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Abstract The image quality degradation due to the

loss of high-frequency components of images is often

seen in real scenarios, such as artifacts caused by image

compression and image blur caused by camera shake

or out of focus. Quantifying such degradation is very

useful for many tasks that are related to image quality.

In this paper, an effective approach is proposed for the

image quality assessment on images with blur as well as

images with compression artifacts. Based on the rela-

tion between the dictionaries of the degraded image and

the reference image, we build up a hybrid dictionary

learning model to characterize the space of patches of

the reference image as well as that of the degraded im-

age. The image quality is then measured by the differ-

ence between the two resulting dictionaries. Combined

with a simple sparse-coding-based metric, the proposed
method shows competitive performance on five bench-

mark datasets, which demonstrates its effectiveness.
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1 Introduction

Image degradation is a common phenomenon in the real

world during the acquisition, transmission and process-

ing of images. In many scenarios, the image degradation

is caused by the loss of components of high frequency.

For instance, the image blur caused by camera shake

or defocus can be considered passing the image to a

low-pass filter which kills and decays the Fourier coef-

ficients in the high-frequency domain. Image compres-

sion algorithms often reduce the storage requirement or

shorten the transmission time of an image by removing

the image details which correspond to global or local

high-frequency components. See Fig. 1 for some exam-

ples.

Reference Defocus JPEG JPEG2000

Fig. 1: Example of a reference image and three degraded

images with blur or compression. The images are from

the TID2008 dataset [24].

An effective metric that can accurately quantify the

changes on images caused by such degradations is cer-

tainly welcomed in many applications. Take image pro-

cessing for example. Such a metric can be used for guid-

ing the processing algorithms or for automatically de-

termining the parameters of an algorithm [31]. Simi-

larly, for image compression, the metric can be used

to indicate whether the compression is overdone. Not

limited to processing natural images [42], the metric

also has important applications in the processing of im-
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ages from different fields, such as borehole images [40],

hyper-spectral images [4, 5] and SAR images [3, 32].

Developing such a metric for computers using some

computational models is one goal of objective image

quality assessment (IQA). In general, the IQA met-

rics can be classified into full-reference (FR), reduced-

reference (RR) and no-reference (NR), according to the

amount of information known from the reference im-

age. A reference image indicates the image with ultra-

high quality corresponding to the degraded one, i.e. the

reference image has the same content as the degraded

one but with very high quality. The reference image or

most of its features are fully known in the FR metrics

(e.g. [33, 47, 54, 30, 8, 44, 38]) while totally inaccessi-

ble in the NR metrics (e.g. [15, 18]). The RR metrics

(e.g. [49, 20]) strike the balance between FR methods

and RR methods, which assume only partial features

of the reference image are given. This paper focuses on

the FR metrics.

1.1 Motivations

In this paper, we investigate the dictionary learning

with sparse coding for FR-IQA, which is motivated bi-

ologically as follows. Theoretical studies [1, 23] have

shown that human primitive visual cortex uses sparse

coding to represent the perceptual information from

the external world such as natural scenes. Sparse codes

can be considered as an analogue of neurons’ responses

while the used dictionary atoms can be regarded as the

corresponding active neurons in the retina. Learning

an over-complete dictionary with the sparsity prior can

imitate the properties, such as localization, orientation,

bandpass and sparse activation, of the receptive field of

simple cells in the primary visual cortex [23], and pro-

vide exact quantitative predictions that are often con-

sidered to be consistent with the measurements of the

visual cortex [1]. It is also shown in [7] that the re-

sponse of lateral geniculate nucleus can be accounted

by the principle of sparsity and parsimony.

We are also motivated by the recent success of

sparse-coding-based approaches in image representa-

tions [29, 28], as well as in IQA, e.g. FR-IQA [13,

19, 17] and NR-IQA [15, 18]. Let y1, · · · ,yN denote

the vectorized image patches sampled from the image,

d1, · · · ,dM denote the dictionary atoms, ci denotes the

coding vector corresponding to yi for i = 1, · · · , N . The

existing sparse-coding-based approaches for IQA often

consider the following model:

Y ≈ DC, (1)

where Y = [y1, · · · ,yN ], D = [d1, · · · ,dM ], C =

[c1, · · · , cN ], and C is assumed to be sparse. The degra-

dation on the image will cause disturbance on both

the dictionary atoms and coding vectors. Most ap-

proaches [13, 19, 17] fix the dictionary and track the

changes of the coding vectors between the reference im-

age and its distorted versions. Such approaches are gen-

erally FR, as the coding vectors contain a majority of

features of the images. Some approaches [15, 18] also at-

tempted to construct the prior knowledge for NR-IQA

based on the statistical properties of the coding vec-

tors. All these approaches only use the sparse coding

matrix C but without the dictionary D in the calcula-

tion of the final quality score. The dictionary has not

been fully exploited yet.

The dictionary indeed can encode the quality degra-

dation. An example is illustrated as follows. Without

loss of generality, we consider the 1D case. Let f ∈ RN
denote an image with N pixels. When sampling the

patches y1, · · · ,yN from f using a sliding windows, the

model in (1) can be written into the convolution form

under mild conditions [12]:

f ≈
M∑
i=1

di ∗ c̃i, (2)

where ∗ denotes convolution, and c̃i denotes the trans-

pose of the ith row of C. Consider a degradation that

removes high-frequency components, which is modeled

by the convolution with a low-pass kernel a. The result-

ing degraded image is given by

a ∗ f ≈
M∑
i=1

(a ∗ di) ∗ c̃i. (3)

In other words, the dictionary atoms of the degraded

image are equivalent to the degraded versions of dic-

tionary atoms of the reference image when the coeffi-

cients are fixed. Thus, the degradation caused by the

loss of high frequency information, such as image blur

and image compression, can be well measured based on

the difference between the dictionaries of the reference

and degraded images. Based on such an observation, we

proposed a hybrid dictionary learning model which se-

quentially learns dictionaries from the reference image

and the degraded one.

