDCT, the
efficiency of the proposed method is acceptable.

TABLE V. The average running time of the compared methods
(sec)

Methods CThead Biking Baby. Juggling Lunges
HaLRTC 136.6 108.4 114.5 106.4 95.1

TTNN+3DDCT 465.6 415.1 427.7 419.4 416.5
TTNNDL 493.7 433.5 438.1 439.4 434.6
WTNN 320.9 268.5 289.4 264.8 260.3

WTNN+3DDCT 717.3 559.6 568.7 546.3 565.5
WTNNDL 754.4 591.5 597.9 584.1 586.8

V. CONCLUSION

In this paper, we propose an effective method for tensor
completion, which simultaneously finds a globally low-rank
approximation and locally sparse representation from the in-
complete tensor. The low-rank approximation is performed
with weighted nuclear norm regularization, and sparse coding
is applied through a dictionary learning process. By exploit-
ing both global information and local patterns, the proposed
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Fig. 6. Comparison of PSNR subtracted by baseline(HaLRTC) for the test images obtained using the test methods.

Incompleted (sampling rate=10%) Incompleted (sampling rate=20%) Incompleted (sampling rate=40%)

HaLRTC (sampling rate=10%) HaLRTC (sampling rate=20%) HaLRTC (sampling rate=40%)
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TTNNDL (sampling rate=10%) TTNNDL (sampling rate=20%) TTNNDL (sampling rate=40%)

WTNNDL (sampling rate=10%) WTNNDL (sampling rate=20%) WTNNDL (sampling rate=40%)

Fig. 7. Experimental results of the different methods on the
MRI dataset with different sampling rates.

method can well recover the details from the incomplete data.
We evaluated the proposed method on MRI data and real-life
videos, and the experimental results show that our method
consistently achieves excellent performance.

In the future, we would like to investigate the acceleration of
the proposed method, as well as develop numerical algorithms
with a faster rate of convergence. In addition, we will further
study other surrogates of the tensor rank that are more effective
for the tensor completion problem. Finally, we would like to
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Fig. 8. RSE of the recovery results by TTNN + 3DDCT,
TTNNDL, WTNN + 3DDCT, WTNNDL on the video data.

apply the proposed method to other possible applications.
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TABLE VI. PSNR values of the recovered results on the video data (dB)

Video SR (%) HaLRTC FaLRTC TTNN+3DDCT TTNNDL WTNN WTNN+3DDCT WTNNDL

Biking

10% 18.08 18.05 23.95 24.00 26.94 27.32 28.34
20% 21.86 21.85 26.60 28.94 31.01 30.96 32.35
30% 25.23 25.26 28.95 33.84 33.81 33.57 35.32
40% 28.52 28.54 31.19 36.19 36.27 35.84 37.84
50% 31.69 31.69 33.32 38.10 38.63 38.01 40.18
60% 34.77 34.79 35.57 39.86 40.96 40.19 42.47
70% 37.92 37.90 38.05 41.97 43.72 42.60 44.91
80% 41.36 41.34 41.06 44.56 46.78 45.57 47.77
90% 45.97 45.91 45.47 48.80 50.75 49.74 51.69

BabyCrawling

10% 19.10 19.08 24.27 23.75 25.86 26.78 26.88
20% 22.39 22.41 26.37 27.51 29.37 29.83 30.22
30% 24.95 24.97 28.45 31.88 32.25 32.42 32.87
40% 27.38 27.38 30.63 34.56 34.79 34.80 35.23
50% 29.81 29.82 32.94 36.65 37.22 37.11 37.54
60% 32.43 32.39 35.43 38.55 39.68 39.44 39.95
70% 35.33 35.34 38.17 40.54 42.27 41.99 42.44
80% 38.81 38.85 41.43 42.86 45.26 44.83 45.39
90% 43.66 43.62 45.94 46.78 48.98 48.87 49.44

JugglingBall

10% 21.47 21.48 27.79 28.31 30.33 31.42 32.60
20% 25.38 25.38 30.79 34.67 34.69 35.38 36.94
30% 28.63 28.63 33.42 38.85 37.97 38.47 40.10
40% 31.77 31.80 35.90 40.72 40.76 41.10 42.68
50% 34.95 34.93 38.35 42.17 43.42 43.60 45.21
60% 38.17 38.18 40.77 43.76 46.20 46.02 47.58
70% 41.65 41.58 43.39 45.90 49.01 48.66 50.10
80% 45.55 45.36 46.54 48.92 52.19 51.74 52.95
90% 50.52 50.21 50.96 53.76 56.31 55.90 56.78

Lunges

10% 17.62 17.59 23.70 23.72 26.73 27.08 28.09
20% 21.27 21.29 26.55 28.84 31.47 31.38 32.62
30% 24.74 24.73 29.35 34.34 34.92 34.86 36.25
40% 28.16 28.13 32.19 36.83 37.80 37.78 39.11
50% 31.62 31.60 35.00 38.79 40.54 40.45 41.74
60% 35.18 35.11 37.87 40.54 43.19 43.12 44.42
70% 38.90 38.84 40.85 42.73 46.38 46.07 47.21
80% 43.02 42.94 44.24 45.55 49.99 49.51 50.42
90% 48.27 48.18 48.98 50.40 54.20 53.96 54.63
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