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Abstract

In last few years, supervised deep learning has emerged
as one powerful tool for image denoising, which trains a
denoising network over an external dataset of noisy/clean
image pairs. However, the requirement on a high-quality
training dataset limits the broad applicability of the denois-
ing networks. Recently, there have been a few works that
allow training a denoising network on the set of external
noisy images only. Taking one step further, this paper pro-
poses a self-supervised learning method which only uses
the input noisy image itself for training. In the proposed
method, the network is trained with dropout on the pairs
of Bernoulli-sampled instances of the input image, and the
result is estimated by averaging the predictions generated
from multiple instances of the trained model with dropout.
The experiments show that the proposed method not only
significantly outperforms existing single-image learning or
non-learning methods, but also is competitive to the denois-
ing networks trained on external datasets.

1. Introduction

Image denoising is the process to remove measurement
noises from noisy images. It not only has great practical
value, but also serves as a core module in many image re-
covery tasks. A noisy image y is usually modeled as

y = x+ n, (1)

where x denotes the clean image (ground truth), and n de-
notes the measurement noise often assumed to be random.

In recent years, deep learning has become a prominent
approach for image denoising, which uses a set of training
samples to train a deep neural network (NN), denoted by
Fθ(·) with the parameter vector θ, that maps a noisy im-
age to its clean counterpart. Most existing deep-learning-
based denoising methods (e.g. [26, 31, 32]) use many pairs
of clean/noisy images, denoted by {x(i),y(i)}i, as the train-

ing samples, and the training is done by solving

min
θ

∑
i

L(Fθ(x(i)),y(i)), (2)

where L(·, ·) measures the distance between two images.
The availability of a large number of training samples is one
key factor contributing to the performance of these meth-
ods. Sometimes, it can be expensive and difficult to collect
a large dataset of useful clean/noisy image pairs.

Recently, there are some studies on training denoising
NNs with only external noisy images. The Noise2Noise
(N2N) method [19] showed that a denoising NN model can
be trained using many pairs of two noisy images of the same
scene. Using a self-prediction loss, together with a so-called
blind-spot strategy to avoid learning an identity mapping,
the Noise2Void (N2V) method [15] and the Noise2Self
(N2S) method [3] showed the possibility to learn a denois-
ing NN with good performance on a set of unorganized ex-
ternal noisy images. Yet, to achieve good performance, the
external images used for training should be highly related to
the noisy image being processed, in terms of image content
and noise statistics. The collection of such external images
can be costly or challenging in practice.

It is of great value to develop a powerful denoising NN
that has no prerequisite on training samples. That is, the
denoising NN is learned only on the input image itself. So
far, there has been very little work along this line. Based on
the deep image prior (DIP), Ulyanov et al. [25] proposed a
single-image deep learning model for image recovery. The
aforementioned dataset-based N2V and N2S methods can
also be trained using only a noisy image. However, the per-
formance of these methods is not competitive to existing
non-local methods, e.g. BM3D [10]. To summarize, there
is no satisfactory solution on how to train a denoising NN
with good performance, given only the input noisy image.

1.1. Aim and Basic Idea

Motivated by its practical value and the lack of good
solutions, this paper aims at developing an NN-based de-
noiser, which has good performance and yet can be trained



on only the given noisy image. In other words, this paper
studies how to train a denoising NN

Fθ(·) : y → x, (3)

using only the input noisy image y itself.
Compared to supervised deep learning, the single-image-

based self-supervised learning is much more challenging.
The over-fitting is much more severe when training an NN
on a single image. A denoising NN can be interpreted as
a Bayes estimator with its prediction accuracy measured by
the mean squared error (MSE):

MSE = bias2 + variance, (4)

The variance will dramatically increase when the number
of training samples decreases from many to one. The blind-
spot technique [15, 3] can overcome one phenomenon of
overfitting, i.e. the model converges to an identity mapping.
However, it is not effective on reducing the large variance
caused by a single training sample. As a result, existing
blind-spot-based NNs, e.g. N2V and N2S, do not perform
well when being trained on a single image. In short, vari-
ance reduction is the key for the self-supervised learning on
a single image.