1.2 Main Contributions

A dictionary is essentially a set (of atoms) with per-

mutation ambiguity, i.e. changing the order of columns

(atoms) of a dictionary only generates an equivalent

one. Such a property makes it difficult to compare two

dictionaries. To avoid using set distances for comparing

the dictionaries, we add the coding consistency dur-

ing the dictionary learning on the reference image and
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distorted image, leading to a constrained hybrid dictio-

nary learning approach. From the computational per-

spective, the dictionary atoms serve as a frame or basis

of the space of patches. Comparing the dictionaries of

reference and degraded image patches is to measure the

distortion of the space of reference patches due to the

degradation.

By using the commutativity of convolution, we can

also rewrite (3) into

a ∗ f ≈
M∑
i=1

di ∗ (a ∗ c̃i). (4)

It can be seen that when fixing the dictionary, the

degradation is equivalent to being applied to the sparse

codes. This explains the effectiveness of the existing ap-

proaches working on sparse codes. In our method, we

also use a plain sparse coding model with a fixed an-

alytic dictionary to utilize the sparse codes for further

improvement in IQA. It is worth mentioning that, from

the biological perspective, the proposed dictionary-

based metric can be viewed as exploiting the behaviors

of active neurons when restricting same responses on

them, while the sparse-coding-based metric used in the

proposed approach as well as other existing approaches

are based on the responses of the same neuron.

In summary, our main contribution is a proposal

of a dictionary-based approach with sparse coding for

the FR-IQA on blurriness and compressed artifacts.

Instead of using handcrafted features such as struc-

tural features [42], edge features [48] or texture fea-

tures [3, 26, 27, 41, 28], we take full advantage of dictio-

nary learning and sparse coding which are data-driven

and learning-based. The proposed approach was tested

on five benchmark datasets. The experimental results

have demonstrated the effectiveness of the proposed

method.

2 Related Work

In this section, we first review some general FR-IQA

metrics which are designed for various types of distor-

tion such as contrast reduction, noise, blur and even

the mixture of multiple degradations, with particular

focus on the sparse-coding-based approaches as they

are closely related to ours. Then we conduct the litera-

ture review on the IQA metrics designed for blur images

and compressed images.

2.1 General FR-IQA Metrics

Many FR-IQA metrics characterize the structural in-

formation of images, such as SSIM [47], MS-SSIM [46],

IW-SSIM [44] and FSIM [54], using manually-designed

features. Such handcrafted features are not adaptive

to data. Another line of research is learning structural

features from data for FR-IQA. Along this line, the

sparse-coding-based methods proposed in recent years,

e.g. [13, 17, 19], have emerged as a promising direction.

These methods calculate the sparse coefficients of im-

ages or image patches under some dictionaries, based

on which the visual quality scores are computed.

A pioneer work of sparse-coding-based IQA is con-

ducted in [8], which trained a feature detector using

independent component analysis for extracting local

image features for IQA. The feature detector can be

viewed as a dictionary and its output can be viewed

as the sparse coefficients. Guha et al. [13] proposed to

learn an individual dictionary from each reference im-

age and use it for the sparse coding of the corresponding

reference image and distorted images. Such a scheme

may be time-consuming since the dictionary learning

process is run for every input reference image. To over-

come this weakness, Li et al. [17] proposed to pre-learn

a universal dictionary from a set of clear natural images

rather than learning individual ones. This approach is

extended in [19] to further utilize the color cues.

2.2 IQA for Blurry Images and Compressed Images

The IQA metrics on blurry images and compressed im-

ages are often referred to as sharpness metrics. Most

of existing sharpness metrics are NR. Although the

degradation of blurry images and compressed images

are both caused by high-frequency information loss, the

perceptive experiences as well as the statistic character-

istics are different on these two types of degradation.

Therefore, the NR sharpness metrics are developed for

blurry images and compressed images respectively; see

e.g. [22, 37, 18, 43] and [45, 34, 35].

Regarding the FR approaches for compressed im-

ages, one early work was done by Wang et al. [45]. They

proposed to measure the level of block artifacts at the

edges of square blocks for estimating the JPEG qual-

ity. Later, plenty of IQA methods were proposed based

on the statistics of natural images. Most these methods

are designed for individual compression type, such as

JPEG2000 [35] and JPEG [11].

For blurry images, existing FR approaches resort to

various statistics properties of clean image and blurry

images for the IQA task. Narvekar et al. [22] proposed

to model the probability of the blur detection results

and then utilize the cumulative probability to estimate

image quality. Wang et al. [43] proposed to model the

properties of blurred images using the statistics of im-

age gradient magnitudes and calculate the final score

through the extreme learning machine. There are also
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Fig. 2: Outline of the proposed method.

some sparse-coding-based methods in this field. Shi et

al. [37] proposed a sparse model to estimate the just

noticeable defocus blur. They extract blur-related fea-

tures based on the numbers of used dictionary atoms

in the sparse representation and image decomposition.

Li et al. [18] proposed to calculate the energy of sparse

codes and the variance of image blocks for measuring

the quality of a blurry image.

3 Proposed Method

The proposed method is outlined in Fig. 2, which

mainly contains two modules: hybrid dictionary learn-

ing and sparse coding. The former module fixes the

sparse code and learns the dictionary from the refer-

ence and distorted images, while the latter part fixes

the dictionary and generates the sparse coefficients. The

results from these two modules are pooled as the final

score. The details of each module will be presented in

the following subsections.

Throughout the paper, unless specified, bold up-

per letters denote matrices, bold lower letters represent

vectors, light lower letters for scalars, bold hollow let-

ters for sets, and calligraphic letters for operators or

functions. Let x(i) denote the ith element of x. For

x ∈ RN , its `0 pseudo-norm is denoted by ‖x‖0 and

defined as #{j|x(j) 6= 0}, and its `2 norm is denoted

by ‖x‖2. The Frobenius norm of a matrix X ∈ RM×N
is denoted by ‖X‖F. Let ∗,⊗ denote the convolution

and element-wise multiplication respectively. The su-

perscripts ’r’ and ’d’ on matrices or vectors are the ab-

breviations of reference and distortion respectively.

