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Weakly-Supervised Sparse Coding with Geometric
Prior for Interactive Texture Segmentation
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Abstract—Texture segmentation is about dividing a texture-
dominant image into multiple homogeneous texture regions. The
existing unsupervised approaches for texture segmentation are
annotation-free but often yield unsatisfactory results. In contrast,
supervised approaches such as deep learning may have better
performance but require a large amount of annotated data. In
this paper, we propose a user-interactive approach to win the
trade-off between unsupervised approaches and supervised deep
approaches. Our approach requires the user to mark one pixel
in each texture region, whose label is directly propagated to its
neighbor region. Such labeled data are of very small amount
and even partially erroneous. To effectively exploit such weakly-
labeled data, we construct a weakly-supervised sparse coding
model that jointly conducts feature learning and segmentation.
In addition, the geometric constraints are developed for the model
to exploit the geometric prior on the local connectivity of region
boundaries. The experiments on two benchmark datasets have
validated the effectiveness of the proposed approach.

Index Terms—Texture segmentation, sparse coding, weakly-
supervised learning, geometric constraints

I. INTRODUCTION

Texture regions of various types are prevalent in the images
from daily life and real applications. Objects and backgrounds
in natural scenes often consist of different textures [1]. An
image about materials may encompass various texture regions.
MRI (Magnetic Resonance Imaging) and CT (Computed To-
mography), are about tissue cells modeled by mixtures of
texture regions [2–4]. SAR (Synthetic Aperture Radar) images
contain mountains, rivers and lands, which exhibit texture
regions of different forms [5]. Separating such texture regions
not only enables separate treatments to different image regions
and objects, but also provides perceptual attributes and mid-
level cues for visual recognition and understanding.

A closely-related topic in image processing is called texture
segmentation [6, 7], whose task is about dividing a texture-
dominant image into multiple disjoint homogeneous texture
regions. Texture segmentation has its practical values in many
fields, including the analysis on material, medical, biological
and chemical images [3, 8–10], natural scene understand-
ing [11], automatic navigation [12], remote sensing [5], etc.

Most traditional methods model texture segmentation as
the patch-level clustering which involves two stages: (i) rep-
resent image patches by feature vectors (e.g. local spectral
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histogram [6, 13] and local regularity spectrum [14]); and (ii)
conduct global segmentation via clustering in the feature space
(e.g. k-means [6], graph cut [15] and mean-shift [16]).

Regarding the patch representation, traditional methods use
hand-crafted features which are not adaptive to data. There
are some approaches learning local features from input images
for improvement. Khalilzadeh et al. [9] used sparse coding to
extract patch features from MRI images. Rahmani et al. [5]
used dictionary learning to obtain discriminative features for
SAR images. Yuan et al. [7] applied low-rank factorization on
the input to obtain the representative features of natural im-
ages. Regarding the feature clustering, most existing methods
may ignore the spatial regularity of region boundaries. Thus,
a few approaches [13, 17] use the Mumford-Shah models for
enforcing global geometric properties on boundaries.

The performance of the two-stage approaches is extremely
dependent on the effectiveness of the local features. For
improvement, some approaches jointly conduct local repre-
sentation and global clustering. Wang et al. [18] proposed a
variational model that combines dictionary learning of image
patches and Mumford-Shah active contours. Kiechle et al. [19]
proposed to learn the filters from data such that the filtering
responses tend to generate piece-wise constant label maps. All
aforementioned approaches are unsupervised, whose results
are often unsatisfactory, especially with unknown number of
regions. Besides, since texture is a scale-related visual concept,
users in different tasks may have different understandings on
the texture regions being partitioned, even on the same images.
Unsupervised methods are difficult to adapt to different cases.