To reduce the variance of an NN-based Bayes estimator,
our solution is the dropout-based ensemble. Dropout [24]
is a widely-used regularization technique for deep NNs. It
refers to randomly dropping out nodes when training an
NN, which can be viewed as using a single NN to approx-
imate a large number of different NNs. In other words,
dropout provides a computationally-efficient way to train
and maintain multiple NN models for prediction. Owing to
model uncertainty introduced by dropout [12], the predic-
tions from these models are likely to have certain degree of
statistical independence, and thus the average of these pre-
dictions will reduce the variance of the result.

Indeed, dropout is closely related to the blind-spot strat-
egy used in N2V for avoiding the convergence to an identity
mapping. Note that the blind-spot strategy synthesizes mul-
tiple noisy versions of the noisy image y by randomly sam-
pling y with replacement, and the loss for training is mea-
sured on those replaced samples. Thus, it can be viewed as
some form of dropout in the first and the last layer of the
NN with specific connectivity.

Based on the discussion above, we propose a dropout-
based scheme for the single-image self-supervised learning
of denoising NNs. Our scheme uses a self-prediction loss
defined on the pairs of Bernoulli sampled instances of the
input image. A Bernoulli sampled instance ŷ of an image y
with probability p is defined by

ŷ[k] =

{
y[k], with probability p;
0, with probability 1− p.

Consider two sets {ŷm}m, {ỹn}n of independent Bernoulli
sampled instances of y. Two main components of the pro-
posed scheme are outlined as follows.

• Training. Train the NN by minimizing the following
loss function with Bernoulli dropout:

min
θ

∑
m

L(Fθ(ŷm),y − ŷm).

• Test. Feed each ỹn to the trained model with Bernoulli
dropout to generate a prediction x̃n. Then output the
average of all predictions {x̃n}n as the result.

Remark 1. Dropout is often seen when training a classifi-
cation NN. Most NNs for image recovery are trained with-
out dropout. Also, it is very rare to see the usage of dropout
during test in image recovery. This paper shows that using
dropout in both training and test is very effective on boost-
ing the performance when training a denoising NN on only
an input noisy image. The main reason is that it can effec-
tively reduce the variance of the prediction.

1.2. Contributions and Significance

In this paper, we present a self-supervised dropout NN,
called Self2Self (S2S), for image denoising, which allows
being trained on a single noisy image. See the following for
the summary of our technical contributions.

• Training a denoising NN using Bernoulli sampled in-
stances, with a partial-convolution-based implemen-
tation. Given only a noisy image without ground truth,
we propose to use its Bernoulli sampled instances for
training the NN with mathematical justification. Also,
the partial convolution is used to replace the standard
one for re-normalization on sampled pixels, which fur-
ther improves the performance.
• Using Bernoulli dropout in both training and test for

variance reduction. Interpreting a denoising NN as a
Bayes estimator, the variance reduction is the key for
single-image self-supervised training. Built upon the
model uncertainty introduced by dropout, we propose to
use Bernoulli dropout in both the training and test stages
for reducing the variance of the prediction.
• Solid performance improvement over existing solu-

tions. Extensive experiments on blind denoising un-
der different scenarios show that the proposed approach
outperforms existing single-image methods by a large
margin. More importantly, its performance is even com-
petitive to the denoising NNs trained on external image
datasets, e.g. N2N.

The work in this paper has significance for both research
and applications. The deep denoising NN has been a very
basic tool in recent development of image recovery meth-
ods. However, most existing NN-based methods have the



prerequisite on a large amount of training data relevant to
the target images, which limits their broader applicability.
The issue on data collection remains, even though some
methods only need noisy/noisy image pairs (e.g. N2N) or
unorganized noisy images (e.g. N2V, N2S). An image de-
noising NN without prerequisite on training data is very
welcomed in practice owing to its convenience.