3.1 Hybrid Dictionary Learning Module

The hybrid dictionary learning module is the main

contribution of this paper. Given a reference image

Ir ∈ RM1×M2 , we first sample Z image patches denoted

by {Pr
i ∈ R

√
B×
√
B}Zi=1 from Ir using a sliding window

with step size S, where Z = bM1−
√
B+1

S c×bM2−
√
B+1

S c,
the patch size is

√
B×
√
B and B is a perfect square. On

the distorted image Id ∈ RM1×M2 , the same sampling

process is done and we can collect Z image patches

from Id, which are denoted by {Pd
i ∈ R

√
B×
√
B}Zi=1.

The patches {Pr
i}Zi=1 and {Pd

i }Zi=1 are ordered respec-

tively such that Pr
i and Pd

i correspond to the same spa-

tial locations in images for all i. Then we transform the

image patches to Yr and Yd via vectorization, where

Yr = [yr
1,y

r
2...y

r
Z ] ∈ RB×Z and Yd = [yd

1 ,y
d
2 ...y

d
Z ] ∈

RB×Z .

The next procedure contains two steps. First, the

dictionary learning is conducted on the reference image

by solving the following minimization problem:

min
D∈RB×K ,C∈RK×Z

‖Yr −DC‖2F

s.t. ||ci||0 ≤ T1, ||dj ||2 = 1, ∀i, j,
(5)

where T1 is a predefined sparsity. The norm constraint

of atoms is to remove the scaling ambiguity of solu-

tions. This is a classic sparse dictionary learning which

is solved by K-SVD [2]. The learned dictionary is de-

noted by Dr, and the obtained sparse coding matrix is

denoted by Cr. Next, we conduct dictionary learning

using the following model:

min
D∈RB×K

‖Yd −DCr‖2F. (6)

The learned dictionary is denoted by Dd. In other

words, we encourage the dictionary learned on the dis-

torted image to generate the same sparse codes, which

relates the information of Ir, Id and implicitly aligns

the atoms of the two dictionaries Dr,Dd for compara-

bility. Note that there are no normalization constraints

on the dictionary. The problem of (6) is a least-squares

problem which is solved by the conjugate gradient al-

gorithm.

We show some examples of the learned dictionaries

on the reference image and the distorted image in Fig. 3.

It can be seen that the learned atoms on the distorted

images have the correspondence with those on the ref-

erence image. Furthermore, we can observe that, the

more severe the visual degradation is, the more change

the learned atoms have. Such a trend demonstrates the

effectiveness of the hybrid dictionary learning for en-

coding the image blur and compression. Following part

is a simple explanation for the observation. Recall from

Eq. (3) which demonstrates the mathematical relation

between the dictionary atom of the reference image and

that of the distorted one: dd
i = a ∗ dr

i where a is a blur

kernel. Let F(·) denote Fourier Transform. Then based

on the Parseval’s identity [14] and the convolution the-

orem [51], we have

‖dr
i − dd

i ‖2 = ‖dr
i − a ∗ dr

i‖2 = ‖F(dr
i)−F(a ∗ dr

i)‖2
= ‖F(dr

i)−F(a)⊗F(dr
i)‖2

≥ ‖F(dr
i)‖2 − ‖F(a)⊗F(dr

i)‖2
≥ ‖F(dr

i)‖2 −max(|F(a)|)‖F(dr
i)‖2

= (1−max(|F(a)|)‖F(dr
i)‖2.
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(a) Reference (b) Blur-L1 (c) Blur-L3 (d) Jpeg-L2 (e) Jpeg-L4 (f) Jpeg2k-L1 (g) Jpeg2k-L4

Fig. 3: Images with different degradations and the corresponding learned dictionaries by our approach. There are

4 degrees of distortion denoted by L1 to L4 (from minor to severe), which are marked in the image sub-titles.

0 0.120 0.402 0.846 0.901

Fig. 4: Images with different blur degrees. The values

indicate
∑
i ‖d

r
i − dd

i ‖2.

Note that a blur kernel can be modeled by a low-pass

filter with `1-normalization for preserving image bright-

ness. Then, it is easy to verify that max(|F(a)|) ≤ 1.

When the blur degree of a increases, F(a) will decay

faster which implies the difference between dr
i and dd

i

likely becomes larger as the blurriness becomes more

severe. Fig. 4 shows a demonstration on the relation

between the blur degree and the difference of dictio-

nary atoms. It is obvious that
∑
i ‖d

r
i − dd

i ‖2 increases

as the image becomes more blurry.

3.2 Sparse Coding Module

Both dictionary and sparse coefficients can encode the

degradation by blur and compression, as shown in (3)

and (4). Thus, we also utilize the sparse coefficients for

our IQA task, which is the main goal in the sparse cod-

ing module. Different from these recent work [52, 53]

in the field of sparse coding, we adopt a simple strat-

egy in this module. Similar to that in the hybrid dictio-

nary learning module, with the sampling and vectoriza-

tion operations, we obtain the vectorized image patches

Xr = [xr
1,x

r
2...x

r
Z̄

] ∈ RB̄×Z̄ on the reference image Ir

and the vectorized image patches Xd = [xd
1 ,x

d
2 ...x

d
Z̄

] ∈
RB̄×Z̄ on the distorted image Id with the image block

size
√
B̄ ×

√
B̄ and the sliding step of sampling S̄. To

capture both the low-frequency and high-frequency in-

formation, we use the Haar wavelet dictionary for sparse

coding.