Recently, a few supervised methods [3, 4, 20, 21] based on
deep learning have shown improvement over the unsupervised
one. Nevertheless, the deep learning needs an abundant of
annotated data for supervision, the collection of which is
expensive for texture segmentation. In particular, multi-time
annotations are needed for an image, as subjective ambi-
guity probably exists on the boundaries of texture regions.
In addition, the texture types may vary a lot over different
segmentation tasks, making the transfer of annotated data
infeasible. Furthermore, professional knowledge and specific
devices are required in many fields [3]. To alleviate the
requirement on annotations, Vincent et al. [20] used simple
clustering and shallow segmentation to obtain the rough labels
for supervision. Chen et al. [3] transferred the learned features
from natural images for gland segmentation. Huang et al. [21]
assumed all texture types are known and proposed an effective
polygon-based training data generation scheme.

Unsupervised methods and supervised deep methods have
their merits and weaknesses. To win their trade-off, we pro-
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pose a user-interactive and learning-based approach under a
configuration appealing to practice, which requires minimal
effort on preparing labeled data with minimal user interaction
involved. Note than many user-interactive methods have been
proposed for natural image segmentation or segmenting tex-
tured objects from the background (e.g. [22, 23]), however,
they are either inapplicable to texture segmentation due to the
different characteristics between texture images and natural
images, or with limited performance.

The proposed method is composed of a user-interaction
scheme and a weakly-supervised sparse coding model. The
interaction scheme uses a simple and friendly way to obtain
a small amount of possibly partially erroneous labeled data
from the input image, which are used for weak supervision.
The sparse coding model utilizes the weakly-labeled regions
to jointly conduct local feature learning via dictionary learning
and global segmentation via linear prediction, with some ge-
ometric constraints defined by fixed points of opening/closing
operators for imposing local connectivity prior on segmented
region boundaries. The experimental results on two datasets
demonstrated the effectiveness of the proposed method.

II. PROPOSED METHOD

A. User Interaction

Our user-interaction scheme is illustrated in Fig. 1. A user
only needs to mark a pixel inside each texture region, which
can be done by one click. Then we expand each marked point
to a small square region which is of size S×S and centered at
the marked point, and use the expanded regions as labeled data.
Such labeled regions are small and even possibly erroneous
as they may cover other texture regions besides the original
ones. In other words, the supervision information provided by
the labeled regions is likely incomplete and inaccurate which
is rather weak. Using such weakly-labeled data for learning
is task of the so-called weakly-supervised learning. Then, a
weakly-supervised learning model is required for our task.

Fig. 1. Interface for user interaction. From left to right are input image,
points marked by user, square regions expanded from marked points, and
segmentation result of our method using the expanded labeled regions.

B. Sparse Coding Model

We establish a weakly-supervised learning model to make
use of the labeled regions obtained from the user’s interaction.
Given an M1×M2 input image with K regions labeled, let A
denote the indices of labeled pixels and Ā denote those of un-
labeled ones. Let M = M1M2. Define Y = [y1, · · · ,yM ] ∈
RP×M where ym denotes the feature vector extracted on the
mth pixel. In implementation, we use the local LoG/Gabor
spectrum feature of [7]. Let L = [l1, · · · , lM ] ∈ {0, 1}K×M
denote the label matrix with lm as the one-hot label of ym (i.e.,

lm(k) = 1 if the m-th pixel belongs to the k-th region). We
denote such an operation by R : R1×M → RM1×M2 which is
to reshape the label vector to a label map and its inversion by
R−1 : RM1×M2 → R1×M which is to vectorize a 2D label
map. Given L1 = L(A), our goal is to predict L2 = L(Ā).

We first relax the one-hot coding of L2 and predict L2 by

min
D,C,W ,L2

‖Y −DC‖2F + β1‖L1 −WC1‖2F+ (1)

β2‖L2 −WC2‖2F + λ‖W ‖2F + α‖L2‖0,
s.t. B(L[i]) ∈ O, ‖cj‖0 ≤ T, ‖dk‖2 = 1, ∀i, j, k,

where β1, β2, λ, α > 0 are four weights, D = [d1, · · · ,dQ] ∈
RP×Q denotes a dictionary with Q atoms, W ∈ RK×Q is
a linear classifier, C = [c1, · · · , cM ] ∈ RQ×M denotes the
sparse coding matrix with C1 = C(A) and C2 = C(Ā), B
denotes the mapping that sets all non-zero entries to 1, and
O ⊂ {0, 1}1×M is the feasible set which imposes geometrical
on segmentation boundaries. After obtaining L2, we transform
it to one-hot coding by