Despite the importance of single-image self-supervised
learning for image denoising NNs, there are few solutions
and their performance is not competitive to those dataset-
based learning methods. This paper shows that it is possible
to train a denoising NN with competitive performance, us-
ing a single noisy image itself. The results presented in this
paper on self-supervised learning for single image not only
provide an NN-based image denoiser that is attractive in
practice, but also can inspire further investigations on self-
supervised learning to other image restoration problems.

2. Related Work

There is abundant literature on image denoising. The
following review is focused more on the learning-based ap-
proaches closely related to our work.
Non-learning based image denoisers. A large number of
image denoisers are non-learning-based and they impose
some pre-defined image priors on the ground truth image
to guide the denoising. One widely-used prior in image de-
noising is the sparsity prior of image gradients, which leads
to various `p-norm relating regularization methods, e.g. to-
tal variation denoising [6]. Another prominent one is the
patch recurrence prior employed by the non-local methods.
Among those, BM3D [10] is one of the top performers,
which applies collaborative filtering to similar patches.
Image denoisers learned on clean/noisy image pairs. In
recent years, many supervised learning methods are devel-
oped for image denoising, which learn the denoiser on a
set of clean/noisy image pairs. Some of them learn the pa-
rameters of unfolded denoising processes; e.g. [23, 9, 30].
The more prominent ones train deep NNs as the denois-
ers; see e.g. [26, 31, 32, 8, 18, 13, 14]. Among them, the
DnCNN [31] that uses residual learning for blind denoising
is a common benchmark for NN-based image denoisers.
Deep image denoisers trained with multiple noisy im-
ages. Instead of using the pairs of clean/noisy images for
training, the aforementioned N2N method [19] successfully
trains a denoising NN using the pairs of two noisy images
of the same scene. Its performance is close to that of NNs
trained using clean/noisy pairs. Indeed, as long as the noise
of the noisy/noisy pair is independent, the expectation of
MSE of such a pair is the same as that of the clear/noisy
pair. Nevertheless, the collection of many image pairs can
still be difficult. Cha et al. [5] alleviated this problem by
synthesizing noisy image pairs using GAN.

Instead of using organized noisy image pairs, some ap-
proaches [15, 16, 3, 17] use only unorganized noisy images
for NN training, which is done by defining an effective self-
prediction loss. Given a set of noisy images {yi}i, training
the NN using the standard loss function,

∑
i L(Fθ(yi),yi),

can lead to severe overfitting such that Fθ converges to an
identity mapping. Avoiding the convergence to an iden-
tity mapping has been one main concern of self-supervised
learning in image denoising.

The auto-encoder-based denoising NN [27] addresses
such a concern using the architecture which excludes iden-
tity mappings, yet its performance is unsatisfactory. The
blind-spot mechanism proposed in N2V [15] avoids learn-
ing an identity mapping by only allowing the NN to predict
each pixel by its neighboring pixels. The implementation is
done by randomly choosing image pixels of a noisy image
and replacing the value of each chosen pixel by the value of
a randomly-chosen neighboring pixel, and the loss is only
computed on the image pixels with replaced values. Simi-
lar schemes are used in a parallel work N2S [3] and N2V’s
probabilistic extension [16]. Laine et al. [17] built the blind-
spot mechanism into its NN architecture by excluding the
center pixel in its receptive field.
Image denoisers learned from only a single noisy im-
age. A learning-based image denoiser without any prereq-
uisite on training samples is the most flexible to employ in
practice. The sparse-coding-based denoisers learn a dictio-
nary [11, 1, 2, 22] or a wavelet tight frame [4] from the
noisy image, and the denoising result is defined as a sparse
approximation to the input over the learned system.

There are few studies on training denoising NNs using
only one single noisy image. One is the DIP method [25].
It assumes that, when learning an NN to approximate a de-
graded image, meaningful image patterns are learned with
the priority over random patterns such as noise. Thus, it
trains a generative NN that maps a random input to the given
degraded image, which is regularized by early stopping.
Despite its simplicity, the performance of DIP is not satis-
factory and may be sensitive to the iteration number whose
optimal value is hard to determine. By defining the training
data as only a single noisy image, the aforementioned N2V
and N2S can be extended to the case of single-image learn-
ing. However, their performance is not competitive either.