Let W = [w0,w1, · · · ,wL−1] ∈ RB̄×L denote a

Haar wavelet dictionary with L atoms, where w0 de-

notes the low-frequency atom and wl denotes the high-

frequency atoms for l = 1, · · · , L− 1. We calculate the

coefficient matrix Er ∈ RL×Z̄ of Ir via solving

min
E
‖Xr −WE‖2F + β‖E‖0, s.t. β > 0. (7)

Since the wavelet dictionary is an orthogonal dictionary,

the problem of (7) has the explicit solution given by

Er = Tβ(W>Xr), (8)

where Tβ(·) keeps the values of elements whose absolute

value is not smaller than
√
β and sets the rest to 0.

The sparse codes Ed ∈ RL×Z̄ of Id is calculated in the

similar way, i.e. replacing Er in (7) with Ed, which is

given by

Ed = Tβ(W>Xd). (9)

Let Er = [ẽr
0, ẽ

r
1, · · · , ẽr

L−1]>,Ed = [ẽd
0 , ẽ

d
1 , · · · , ẽd

L−1]>,

where (ẽr
l)
>, (ẽd

l )> are the lth row of Er,Ed respec-

tively, which correspond to the lth atom wl, for l =

0, · · · , L−1. Note that ẽr
0, ẽ

d
0 correspond to w0 which is

low-frequency component, while ẽr
l , ẽ

d
l , l = 1, · · · , L− 1

correspond to high-frequency components. We give dif-

ferent treatments to these two types of components. We

use ẽr
0, ẽ

d
0 as the low-frequency features and calculate

the high-frequency features fr, fd as follows:

fr(j) =

L−1∑
l=1

|ẽr
l(j)|, fd(j) =

L−1∑
l=1

|ẽd
l (j)|, j = 1, · · · , Z̄.

3.3 Calculations of Visual Quality Score

From the above modules, we generate the dictionar-

ies Dr = [dr
1, · · · ,d

r
K ],Dd = [dd

1 , · · · ,d
d
K ] and sparse

coding based features er
0, e

d
0 , f

r, fd on the reference and

distorted images. Then, using them as the image fea-

tures, we apply different metrics to different features to

generate the final score. Regarding the dictionaries, we

define two metrics. The first one is defined by:

Mcos(D
r,Dd) =

1

K

K∑
i=1

|(dr
i)
>(dd

i )|
||dr

i||2|‖d
d
i |‖2

, (10)
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which measures cosine values of the angles between

pairs of atoms. The second metric is defined by:

Mdas(D
r,Dd) =

1

K

( K∑
i=1

‖dd
i ‖2

‖dr
i‖2
)

=
1

K

K∑
i=1

‖dd
i ‖2, (11)

which measures the energy changes on the dictionary

atoms. The equality holds due to ‖dr
i‖2 = 1 for all i.

Regarding the sparse codes, we separately treat the

low-frequency features and the high-frequency ones, as

they are quite different with each other in terms of mag-

nitude and distribution. The low-frequency feature is

related to the luminance mean [8, 17]. We use the pear-

son correlation coefficient to measure the statistical lin-

ear correlation between ẽr
0 and ẽd

0 , which is defined by

Mpcc(ẽr
0, ẽ

d
0) =

1

Z̄

(ẽr
0 −M(ẽr

0))>(ẽd
0 −M(ẽd

0))

σ(ẽr
0)σ(ẽd

0)
, (12)

where M(x) outputs a vector obtained by repeating

the mean value of x ∈ RN by N times, and σ(·) denotes

the standard deviation. On the high frequency features,

they often correspond to the local image structures such

as edges. Thus, we use the structural metric [42, 9] to

measure the distortion:

Mcrs(f
r, fd) =

1

Z̄

Z̄∑
j=1

2fr(j)fd(j) + c

(fr(j))2 + (fd(j))2 + c
, (13)

where c > 0 is a stabilizer set to a small constant.

The final quality score of the distorted image is the

combination of the four metrics as follows:

SJDL(Ir, Id) =λ1Mcos(D
r,Dd) + λ2Mdas(D

r,Dd)

+ λ3Mpcc(ẽr
0, ẽ

d
0) + λ4Mcrs(f

r, fd)
(14)

with constraints that λj > 0,
∑
λj = 1 for j = 1, · · · , 4.

To clarify the pipeline of the proposed method, we

give a detailed algorithmic description in Algorithm 1.

4 Experiments

The proposed method is evaluated using the subsets of

five public benchmark datasets including blurry images

and compressed images, with five common criteria used

to measure the performance.

4.1 Experimental Settings and Implementation Details

Five datasets are used for the evaluation, including

LIVE [36], CSIQ [16], TID2008 [24], TID2013 [25] and

MICT [50]. These datasets contain multiple distortion

types, and we only select the images related to blur and

compression for our test. The first four datasets con-

tain Gaussian blurry images whose numbers are 145,

Algorithm 1 The proposed method.

Input: The reference image Ir; The distorted image Id;
Output: The quality score SJDL(Ir, Id) of Id;
1: Calculate the corresponding dictionaries Dr and Dd of Ir

and Id by solving (5) and (6) respectively.
2: Compute the corresponding coefficients Cr and Cd of Ir

and Id according to (8) and (9) individually;
3: Operate on Cr and Cd to get the low-frequency features

ẽr0, ẽ
d
0 and high-frequency features fr, fd;

4: Quantify the differences between dictionaries Dr and Dd

based on (10) and (11) to get sub-scores Mcos(Dr,Dd)
and Mdas(Dr,Dd);

5: Quantify the differences between coefficients Cr and Cd

based on (12) and (13) to get sub-scores Mpcc(ẽr0, ẽ
d
0) and

Mcrs(f r, fd);
6: Combine four sub-scores obtained in the last two steps

with individual weights λ1 ∼ λ4, as shown in (14);
7: return SJDL;

150, 100 and 125 respectively, and they also contain

compressed images (JPEG and JPEG without error)

whose numbers are 344, 300, 200 and 250 respectively.

MICT contains 168 compressed images from JPEG and

JPEG2000 compression. Then, there are totally 1782

images used for our evaluation.