L∗2(i, j) =

{
1 if L2(i, j) ≥ L2(i, j)

0 otherwise
. (2)

There are five terms in the model of (1). The first term
is the reconstruction term for feature learning, where the
sparse codes under the learned dictionary are employed as
the local features for segmentation. The second term is for
weakly-supervised learning which uses the labeled regions
to train a classifier and refine the sparse codes, such that
the learned classifier correctly classifies the refined sparse
codes associated with known labels. The third term is about
pixel classification for segmentation, which applies the trained
classifier to the unlabeled pixels. The fourth term is a classic
regularization on the classifier. The last term is to enforce the
sparsity on the predicted labels. Note that we do not impose
one-hot constraint on L2 to avoid the difficulty in optimization.

Our model unifies sparse coding and segmentation effec-
tively. Sparse coding extracts the underlying patterns of texture
regions for segmentation, and the segmentation result guides
better sparse coding. Such a loop is closed by iteratively
refining the local features and region boundaries. Compared
to reconstructive sparse models (e.g. [24]), ours jointly learns
representations in patch space and infers the region boundaries
in image space. Compared with supervised sparse models
(e.g. [25, 26]) for classification, ours additionally considers
the geometric property of spatial distribution of labels.

C. Geometric Constraints

The supervision from our expanded labeled regions may be
rather weak. A direct use of model (1) without any constraint
on the segmented results may be unstable; see e.g. Fig. 2. To
increase the stability during learning, we define the feasible set
O such that it encodes the local connectivity of region bound-
aries which is often seen in images. We characterize such local
connectivity by the fixed point of the so-called closing operator
and opening operator in image morphology [27].

Let ⊗ denote the 2D discrete convolution and H denote a
structure element matrix (e.g. H = [1, 1, 1]>[1, 1, 1]). For a
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binary image B, the closing operator CH and opening operator
OH are defined by CH(B) = (B⊕H)	H , OH(B) = (B	
H) ⊕H. where ⊕,	 are the dilation and erosion operators
defined as B ⊕ H = B(B ⊗ H), B 	 H = 1 − B((1 −
B)⊕H>). When applied to an estimated binary label map,
CH can remove some tiny holes from the map, while OH

can remove some tiny isolated regions. The composition of
these two operators, denoted by MH(·) := OH(CH(·)), can
improve the local connectivity of a label map.

For a binary image B, after applying the composite operator
MH(·), the output MH(B) is a fixed point of MH(·),
i.e.MH(MH(B)) =MH(B). Therefore, for a binary label
map, its local connectivity regularization can be expressed as
the fixed point ofMH . Such a property motivated us to define
the feasible set O of geometric constraints as follows:

O = {b ∈ {0, 1}1×M : R(b) =MH(R(b))}. (3)

We illustrate the effectiveness of our geometrical constraints
in Fig. 2. It can be seen that the constraints imposed by O have
the effects of eliminating the tiny mis-segmented regions and
‘denoising’ the label map with improvement on the results.

Fig. 2. Effectiveness of the geometrical constrains. From left to right are
input image, segmentation map without B(L[i]) ∈ O, segmentation result
using O, and ground truth segmentation map respectively.

D. Numerical Solver

We use an alternating iterative scheme to solve (1). First,
we initialize the dictionary D(0) and sparse code C(0) by
K-SVD [24]. The classifier W (0) is initialized by least-square
fitting on the labeled data. Afterwards, for t = 0, 1, · · · , T , we
alternatively update the unknowns L2, C, D, W as follows:

1) Label map update: At the beginning of the (t + 1)th
iteration, we update the label matrix L

(t+1)
2 by solving

min
L2

‖L2 −W (t)C
(t)
2 ‖2F +

α

β2
‖L2‖0, s.t. B(L[i]) ∈ O,∀i

(4)

which has the closed-form solution given by hard thresholding:

L
(t+ 1

2 )
2 (i, j) =

{
0 |G(t)(i, j)| ≤

√
α
β2

G(t)(i, j) otherwise
. (5)

where G(t) = W (t)C
(t)
2 . Afterwards, we have L(t+ 1

2 ) such
that L(t+ 1

2 )(A) = L1 and L(t+ 1
2 )(Ā) = L

(t+ 1
2 )

2 , which is
projected onto the feasible set O by the following scheme.
Let S0

[i] = B(L(t+ 1
2 )),S1

[i] = R−1(MH(R(S0
[i]))) indicate

the support of L(t+ 1
2 ) before/after applying the morphology

operator to L(t+ 1
2 ) respectively. Then L(t+1) is calculated by

L
(t+1)
2 (i, j) =


G(t)(i, j) S0(i, j) = 0 & S1(i, j) = 1

0 S0(i, j) = 1 & S1(i, j) = 0

L
(t+ 1

2
)

2 (i, j) otherwise

. (6)

2) Sparse approximation: After L(t+1)
2 has been predicted,

the sparse coding matrix is updated by solving

min
Ci

‖Ȳi − D̄iCi‖2F s.t. ‖cj‖0 ≤ T, ∀j, (7)

for i = 1, 2, where Ȳi =
[
Yi;
√
βiLi

]
, D̄i =

[
D;
√
βiW

]
.

We solve the problem by orthogonal matching pursuit [28].
3) Dictionary learning: With C(t+1) calculated, the dictio-

nary is refined by solving

min
D
‖Y (t) −DC(t)‖2F, s.t. ‖dq‖2 = 1,∀q. (8)

Based on the proximal method [29], we update the dictionary
atom by atom as follows: for q = 1, . . . , Q,{

s
(t)
q = d

(t)
q − 1

µt
q
∇dq
F(C(t), D̃

(t)
q ;Y )

d
(t+1)
q = s

(t)
q /‖s(t)q ‖2

, (9)

where µtq is the step size, F(C,D;Y ) = ‖Y −DC‖2F, and
D̃

(t)
q = [d

(t+1)
1 , · · · ,d(t+1)

q−1 ,d
(t)
q ,d

(t)
q+1, · · · ,d

(t)
Q ].

4) Classifier training: Once the dictionary is refined, the
classifier is updated by solving

min
W

β1
λ
‖L1 −WC

(t)
1 ‖2F +

β2
λ
‖L(t)

2 −WC
(t)
2 ‖2F + ‖W ‖2F,

(10)
whose explicit solution is given by W (t+1) = (β1L1C

(t)>
1 +

β2L2C
(t)>
2 )(β1C

(t)
1 C

(t)>
1 + β2C

(t)
2 C

(t)>
2 + λI)−1, which

is calculated by conjugate gradient, since (β1C
(t)
1 C

(t)>
1 +

β2C
(t)
2 C

(t)>
2 + λI) is positive definite.

III. EXPERIMENTS

We evaluated our method on the Prague dataset [30] and
the Histological dataset [31]. To simulate users’ annotations,
we locate the center of each region based on the ground-truth
label map. To explore the influence of the expanded region
size S, we tested our method using S = 5, 9 respectively. On
both datasets, we set the number of dictionary atoms to 20
times as that of texture regions. The 21 metrics used in [19]
are employed for evaluation. For interest, we also tested the
extreme case using S = 1 labeled pixel each region.

A. Evaluation on Prague Dataset

The Prague dataset [30] contains 80 texture images synthe-
sized using the regions randomly selected from 114 texture
images of 10 categories. The number of texture regions varies
from 3 to 12. We set the parameters β1 = 2.5, β2 = 0.05, λ =
0.01, α = 0.002, and T = 7. Our method is compared
to several unsupervised methods: RS [11], VMS [13], DL-
SRC [32], ORTSEG [10], FSEG [7], and MLLIF [19]. Among
them, FSEG is the most related to ours which uses the
same features as ours, and MLLIF is the latest unsupervised
method. For fair comparison with FSEG, we also use its post-
processing scheme. We also modified FSEG [7], denoted by
FSEG*, such that it utilizes the same annotation information
as ours. In addition, we use FCNT-MK [20], a deep method
for comparison.