3. Main Body

This section starts with the introduction of the architec-
ture of our Self2Self NN, followed by a detailed discussion
on the schemes for self-supervised training and denoising.

3.1. NN Architecture

The diagram of the proposed Sefl2Self NN is shown in
Fig. 1. Briefly, it is an encoder-decoder NN. Given an input
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Figure 1. Architecture of proposed Self2Self NN.

noisy image of the size H ×W ×C, the encoder first maps
the image to an H × W × 48 feature cube with a partial
convolutional (PConv) layer [20], which is then processed
by the following six encoder’s blocks (EBs). Each of the
first five EBs sequentially connects a PConv layer, a leaky
rectified linear unit (LReLU), and a max pooling layer with
2×2 receptive fields and with a stride of 2. The last EB con-
tains a PConv layer and an LReLU. The number of channels
is fixed to 48 across all EBs. The output of the encoder is
then a feature cube of size H/32×W/32× 48.

The decoder contains five decoder’s blocks (DBs). Each
of the first four DBs sequentially connects an up-sampling
layer with a scaling factor of 2, a concatenation (Concate)
operation, and two standard convolutional (Conv) layers
with LReLUs. All the Conv layers in DBs are configured
with dropout. The Concate operation in a DB stacks the
feature cube from the upsampling layer and the one output
by the LReLU in the corresponding EB. All Conv layers in
the first four DBs have 96 output channels. The last DB
contains three dropout Conv layers with LReLUs for map-
ping the feature cube back to an image of size H ×W ×C,
and the numbers of output channels of these Conv layers are
64, 32, C respectively.

The architecture of our NN shares similarity with the
ones used in some existing methods such as N2N [19]. The
key differences are as follows. Firstly, we introduce dropout
to the Conv layers in the decoder. In a dropout Conv layer,
each weight entry is set to zero with a probability, and those
untouched entries will be scaled for energy maintaining.
Secondly, we use partial convolutions instead of the stan-
dard ones in the encoder, which further improves the effec-
tiveness and efficiency of the NN training. See supplemen-
tary materials for more details of the partial convolution.

3.2. Training Scheme

As the NN is trained only on a single noisy image y, we
need to generate multiple image pairs from y, which are
different from y yet cover most of its information. With
this goal, we generate a set of Bernoulli sampled instances
of y, denoted by {ŷm}Mm=1. Recall that for y, its Bernoulli
sampled instance can be expressed as

ŷ := b� y, (5)

where � denotes the element-wise multiplication and b de-
notes one instance of binary Bernoulli vector whose en-
tries are independently sampled from a Bernoulli distribu-
tion with probability p ∈ (0, 1). Then, a set of image pairs
{(ŷm,ym)}Mm=1 is defined as: for each m,

ŷm := bm � y; ym := (1− bm)� y. (6)

Given such a set of image pairs, the NN Fθ(·), is trained by
minimizing the following loss function:

min
θ

M∑
m=1

‖Fθ(ŷm)− ym‖
2
bm
, (7)

where ‖ · ‖2b = ‖(1−b)�·‖22. It can be seen that the loss of
each pair is measured only on those pixels that are masked
by bm. As the masked pixels are randomly selected using a
Bernoulli process, the summation of the loss over all pairs
measures the difference over all image pixels.

Clearly, the Bernoulli sampling we adopt can avoid the
convergence of the NN to an identity mapping. Further-
more, training with the pairs of Bernoulli sampled instances
{ŷm,ym} is very related to training with the pairs of a
Bernoulli sampled instance ŷm and the ground truth x, es-
pecially when many such pairs are used for training. See
the following proposition.

Proposition 1. Assume the noise components are indepen-
dent and of zero mean. The expectation of the loss function
(7) with respect to noise is the same as that of

M∑
m=1

‖Fθ(ŷm)− x‖2bm +

M∑
m=1

‖σ‖2bm , (8)

for arbitrary Fθ, where σ(i) denotes the standard deviation
of n(i).