Five criteria can be employed to measure the perfor-

mance of the proposed method from different aspects,

which are widely used in the evaluation of IQA meth-

ods, including:
• Spearman rank order correlation coefficient (SROCC),
• Kendall rank order correlation coefficient (KROCC),
• Pearson linear correlation coefficient (PLCC),
• Root mean square error (RMSE),
• Mean absolute error (MAE).

The criteria SROCC and KROCC are used to mea-

sure the prediction monotonicity, (i.e. whether the in-

crease or decrease of the objective prediction is as-

sociated with an increase or decrease of the subjec-

tive measurement), while the criteria PLCC, RMSE

and MAE are used to evaluate the prediction accu-

racy (i.e. whether the objective prediction is consistent

with the subjective measurement). An effective IQA

method should yield high values of PLCC, SROCC and

KROCC, while result in low RMSE and MAE. It is

noted that due to the nonlinear relationship between

objective ratings and subjective scores, all the criteria

are calculated after mapping the objective score x to

the subjective one by the logistic function [36]:

f(x) = ω1(
1

2
− 1

1 + exp(ω2(x− ω3))
) + ω4x+ ω5, (15)

where the parameters ωi for i = 1, 2, .., 5 are all cal-

culated by least squares fitting tools such as MATLAB

least squares toolbox. Such a mapping scheme is widely

used in existing IQA methods, which can well bridge
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the gap between the objective domain and subjective

domain; see e.g. [36, 49].

Implementation details of our experiments are pre-

sented as follows. In the module of hybrid dictionary

learning, the size of image patches and the sliding step

of sampling are set to 8×8 and 4 respectively (i.e. S =

4, B = 64). The input images are scaled to their half

size for saving computational cost. The number of dic-

tionary atoms K is set to 20. In the sparse coding mod-

ule, we use a 4× 4 wavelet Haar dictionary so that L =

4, B̄ = 4. The sampling step is set to 2, implying non-

overlapping sampling. The parameter β is empirically

set to 0.001. For blurriness artifacts, (λ1, λ2, λ3, λ4) are

set to be (0.03, 0.61, 0.30, 0.06) and for compression

artifacts, the parameters (λ1, λ2, λ3, λ4) are set to be

(0.03, 0.06, 0.34, 0.57). These two sets of parameters are

selected in a defined parameter grid which has four di-

mensions of the range from 0 to 1 with step 0.01 using

the images with the corresponding distortion from the

CSIQ dataset. For color images, the variation of color

saturation should also be considered in our method for

better perception, so we first convert them from the

RGB color space to the YUV color space. Then we ap-

ply hybrid dictionary learning on the Y channel and

conduct sparse coding on all three channels.

4.2 Individual Component Contribution

To reveal the individual importance of the four com-

ponents Mcos(D
r,Dd), Mdas(D

r,Dd), Mpcc(ẽr
0, ẽ

d
0) and

Mcrs(f
r, fd) of the proposed method, we evaluate their

performances separately on blurry images and com-

pressed images. The results are listed in Table 1 and

Table 2. From these two tables, we can see that the per-

formance of the dictionaries’ energy (i.e.Mdas) and the

high frequency information (i.e.Mcrs) are the two met-

rics most closed to the overall performance (i.e. All).

According to the weighting of each component in the

final prediction, Mdas contributes the most in blurriness

while Mcrs contributes the most in compression. Mpcc

contributes significantly while Mcos contributes slightly

in both distortions.