The results are listed in Table I. With only one pixel
labeled (i.e. S = 1), our method already outperforms the other
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TABLE I
RESULTS ON PRAGUE DATASET. UP/DOWN ARROWS IMPLY

LARGER/SMALLER VALUES ARE PREFERRED. BEST RESULTS ARE IN BOLD.

Metric RS VMS
DL

SRC
ORT
SEG FSEG FSEG*

MLL
IF

FCNT
-MK

Ours
(S=1)

Ours
(S=5)

Ours
(S=9)

↑ CS 46.02 72.27 77.46 30.64 69.02 75.97 77.73 79.34 80.74 81.82 84.18
↓ OS 13.96 18.33 28.40 10.07 17.30 3.38 15.92 13.67 14.05 13.55 10.95
↓ US 30.01 9.41 0 6.99 11.85 5.53 6.31 6.25 0.44 0.49 0
↓ME 12.01 4.19 7.13 50.81 6.28 11.82 3.93 3.80 7.71 7.54 6.90
↓NE 11.77 3.92 7.39 49.74 5.66 11.49 3.92 3.80 8.70 7.80 7.04
↓O 35.11 7.25 8.58 30.14 10.79 9.12 7.68 6.47 7.08 7.28 6.84
↓C 29.91 6.44 29.48 28.76 13.75 9.34 24.24 22.88 9.56 9.27 7.09
↑CA 58.75 81.13 83.41 55.56 77.50 80.26 82.80 84.17 85.68 85.73 87.05
↑CO 68.89 85.96 87.36 67.44 84.11 88.09 86.89 87.97 90.06 90.52 91.58
↑CC 69.30 91.24 95.16 71.58 86.89 88.19 93.65 94.15 94.64 94.25 94.85
↓I 31.11 14.04 12.64 32.56 15.89 11.91 13.11 12.03 9.94 9.48 8.42
↓II 8.63 1.59 1.19 5.97 2.60 2.47 1.50 1.42 1.17 1.41 1.28
↑EA 65.87 87.08 89.70 66.51 83.99 87.4 88.03 88.97 91.52 91.57 92.53
↑MS 55.52 81.84 84.74 51.17 78.25 82.46 83.93 85.23 86.93 87.31 88.63
↓RM 10.96 4.45 2.42 7.31 4.51 2.99 3.27 3.12 2.32 2.24 1.89
↑CI 67.35 87.81 90.44 67.95 84.71 87.76 89.03 89.91 91.92 91.97 92.86
↓GCE 11.23 8.33 9.56 29.93 10.82 15.08 7.40 6.46 10.34 10.60 10.21
↓LCE 7.70 5.61 7.17 21.93 7.51 11.71 5.62 4.75 7.98 8.01 7.71
↓dD 18.52 9.06 9.08 25.21 – 10.34 8.57 – 8.05 7.84 7.21
↓dM 23.67 5.88 5.40 15.47 – 6.59 5.30 – 4.75 4.90 4.40
↓dVI 13.31 14.54 15.18 14.66 – 14.32 14.88 – 14.71 14.61 14.52

1

Fig. 3. Segmentation results on Prague dataset. Columns from left to right
are input images, ground truth label maps, results of ORTSEG, results of
FSEG, results of FSEG, results of FSEG*, and results of our method with
S = 1, 5, 9 respectively.

compared methods on 11 metrics. As the marked region size
increases, our results are improved. Our method using S = 5
has better results than using S = 1 in terms of 14 metrics.
When S = 9, our method achieved the best results on 11
metrics, while other compared methods performed the best on
no more than 5 metrics. See Fig. 3 for some visual results.

Sometimes the users’ annotations are not guaranteed to fall
onto the center of each region and may be placed around the
boundaries. Then, the expanded marked points may go into
other regions, making the labels L1 erroneous. To study the
performance of our method in such cases, we conduct the
robustness analysis experiment as follows. First, we divide
each region into nine rings regions A1, · · · ,A9 (from near
to far). Secondly, we randomly pick up a point of the ith
ring in each region as users’ marking and run our method. By
varying i we examine the influence of the annotation locations.