Proof. See supplementary materials for the details.

Since Bernoulli sampling can be viewed as an input layer
with dropout, the use of Bernoulli sampled instances of
noisy images can also be viewed as learning with dropout on
single image. In the computation, we do not need to create
the whole dataset of Bernoulli sampled instances in advance



but just enable dropout without energy scaling on the input
layer and pass the copies of the input noisy images to the
NN at each iteration. For further improvement, data aug-
mentation is also used in the implementation by flipping the
input image horizontally, vertically and diagonally. Thus,
we have totally four versions of y for training.

3.3. Denoising Scheme

An NN trained with dropout provides a set of NNs whose
certain weights follow independent Bernoulli distributions.
The often-seen scheme for testing an NN with dropout is
using the NN whose weights are scaled by their associated
Bernoulli probability. As in our case, dropout is used for re-
ducing the variance of the prediction, we propose to gener-
ate multiple NNs from the trained NN so as to have multiple
estimators with likely certain degree of independence.

For denoising, multiple NNs Fθ1 , · · · ,FθN are formed
by running dropout on the configured layers of the trained
NN Fθ∗ . Then, multiple recovered images x̂1, · · · , x̂N are
generated by feeding a Bernoulli sampled instance of y to
each of the newly-formed NNs. The recovered images are
then averaged to the obtain the final result x∗:

x∗ =
1

N

N∑
n=1

x̂n =
1

N

N∑
n=1

Fθn(bM+n � y). (9)

In implementation, the above process can be done by simply
collecting the results of stochastic forward passes through
the trained model Fθ∗ . Furthermore, such forward passes
can be done concurrently [12], resulting in constant running
time identical to that of the standard dropout.

4. Experiments
The proposed method is evaluated on several denoising

tasks: including blind Gaussian denoising, real-world noisy
image denoising and salt-and-pepper noise removal. Due to
space limitation, we only show partial results in this section.
More results can be found in our supplementary materials.

4.1. Implementation Details

Throughout the experiments, all the PConv layers and
Conv layers are with kernel sizes of 3 × 3, strides of 1,
and zero padding of length 2. The hyper-parameter of
each LReLU is set to 0.1. All the dropouts are conducted
element-wisely with the dropout probability set to 0.3. The
probability of Bernoulli sampling is also set to 0.3. The
Adam optimizer is used for training. The learning rate is
initialized to 10−5 with 4.5×105 training steps. During test,
we use dropout 50 times to generate the final result. With
parallel computation enabled on processing multiple images
simultaneously, our implementation takes around 1.2 hours
to process an image of size 256 × 256 on average using an
RTX 2080Ti GPU. Our code will be released on GitHub.

4.2. Blind Gaussian Denoising

Two datasets are used for the performance evaluation
in the case of additive white Gaussian noise (AWGN), in-
cluding Set9 used in [25] with 9 color images and BSD68
used in [15] with 68 gray-scale images. Our experiments
follow [25, 15] with more trials on high noise levels. Im-
ages are corrupted by the AWGN with noise levels: σ =
25, 50, 75, 100 for Set9 and σ = 25, 50 for BSD68.

Comparison to single-image-based methods. Several
representative single-image-based denoising methods with
published codes are selected for comparison: KSVD [11],
PALM-DL [2], (C)BM3D [10] and DIP [25]. (C)BM3D is
a well-known non-local method, KSVD and PALM-DL are
two dictionary-learning-based methods, and DIP is an un-
supervised deep-learning-based method. (C)BM3D, KSVD
and PALM-DL are non-blind to the noise level, while DIP
is blind if stopped with a universal maximal iteration num-
ber. However, we found that DIP’s performance is sensi-
tive to the iteration number for different noise levels and
it becomes much better if the iteration is stopped once the
residual matches the given noise level. Thus, we use such
a non-blind version of DIP, denoted by DIP*, for compari-
son. Also, our method is compared to the single-image ex-
tension of N2V and N2S, denoted by N2V(1) and N2S(1),
using their codes from the papers’ GitHub sites. Note that
N2V(1), N2S(1) and ours are blind to the noise level.