4.3 Performance Comparison

The performance of the proposed method is evaluated

on CSIQ, LIVE, TID2008 and TID2013 datasets. For

comparison, five FR-IQA approaches are chosen, in-

cluding the famous methods PSNR, SSIM [47], the re-

cent novel method SPSIM [39], as well as the power-

ful methods MS-SSIM [46] and FSIM [54] which are

regarded as the top-performing ones among the six-

teen FR-IQA methods compared in [21]. All above

Table 1: Performance of components on blurry images

Database Criteria Mcos Mdas Mpcc Mcrs All

PLCC 0.825 0.964 0.873 0.966 0.974
SROCC 0.736 0.958 0.869 0.966 0.968

LIVE KROCC 0.551 0.837 0.690 0.842 0.847
RMSE 10.43 4.223 8.998 4.758 4.221
MAE 8.668 3.304 7.356 3.649 3.286

PLCC 0.893 0.965 0.945 0.954 0.975
SROCC 0.772 0.960 0.966 0.962 0.970

CSIQ KROCC 0.591 0.838 0.840 0.826 0.850
RMSE 0.129 0.074 0.094 0.086 0.064
MAE 0.103 0.059 0.078 0.061 0.049

PLCC 0.788 0.929 0.905 0.935 0.940
SROCC 0.733 0.941 0.912 0.938 0.951

TID2008 KROCC 0.522 0.790 0.722 0.773 0.801
RMSE 0.723 0.414 0.500 0.442 0.400
MAE 0.581 0.324 0.406 0.359 0.306

PLCC 0.723 0.940 0.922 0.935 0.950
SROCC 0.653 0.951 0.929 0.938 0.961

TID2013 KROCC 0.446 0.815 0.750 0.773 0.824
RMSE 0.862 0.399 0.483 0.442 0.388
MAE 0.705 0.330 0.394 0.359 0.319

Table 2: Performance of components on compressed im-

ages

Database Criteria Mcos Mdas Mpcc Mcrs All

PLCC 0.563 0.924 0.935 0.955 0.968
SROCC 0.498 0.949 0.946 0.952 0.969

LIVE KROCC 0.341 0.795 0.794 0.827 0.839
RMSE 23.97 11.12 10.26 7.661 7.263
MAE 19.95 9.281 7.940 5.978 5.661

PLCC 0.707 0.964 0.967 0.958 0.972
SROCC 0.625 0.945 0.964 0.940 0.954

CSIQ KROCC 0.447 0.789 0.827 0.775 0.810
RMSE 0.220 0.083 0.079 0.090 0.074
MAE 0.181 0.062 0.062 0.066 0.054

PLCC 0.683 0.938 0.908 0.916 0.974
SROCC 0.610 0.937 0.906 0.915 0.969

TID2008 KROCC 0.446 0.776 0.723 0.729 0.846
RMSE 1.382 0.657 0.794 0.760 0.431
MAE 1.101 0.498 0.630 0.594 0.327

PLCC 0.666 0.933 0.915 0.930 0.975
SROCC 0.564 0.922 0.900 0.914 0.970

TID2013 KROCC 0.405 0.751 0.717 0.727 0.849
RMSE 1.223 0.592 0.661 0.605 0.418
MAE 1.004 0.441 0.506 0.472 0.318

metrics are applicable for general distortion types and

most approaches above are based on capturing struc-

tural changes of images as we did. Moreover, the pro-

posed method is compared with several metrics de-

signed specifically for sharpness measurement, includ-

ing state-of-the-art JNBM [10], CPBD [22], MLV [6]

and a sparse-representation-based method SRM [18].

All the compared methods have available results for

comparison or published source codes which can pro-

duce the results.

The experimental results with three criteria are

summarized in Table 3. The top three good results are

marked in boldface and the best result among all the

compared methods is underlined. To evaluate the over-

all performance over the four datasets, for each method,

we also calculate the average performance weighted by

the number of distorted images used in each dataset. As

shown in Table 3, among all the compared distortion-

specific methods (i.e. JNBM, CPBD, MLV, SRM), the

proposed one consistently performs the best across all
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Table 3: Performance comparison on benchmark datasets

(a) Blurry images

Dataset Criterion OURS PSNR SSIM MS-SSIM FSIM SPSIM JNBM CPBD MLV SRM

PLCC 0.9746 0.9252 0.9496 0.9660 0.9645 0.9559 0.8711 0.9155 0.9489 0.9391
CSIQ SROCC 0.9700 0.9291 0.9608 0.9711 0.9713 0.9654 0.8338 0.8845 0.9245 0.9139

RMSE 0.0642 0.1087 0.0898 0.0741 0.0757 0.0842 0.1407 0.1153 0.0904 0.0984

PLCC 0.9735 0.7841 0.9483 0.9565 0.9737 0.9602 0.7744 0.8638 0.9057 0.9596
LIVE SROCC 0.9679 0.7823 0.9517 0.9542 0.9706 0.9607 0.7872 0.9182 0.9312 0.9593

RMSE 4.2208 11.464 5.8612 5.3889 4.2107 5.1613 11.686 9.3057 7.8283 5.1958

PLCC 0.9400 0.8736 0.9508 0.9503 0.9454 0.9395 0.6932 0.8231 0.8593 0.8896
TID2008 SROCC 0.9513 0.8684 0.9544 0.9563 0.9472 0.9450 0.6667 0.8412 0.8548 0.8869

RMSE 0.4004 0.5712 0.3634 0.3655 0.3823 0.4020 0.8458 0.6663 0.6001 0.5361

PLCC 0.9504 0.9148 0.9648 0.9634 0.9549 0.9488 0.7115 0.8555 0.8830 0.9014
TID2013 SROCC 0.9607 0.9147 0.9668 0.9673 0.9550 0.9531 0.6902 0.8531 0.8785 0.8925

RMSE 0.3881 0.5041 0.3283 0.3347 0.3704 0.3941 0.8769 0.6461 0.5858 0.5404

Weighted
Average

PLCC 0.9640 0.8734 0.9531 0.9597 0.9611 0.9533 0.7716 0.8689 0.9038 0.9262
SROCC 0.9347 0.8730 0.9585 0.9626 0.9628 0.9585 0.7542 0.8780 0.9019 0.9162
RMSE 1.3476 3.4591 1.8091 1.6748 1.3585 2.0284 3.6726 2.9116 2.4652 1.7102

(b) Compressed images

Dataset Criterion OURS PSNR SSIM MS-SSIM FSIM SPSIM JNBM CPBD MLV SRM

PLCC 0.9715 0.9182 0.9711 0.9778 0.9794 0.9755 0.5468 0.5651 0.5469 0.8608
CSIQ SROCC 0.9539 0.9159 0.9541 0.9639 0.9640 0.9610 0.5286 0.4421 0.3837 0.8086

RMSE 0.0739 0.1234 0.0743 0.0653 0.0629 0.0685 0.2608 0.257 0.2608 0.1586

PLCC 0.9681 0.8878 0.9645 0.9713 0.9778 0.9779 0.3501 0.4766 0.2939 0.8869
LIVE SROCC 0.9689 0.8911 0.9641 0.9706 0.9758 0.9759 0.3384 0.3756 0.2764 0.8779

RMSE 7.2632 13.3452 7.6572 6.9033 6.0758 6.0638 27.164 25.494 27.719 13.397

PLCC 0.9748 0.8699 0.9615 0.9694 0.9746 0.9734 0.6753 0.6937 0.6765 0.9076
TID2008 SROCC 0.9696 0.8664 0.9584 0.9645 0.9694 0.9694 0.6467 0.5701 0.5843 0.8842

RMSE 0.4305 0.9329 0.5196 0.4644 0.4240 0.4336 1.3951 1.3625 1.3931 0.794

PLCC 0.9753 0.9167 0.9604 0.9656 0.9709 0.9754 0.6636 0.6891 0.6504 0.9073
TID2013 SROCC 0.9705 0.9170 0.9453 0.9495 0.9581 0.9613 0.6383 0.6004 0.5324 0.8522