The results are shown in Fig. 4. With the distances between
the annotated points and region centers increased, our method
performed worse. The performance change is small when the
labeled points do not deviate the region center much.

0 A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

Regions

50

60

70

80

90

M
e

tr
ic

 v
a

lu
e

0 A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

Regions

0

5

10

15

20

25

M
e

tr
ic

 v
a

lu
e

0 A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

Regions

10

15

20

25

30

35

M
e

tr
ic

 v
a

lu
e

Fig. 4. Robust analysis for annotated points inside different ring regions.

B. Evaluation on Histology Dataset

The Histology dataset [31] consists of multiple real his-
tological images of baboons of over 20 tissues types, with
segmentation maps given by professional pathologists as the
ground truths. Following [10], 36 sub-images containing two
tissues are selected for the test. We set β1, β2, λ, α, T =
2.5, 0.01, 0.001, 0.002, 2, and use DLSRC, ORTSEG, FSEG,
FSEG* for comparison.

TABLE II
RESULTS ON HISTOLOGY DATASET. UP/DOWN ARROWS IMPLY

LARGER/SMALLER VALUES ARE PREFERRED. BEST RESULTS ARE IN BOLD.

Method ↑ CS ↓OS ↓US ↓ME ↓NE ↓O ↓C ↑CA ↑CO ↑CC ↓I.

DLSRC 82.98 3.34 2.82 9.69 11.49 7.64 6.96 86.80 91.44 94.96 8.56
ORTSEG 66.50 6.59 3.98 23.13 23.60 13.83 11.44 80.56 87.37 92.25 12.63

FSEG 39.76 44.96 2.03 10.89 11.06 26.13 18.45 69.78 73.03 95.30 26.97
FSEG* 82.06 1.78 10.25 7.67 8.25 13.71 7.42 84.90 90.70 92.02 9.30

Ours(S=1) 80.69 6.68 1.00 6.47 7.62 8.39 7.34 85.26 90.11 94.77 9.89
Ours(S=5) 78.99 4.49 1.92 10.64 12.72 7.69 7.91 86.61 91.21 95.06 8.78
Ours(S=9) 86.90 3.29 1.94 5.95 7.02 6.70 6.21 87.69 92.07 95.28 7.93

Method ↓II. ↑EA ↑MS ↓RM ↑CI ↓GCE ↓LCE ↓dD ↓dM ↓dVI

DLSRC 5.08 92.60 87.17 6.55 92.89 10.42 6.77 7.54 12.88 5.88
ORTSEG 8.34 88.27 81.06 9.65 89.02 13.77 8.80 11.00 18.22 5.98

FSEG 5.91 80.72 68.46 17.53 82.39 9.81 7.61 16.30 23.60 7.37
FSEG* 11.40 90.66 86.05 7.42 91.00 9.64 6.12 7.65 14.00 5.61

Ours(S=1) 5.32 91.57 85.17 7.60 91.99 10.63 7.02 8.25 14.21 5.96
Ours(S=5) 4.75 92.46 87.15 6.55 92.79 10.27 6.62 7.58 12.95 5.93
Ours(S=9) 5.07 93.15 88.11 5.82 93.40 9.73 6.48 6.90 11.99 5.85

See Table II for the results. Among all compared methods
except ours, FSEG* performed the best. In comparison, our
method with S = 1 performed almost as good as FSEG*. With
the marked region size increased, our method shows improve-
ment. When S = 5, our method already outperformed FSEG*.
When S = 9, our method achieved the best values on 14
metrics, while there are only 4 best metrics for FSEG*. Such
results have demonstrated the effectiveness of our method.

IV. CONCLUSION

In this paper, we proposed a user-interactive approach to
texture segmentation. The approach is built upon a weakly-
supervised sparse coding model, which jointly conducts lo-
cal feature learning and global segmentation, with geomet-
ric constraints imposing local connectivity on segmentation
boundaries. The experiments show that the proposed method
performs better than existing unsupervised methods while
requiring minimal effort on annotation.
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