See Table 1 and Fig. 2 for the comparison. (a) Not sur-
prisingly, our method outperforms KSVD and PALM-DL
with a large margin, which is attributed to the advantage of
deep learning over dictionary learning. (b) In comparison to
the single-image-learning based denoising NNs, including
DIP*, N2V(1) and N2S(1), ours also performs much better
on all noise levels. This shows the effectiveness of using
our dropout-based ensemble in test. (c) In comparison to
one top performer in non-learning methods, (C)BM3D, our
method performs better on all other noise levels.

Comparison to dataset-based deep learning methods.
Our method is also compared to several recent dataset-based
deep learning methods with published training codes, in-
cluding N2V [15], N2S [3], N2N [19] and (C)DnCNN [31].
Recall that N2V and N2S are trained on unorganized
noisy images, N2N is trained on paired noisy images, and
(C)DnCNN is trained on clean/noisy image pairs. Follow-
ing N2V’s setting and its noisy data generation scheme,
we train N2V and N2S on CBSD300 [15] and CBSD300’s
gray-scale version for color/gray-scale image denoising re-
spectively. Regarding N2N, we use its published model
trained on color images with the noise level range L =
[0, 50] for the test on Set9 with σ = 25, 50. For other set-
tings, we train N2N’s model using CBSD300 with N2N’s
noisy image pair generation scheme. For (C)DnCNN, we
use its pre-trained model on L = [0, 55] for the test with



Table 1. Average PSNR(dB)/SSIM(1.00E-1) of AWGN removal results on Set9 and BSD68. The best results in all approaches are marked
in bold, and the best ones in single-image-based approaches or dataset-based deep approaches are underlined.

Dataset σ
Single-image learning or non-learning methods Dataset-based deep learning methods

KSVD PALM-DL (C)BM3D N2V(1) N2S(1) DIP* Ours N2V N2S N2N (C)DnCNN

Set9

25 30.00/9.35 29.84/9.32 31.67/9.55 28.12/9.12 29.30/9.40 30.77/9.42 31.74/9.56 30.66/9.47 30.05/9.44 31.33/9.57 31.42/9.56
50 26.50/8.70 26.64/8.70 28.95/9.22 26.01/8.75 27.25/9.04 28.23/9.10 29.25/9.28 27.81/9.12 27.51/9.05 28.94/9.29 28.84/9.25
75 24.29/8.10 24.55/8.12 27.36/8.95 24.18/8.27 25.85/8.61 26.64/8.83 27.61/9.01 25.99/8.75 26.49/8.82 27.42/9.05 27.36/9.01

100 23.12/7.70 23.18/7.67 26.04/8.68 23.55/7.80 24.67/8.48 25.41/8.58 26.27/8.77 25.37/8.58 25.46/8.57 26.45/8.86 26.30/8.78

BSD68
25 28.42/7.96 28.24/7.90 28.56/8.01 25.34/6.81 27.19/7.69 27.96/7.74 28.70/8.03 27.72/7.94 28.12/7.92 28.86/8.23 29.14/8.22
50 25.08/6.53 25.09/6.49 25.62/6.87 23.85/6.18 24.53/6.42 25.04/6.45 25.92/6.99 25.12/6.84 25.62/6.78 25.77/7.00 26.20/7.15

KSVD (30.78dB) PALM-DL (30.77dB) CBM3D (32.73dB) DIP* (32.57dB) N2V(1) (28.19dB) N2S(1) (29.51dB)

N2V (30.73dB) N2S (30.25dB) N2N (31.56dB) DnCNN (32.82dB) Ours (33.29dB) Truth (PSNR)

Figure 2. Visual results of blind AWGN denoising on image ’F16’ of Set9 with noise level σ = 25.

σ = 25, 50 and retrain its model on L = [55, 110] using
CBSD500 [21] for σ = 75, 100.