RMSE 0.4180 0.6554 0.4569 0.4264 0.3927 0.3615 1.2272 1.1888 1.2461 0.6899

Weighted
Average

PLCC 0.9721 0.9001 0.9648 0.9714 0.9760 0.9757 0.5447 0.5949 0.5262 0.8883
SROCC 0.9651 0.8997 0.9556 0.9624 0.9669 0.9668 0.5246 0.4862 0.4281 0.8529
RMSE 2.2299 4.0938 2.3664 2.1356 1.8883 1.8809 8.2133 7.7309 8.3721 4.1001

the datasets and all criteria. Moreover, for blurry im-

ages (Table 3 (a)), the proposed method performs com-

parably or even better than the other top performed

metrics in CSIQ and LIVE datasets. Overall speaking,
in terms of PLCC and RMSE (the weighted average

value across all datasets), our method is the best. For

compressed images (Table 3 (b)), the proposed method

performs the best in TID2008 and TID2013 datasets,

and the overall performance across all datasets is com-

parable with the other top metrics such as FSIM and

SPSIM. To further demonstrate the advantage of our

method, we evaluate the performance on the summa-

tions of final scores produced by ours and other meth-

ods directly. The results are listed in Table 4. It implies

that the proposed method utilizing dictionary learning

and sparse coding may extract complementary features

with other competitive methods, which means that our

method can be utilized to ensemble with some existing

methods.

To draw a statistical conclusion for the performance,

we conduct a two-tailed F-test to the prediction resid-

uals after non-linear regression (i.e. RMSE) at the 5%

significance level [49] for every pair of the compared

methods on the dataset CSIQ and the dataset LIVE

with specific types, where the model residuals are as-

sumed coming from the normal distributions. The re-

sults of statistical significance tests are displayed in

Fig. 5. It is observed that all compared IQA methods

are not statistically better than the proposed approach

marked as ‘OURS’ in Fig. 5 on the CSIQ sub-dataset.

For LIVE sub-dataset, our method is superior than or

equivalent to almost all of existing new and classical

IQA metrics tested in this paper, expect for the FR

methods FSIM and SPSIM for compressed images.

For visualizing the performance of compared

metrics, we show the scatter plots of subjective

scores against the predicted objective scores for four

distortion-specific metrics (MLV, SRM) and three

distortion-general metrics (MS-SSIM, FSIM, SPSIM)

with better performance in Fig. 6 on the TID2013 sub-

datasets. The black curve is obtained by fitting the data

points with the logistic function in (15). From the vi-

sual results, it can be seen that the data points of our

method is more tight to the fitting curve than others,

implying that the proposed method is highly consistent

with human visual systems.
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Table 4: Performance of combined features on blurry images in the TID2013 dataset

Database Criteria MS-SSIM OURS+MS-SSIM SPSIM OURS+SPSIM FSIM OURS+FSIM

PLCC 0.9634 0.9657 0.9488 0.9657 0.9549 0.9649
SROCC 0.9673 0.9708 0.9531 0.9708 0.9550 0.9697

TID2013 KROCC 0.8429 0.8556 0.8132 0.8556 0.8158 0.8509
RMSE 0.3347 0.3241 0.3941 0.3241 0.3704 0.3277
MAE 0.2557 0.2487 0.2998 0.2487 0.2912 0.2519
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Fig. 5: The results of statistical significance tests of several IQA metrics on the datasets CSIQ and LIVE of specific
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Objective score by MSSIM

0.7 0.75 0.8 0.85 0.9 0.95 1

D
M

O
S

1

2

3

4

5

6

7

Blurred images in TID2013

The fitted curve

(a) MS-SSIM [46]

Objective score by FSIM

0.7 0.75 0.8 0.85 0.9 0.95 1

D
M

O
S

1

2

3

4

5

6

7

Blurred images in TID2013

The fitted curve

(b) FSIM [54]

Objective score by SPSIM

0.6 0.7 0.8 0.9 1

D
M

O
S

1

2

3

4

5

6

7

Blurred images in TID2013

The fitted curve

(c) SPSIM [39]

Objective score by Ours

26 27 28 29 30 31 32

D
M

O
S

1

2

3

4

5

6

7

Blurred images in TID2013

The fitted curve

(d) OURS

Objective score by MLV

0 0.05 0.1 0.15 0.2
D

M
O

S
1

2

3

4

5

6

7

Blurred images in TID2013

The fitted curve

(e) MLV [6]

Objective score by SPRM

0 5 10 15 20 25

D
M

O
S

1

2

3

4

5

6

7

Blurred images in TID2013

The fitted curve

(f) SRM[18]

Objective score by MSSIM

0.6 0.7 0.8 0.9 1

D
M

O
S

0

1

2

3

4

5

6

7

Compressed images in TID2013

The fitted curve

(g) MS-SSIM [46]

Objective score by FSIM

0.6 0.7 0.8 0.9 1

D
M

O
S

0

1

2

3

4

5

6

7

Compressed images in TID2013

The fitted curve

(h) FSIM [54]

Objective score by SPSIM

0.7 0.75 0.8 0.85 0.9 0.95 1

D
M

O
S

0

1

2

3

4

5

6

7

Compressed images in TID2013

The fitted curve

(i) SPSIM [39]

Objective score by Ours

26 27 28 29 30 31 32

D
M

O
S

0

1

2

3

4

5

6

7

Compressed images in TID2013

The fitted curve

(j) OURS

Objective score by MLV

0 0.05 0.1 0.15 0.2 0.25

D
M

O
S

0

1

2

3

4

5

6

7

Compressed images in TID2013

The fitted curve

(k) MLV [6]

Objective score by SPRM

0 5 10 15 20 25 30

D
M

O
S

0

1

2

3

4

5

6

7

Compressed images in TID2013

The fitted curve

(l) SRM[18]

Fig. 6: Scatter plots of metric values against subjective scores by several IQA metrics. The top row and the bottom

row are for blurry images and compressed images on the TID2013 database respectively.

