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1. Details on Partial Convolution
Partial convolution [1] is originally designed for inpainting image holes, which allows progressively filling the holes from

the outside to the inside. Let k ∈ RZ be the weights of a convolution kernel and b ∈ R the corresponding bias. Let f ∈ RZ

denote the feature values (pixels values) for the current convolution (sliding) window and m ∈ RZ is the corresponding
binary mask. The partial convolution at every location is expressed as

f ′ = 1[‖m‖1 > 0](k>(f �m)
Z

‖m‖1
+ b), (1)

where � is the Hadamard’s product. It can be seen that the output of the function only depends on the unmasked inputs.
The scaling factor Z

‖m‖1
applies appropriate scaling to adjust for the varying amount of valid (unmasked) inputs. At the

beginning, we initialize the mask m such that it excludes the dropped pixels of the input Bernoulli sampled instance as well
as those of the input images (e.g. in removing salt-and-pepper noise). After crossing the current PConv layer, we then update
the mask for the next PConv layer as follows: if the convolution was able to condition its output on at least one valid input
value, then we mark that location to be valid. This can be expressed asm′ = 1[‖m‖1 > 0], which can be easily implemented
as a part of forward pass. See [1] for more details.

2. Proof of Proposition 1
Proof. Rewrite the loss function as follows:

M∑
m=1

‖Fθ(ŷm)− ȳm‖2bm =

M∑
m=1

‖Fθ(ŷm)− y‖2bm =

M∑
m=1

‖Fθ(ŷm)− (x+ n)‖2bm

=

M∑
m=1

‖Fθ(ŷ)− x‖2bm +

M∑
m=1

‖n‖2bm − 2

M∑
m=1

((1− bm)� n)>(Fθ(ŷm)− x)

=

M∑
m=1

‖Fθ(ŷ)− x‖2bm +

M∑
m=1

‖n‖2bm − 2n>( M∑
m=1

(1− bm)� (Fθ(ŷm)− x)
)
.

(2)

Regarding the second term in (2), its expectation is

En
[ M∑
m=1

‖n‖2bm
]

= En
[ M∑
m=1

‖(1− bm)� n‖22
]

=

M∑
m=1

‖(1− bm)� σ‖22 =

M∑
m=1

‖σ‖2bm . (3)

Regarding the last term in (2), for simplicity we define

r =

M∑
m=1

(1− bm)� (Fθ(ŷm)− x) =

M∑
m=1

(1− bm)� (Fθ(bm � x+ bm � n))− x). (4)
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Note that Fθ(bm�x+ bm�n) contributes to r(i) only if bm(i) = 0. But in this case, n(i) is erased by bm(i). This means
that n(i) has no contribution to r(i). Together with that n(i) is independent of n(j) for any i 6= j, we can conclude that r(i)
is independent to n(i) for all i. Therefore, we have

En
[
n>r

]
= (En

[
n
]
)>(En

[
r
]
) = 0. (5)

Combining (2), (3) and (5) yields

En
[ M∑
m=1

‖Fθ(ŷm)− ȳm‖2bm
]

= En
[ M∑
m=1

‖Fθ(ŷ)− x‖2bm
]

+ En
[ M∑
m=1

‖n‖2bm ]− 2En[n>r]

=

M∑
m=1

‖Fθ(ŷ)− x‖2bm +

M∑
m=1

‖σ‖2bm .

(6)

The proof is done.

3. More Results on Blind Gaussian Denoising

KSVD (20.44dB) PALM-DL (20.42dB) CBM3D (24.37dB) DIP* (23.97dB) N2V(1) (22.60dB) N2S(1) (23.31dB)

N2V (23.60dB) N2S (24.34dB) N2N (25.10dB) DnCNN (24.86dB) Ours (25.12dB) Truth (PSNR)

Figure 1: Visual results of blind AWGN denoising on image ’Kodim01’ of Set9 with noise level σ = 75.

KSVD (26.80dB) PALM-DL (26.53dB) BM3D (27.06dB) DIP* (26.30dB) N2V(1) (25.70dB) N2S(1) (26.08dB)

N2V (26.97dB) N2S (27.19dB) N2N (27.53dB) DnCNN (27.65dB) Ours (27.77dB) Truth (PSNR)

Figure 2: Visual results of blind AWGN denoising on image ’223061’ on BSD68 with noise level σ = 25.



4. More Results on Removal of Real-World Image Noise
Due to space limitation, the quantitative results of N2V(1) and N2S(1) are not listed in Table 2 in our main paper. The

following are their results. (a) N2V(1): PSNR=34.14dB, SSIM=0.95; (b) N2S(1): PSNR=34.69dB, SSIM=0.97. Also,
regarding the visual comparison in Fig. 3 in our main paper, the results of some methods are not presented. For completeness,
we show the results of all compared methods in Fig. 3. See also Fig. 4 for one more example on visual comparison.

TWSC (33.78dB) CBM3D (34.39dB) DIP (34.20dB) N2V(1) (29.69dB) N2S(1) (31.85dB)

N2V (32.92dB) N2S (32.87dB) DnCNN (34.26dB) Ours (34.69dB) Truth (PSNR)

Figure 3: Denoising results on a real-world noisy image by different methods.

TWSC (33.38dB) CBM3D (33.64dB) DIP (33.16dB) N2V(1) (30.52dB) N2S(1) (31.50dB)

N2V (31.52dB) N2S (30.97dB) DnCNN (33.26dB) Ours (34.25dB) Truth (PSNR)

Figure 4: Denoising results on a real-world noisy image by different methods.
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