See Table 1 for the comparison. (a) As expected, deep
learning benefits a lot from sufficient high-quality training
data with noisy/clean image pairs, and (C)DnCNN is the top
performer in BSD68. (b) It is surprising that our method
performs much better than N2V and N2S which are trained
with unorganized training samples. One reason might be
that the unorganized training samples do not provide ac-
curate information of the truth for the noisy image being
processed. Oppositely, as the training data varies with dif-
ferent patterns and different noise levels, it might introduce
misleading unrelated features into the NN. In contrast, our
method avoids such an issue, as the training is on the noisy
image being processed. (c) Very surprisingly, our method
even outperforms N2N and DnCNN in many scenarios, de-
spite the fact they are trained over the dataset with paired
samples, and ours is trained with only a single noisy image.

4.3. Removing Real-World Image Noise

The performance evaluation on real-world noisy image
denoising is conducted on the PolyU dataset [28] with 100

real clean/noisy color image pairs. Our method is compared
with CBM3D, TWSC [29], DIP, N2V, N2S and CDnCNN.
We randomly select 70 images for training N2V, N2S and
DnCNN, and the remaining images are used for test. These
NNs are trained using their published codes with our effort
on parameter tuning-up. The noise level is estimated by the
method [7] for CBM3D.

Table 2. Average PSNR(dB)/SSIM results on PolyU.
Metric CBM3D TWSC DIP N2V N2S CDnCNN Ours

PSNR 36.98 36.10 36.95 34.08 35.46 37.55 37.52
SSIM 0.977 0.963 0.975 0.954 0.965 0.983 0.980

See Table 2 for the quantitative evaluation. Our method
performs better than the non-learning methods including
BM3D and TWSC, which shows the power of deep learn-
ing. Furthermore, except CDnCNN, our method noticeably
outperforms other deep-learning-based methods, either the
single-image-based or dataset-based ones. The reason for
our superior results might be that the content of training
samples is quite diverse, and thus the training samples and
target images are not strongly correlated. Such a weak cor-



Input (33.55) DIP (34.20) N2V (32.92)

N2S (32.87) CBM3D (34.39) DnCNN (34.26)

TWSC (33.78) Ours (34.69) Truth (PSNR (dB))

Figure 3. Denoising results on a real-world noisy image.

relation between training data and test images might mis-
lead the NNs. Note that our quantitative results are very
close to that of CDnCNN, and on some images our results
are even better. See Fig. 3 for some visual comparison.

4.4. Removing Salt-and-Pepper Noise and Beyond

Removing salt-and-pepper noise (impulse noise) from
images can be cast as inpainting randomly-missing image
pixels. Following DIP, we use the Set11 dataset [25] for
the performance evaluation on inpainting (i.e. non-blindly
removing salt-and-pepper noise). As pixel values are com-
pletely erased by the salt-and-pepper noise, we only use un-
corrupted pixels to train the NN. That is, only running sam-
pling on un-corrupted pixels for generating the Bernoulli
sampled instances, and the loss is not measured on cor-
rupted image pixels. To generate the corrupted images for
evaluation, we randomly drop the pixels of each image with
ratios 50%, 70% and 90% respectively. Besides DIP, we use
CSC [22], a dictionary-learning-based inpainting method,
for comparison. See Table 3 for the quantitative compari-
son. Our method is much better than DIP and CSC. See also
Fig. 4 for the visual comparison on three images.
Image inpainting. Our method is also tested on inpainting
missing image regions. See Fig. 5 for two demos. It can
be seen that the image quality of our results is better than
that of DIP. For instance, DIP produced faint text imprints
around the nose, which is not the case in our result.

Input (50% dropped) DIP (32.22dB) Ours (36.32dB)

Input (70% dropped) DIP (27.72dB) Ours (30.47dB)

Input (90% dropped) DIP (25.92dB) Ours (27.57dB)

Figure 4. Visualization of removing (inpainting) pepper noise .