Table 5: The performance on two datasets for different

compression types

Dataset Type Metric PLCC SROCC RMSE

MICT

JPG2K
SPARQ 0.927 0.928 0.462

OURS 0.932 0.935 0.487

JPEG
SPARQ 0.864 0.859 0.622

OURS 0.895 0.877 0.541

TID2008

JPG2K
SPARQ 0.973 0.966 0.447

OURS 0.969 0.963 0.485

JPEG
SPARQ 0.943 0.919 0.565

OURS 0.965 0.923 0.445

4.4 Hybrid Dictionary versus Single Dictionary

To further explore the effectiveness of using hybrid

dictionary, we compare it with a sparse-coding-based

approach using traditional single dictionary learning

on two commonly compression types, e.g. JPEG and

JPEG2K. MICT and TID2008 datasets are used in this

experiment. The single-dictionary-based method used

for comparison is SPARQ [13] which is a classic sparse-

representation-based FR-IQA method. The results are

listed in Table 5 where the better one between the two

approaches is marked in boldface. It is observed that the

proposed method outperforms the SPARQ method in

most cases, which demonstrates that the learned dic-

tionaries and features obtained by hybrid dictionary

learning are effective in capturing the intrinsic struc-

ture changes for JPEG and JPG2K compression types.

4.5 Impact of Parameters

The number of dictionary atoms K is an important pa-

rameter in hybrid dictionary learning. In general, the

dictionary with more multifarious atoms has stronger

representation ability when the dimension of data is

fixed. It may span a larger subspace that the training
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image patches lie on. To see the influence of this param-

eter, we vary it from 10 to 60 with step 10 and then test

the performance on blurry images and compressed im-

ages in CSIQ and TID2008 datasets. The results are

drawn in Fig. 7 and the patch size is set to 8. Accord-

ing to the results, the K is set to 20 in our experiments

since it gets the best performance.

The patch size
√
B is another important parame-

ter. Its square, i.e. B, is the dimension of training data

which also determines the dimension of the learned sub-

space. The non-zero mean image patches with larger

scale possess more structural information within a rea-

sonable range. We vary
√
B from 4 to 10 respectively

and then evaluate the performance to see the influence

when K is fixed to 20. The results are drawn in Fig. 8.

According to the results, the
√
B is set to 8 in our

experiments as it shows the best performance in both

distortions.

4.6 Computational Cost

We compare the average running time of the proposed

method with other methods for their complete eval-

uation processes. The experiment is conducted on a

Windows-10 PC with Intel Core-I7 7700K CPU (4.20

GHz) and 32 GB RAM. The proposed method is im-

plemented using MATLAB R2018b. We chose 10 test

images randomly from the CSIQ dataset, whose size

is 512 × 512. The settings are same for all compared

methods including 10 testing images. All the Matlab

source codes of the compared methods were obtained

from the original authors. The results are displayed

in Table 6. It is observed that compared with another

sparse-representation-based method SRM, ours is much

faster. In comparison to other compared methods, the

proposed method is slower. It should be noted that the

time cost of our proposed method is still in an applica-

ble range.

To further explore the computational cost of differ-

ent modules of our method, we list the time cost of

them for ten test images in Table 7. From the table,

it can be seen that the most of running time is spent

by the procedure of hybrid dictionary learning, which

may be accelerated by other fast-run dictionary learn-

ing methods (e.g. [27]) or more powerful computational

resources.

4.7 Limitation and Failure Case

In the experiments, we also evaluate the performance

for different reference images and their corresponding

degraded versions with blur of different levels in the

CSIQ and LIVE databases. In detail, for a reference

image and its blurry versions, we calculate their qual-

ity scores and compare the generated scores with sub-

jective scores such as DMOS or MOS to obtain the

performance measurements such as PLCC. From these

measurements, we can observe that the performance

varies for different image contents. An example is shown

in Fig. 9, where the proposed method gets the worst

PLCC compared to three FR-IQA metrics. The images

in the CSIQ database shown (from left to right) in the

figure are ordered in the degradation level from light to

severe (L2 to L4) monotonically. Additionally, the listed

scores are normalized into the same scale for compari-

son. From Fig. 9, it is observed that the score generated

by ours decreases suddenly with increasing distortion
level(e.g. L2(0.776) to L3(0.242)) and the scores are

not compatible with subjective scores (e.g. L2(0.897)

to L3(0.496)). A probable reason is that the reference

image shown in Fig. 9 contains dense and weak details,

which may be represented with small sparse codes in K-

SVD. Recall the procedure of learning the degraded dic-

tionary we described in Section.3. As the sparse codes

are fixed in the procedure, the atoms related to codes

with small values are sensitive to the changes of the cor-

responding patches. As a result, the proposed method

is sensitive to images with dense and weak details, and

may produce incompatible results in such cases.

5 Conclusion

In this paper, an effective metric is proposed for the

full-reference image quality assessment on blurry im-

ages and compressed images. The proposed metric is

built upon a hybrid dictionary learning and sparse cod-

ing scheme. The experimental results show that the pro-
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Table 6: Average time cost of the compared methods

Model OURS PSNR SSIM MS-SSIM FSIM SPSIM JNBM CPBD MLV SRM

Type FR FR FR FR FR FR NR NR NR NR

Time (seconds) 0.192 0.001 0.001 0.032 0.117 0.098 0.140 0.074 0.039 1.421

Table 7: Time cost (seconds) of two modules of our method

Image Index 1 2 3 4 5 6 7 8 9 10 Mean

Dictionary learning 0.141 0.119 0.149 0.222 0.072 0.137 0.117 0.215 0.071 0.049 0.129

Sparse coding 0.073 0.074 0.070 0.068 0.068 0.069 0.070 0.073 0.078 0.072 0.071

Reference Blur-L2 Blur-L3 Blur-L4

SS 1.000 0.897 0.731 0.496
Ours 1.000 0.776 0.242 0.007
MS-SSIM 1.000 0.947 0.739 0.424
SPSIM 1.000 0.824 0.447 0.247
FSIM 1.000 0.863 0.497 0.202

Fig. 9: Images with dense and weak details and corre-

sponding quality scores evaluated by four methods with

normalization. SS indicates the normalized subjective

score.

posed metric performs competitively with the existing

top ones. In future, we would like to extend our method

to handle more image degradation types.
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