Table 3. Average PSNR(dB)/SSIM of inpainting results on Set11.
Dropping Ratio CSC DIP Ours

50% 32.97/0.912 33.48/0.930 35.14/0.954
70% 28.44/0.855 28.50/0.848 31.06/0.897
90% 24.34/0.712 24.24/0.727 25.91/0.792

Input (17.09dB) DIP (38.81dB) Ours (43.22dB)

Input (13.56dB) DIP (32.95dB) Ours (34.00dB)

Figure 5. Visual results of text/scribble inpainting.

4.5. Ablation Study

To evaluate the effectiveness of its individual compo-
nents, the following ablation studies on our method are con-
ducted on the Set9 dataset with σ = 25. (a) w/o dropout:



disabling dropout on all layers during training and test; (b)
w/o ensemble: using the trained dropout NN directly with-
out dropout-based ensemble in test; (c) w/o sampling: us-
ing the original input image without Bernoulli sampling; (d)
w/o PConv: replacing all PConv layers with Conv layers .

See Table 4 for the comparison, which leads to the fol-
lowing conclusions. (a) The comparison of ’Ours’ v.s.
’w/o dropout’, shows the important role of dropout in our
method, as it causes significant PSNR drop, around 7.3dB,
if no dropout is involved in either training or test. (b)
Training with dropout itself is critical when training an NN
with a single image, as the comparison of ’w/o ensemble’
vs. ’w/o dropout’, shows that only using dropout in train-
ing also leads to significant improvement. It justifies that
dropout greatly helps overcoming the overfitting problem in
our setting. (c) The comparison of ’Ours’ vs. ’w/o ensem-
ble’, shows that running dropout in test is important, as it
brings around 1.7dB gain in PSNR. It justifies the effective-
ness of dropout-based ensemble in variance reduction. (d)
The results of ’w/o sampling’ show the importance of using
Bernoulli sampling instances for training samples, which is
consistent to what is observed in N2V and N2S. (e) The
results of ’w/o PConv’ show that partial convolution has a
minor but worthwhile contribution to the performance.

Table 4. Results of ablation studies on Set9 with σ = 25.
Ablation (w/o) dropout ensemble sampling PConv Ours

PSNR(dB) 23.88 29.92 23.12 31.26 31.74
SSIM 0.658 0.932 0.744 0.938 0.956

4.6. More Analysis

Behavior of dropout-based ensemble. In Fig. 6, we show
how the prediction times, the value of N in (9), impact the
denoising performance on two sample images. We can see
that the PSNR value increases as more predictions are used
for averaging during test. The performance gain saturates
when sufficient predictions are used. Thus, our trained NN
with dropout in test can produce quite independent results
such that their average is capable of effectively reducing the
variance of prediction.

Figure 6. PSNR versus prediction times. Blue bars denote the
PSNR results of individual inferences, and red curves denote the
cumulative average PSNR.

Stability over iterations. As mentioned previously, DIP’s
performance is sensitive to the iteration number. It can be
seen from Fig. 7 that DIP has its optimal performance hap-
pening at different steps (gray points) for different images,
and its performance may have noticeable drop after passing
the optimal step. In contrast, Fig. 7 shows that the perfor-
mance of our method keeps unaffected after sufficient train-
ing steps. Such a feature is attractive for practical use as it
requires little manual intervention.

Figure 7. PSNR versus number of training iterations.

5. Conclusion

We proposed Self2Self, a self-supervised deep learning
method for image denoising, which only uses the input
noisy image itself for training and thus has no prerequisite
on the training data collection. Our recipe for reducing the
variance of prediction when training a denoising NN on a
single noisy image is a dropout-based scheme. Dropouts are
used during training as well as test, in terms of both drop-
ping nodes in the NN and dropping pixels (Bernoulli sam-
pling) in the input noisy image. This brings about different
estimates of the ground truth image, which are averaged to
yield the final output with reduced variance of prediction.
Extensive experiments showed that, the performance of our
denoising NN trained by the proposed Self2Self scheme is
much better than that of other non-learning-based denoisers
and single-image-learning denoisers. It is even close to that
of those dataset-based deep learning methods. The results
presented in this paper can inspire further investigations on
self-supervised learning techniques in image recovery.
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