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Removing Reflection From a Single Image With
Ghosting Effect

Yan Huang, Yuhui Quan*, Yong Xu, Ruotao Xu, Hui Ji

Abstract—Removing the undesired reflections of images taken
through glass is an important problem in digital photography
and many other vision applications. The so-called ghosting effect,
i.e. the pattern repetitiveness in reflection, is an effective cue
used by existing techniques to remove reflection from images.
Existing methods take a two-stage approach that first estimates
the parameters of ghosting effect and then models reflection
removal as a two-layer separation problem: reflection layer
and latent image layer. This paper aimed at addressing one
main challenge in such an approach, i.e. how to distinguish the
repetitive patterns on the later image layer and the ghosting
patterns on the reflection layer. Based on the observation that
the number of repeats of natural image patterns is often different
from that of ghosting patterns, we proposed a wavelet transform
based regularization method. Together with a novel weighting
scheme, the proposed method is capable of accurately separating
two layers, and experimental results justified its advantages over
the existing ones on both synthetic and real data set.

Index Terms—Reflection removal, Image separation, Ghosting
effects, Image decomposition

I. INTRODUCTION

It often happens that one take pictures through glass win-
dows, e.g., taking pictures of the paintings in the museum [1],
[2], [3], [4], [5], the dresses in the showcase [6], [7], [8],
the landscape outside when in a train or plane [9], [10].
Unfortunately, it is known that the resulting picture taken
through glass often contains the reflection of the scene behind
the camera. The avoidance of such reflection requires either
specific hardware (e.g. polarizers) or manual control of lighting
conditions around camera. There is certainly the need to
develop effective post-processing techniques to remove the
reflections from those images taken through glass windows.

In general, without additional priors or assumptions on
the reflection, it is not possible to separate the reflection
caused by glass and the content of interest. One powerful
cue for identifying reflection in the image is the so-called
ghosting effect, especially for the images taken through thick
or insulating glass windows. See Fig. 1 for an illustration.
Ghosting effect of an image caused by the reflection of glass
refers to the two or multiple reflections of the reflected scene
off the different glass surfaces. For example, both panels
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Fig. 1: Illustration of removing reflection with ghosting effect
from a single image. (a) The image with reflection. (b) The
result of removing reflection using the proposed method.

(a) (b)

Fig. 2: Illustration of ghosting effect. (a) Ghosting reflection
caused by both panels of glass. (b) Ghosting reflection caused
by both sides of thick glass.

of a two-panel window will reflect the scene behind and
the two reflections differ from each other by their positions
and brightness strengths. The similar effect with weakened
brightness happens for a single-panel window with thick glass.
See Fig. 2 for an illustration of such two types of reflections.
As the brightness strength of the third reflection generally
is much less than the primary reflection, only the double
reflection is usually considered in practice; see e.g. [11], [12].

The image with ghost effect is modeled in [11], [12] by the
following composite model:

Y = T + R⊗ k + N , (1)

where ⊗ denotes the convolution operation, Y denotes the
input image, N denotes the noise, T denotes the transmission
layer which is the captured frame of the scene behind the
window, and R ⊗ k denotes the reflection layer which is
the captured frame of the scene in front of the window. The
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Fig. 3: Diagram of ghosting effect.

reflection layer is modelled by an image pattern R convoluted
with a two-impulse kernel of the form:

k = δ(x) + cδ(x− d), (2)

where δ denotes the Dirac, and c, d are two parameters.
The convolutional model of the reflection layer, expressed

by (1) and (2), is derived from the diagram of ghosting effect
illustrated in Fig. 3. It can be seen that each point is sensed
into different pixels when dissipating its energy among the
different reflection orders, and thus the effect is created by the
second reflection. With unpolarized light and flat glass, both t
and r are only dependent on the incident angle. The distance
between the primary reflection and the successive one is d′ for
constant incident angle. See [11] for more details. Therefore,
the effect can be modeled by two replicates of the same
object with the displacement d′ and with different average
brightness, which then can be formulated as a convolution
with a specific kernel function parameterized by the ghosting
shift d which is proportional to the physical distance d′

and the attenuation factor c which is the ratio between the
brightness strength of the first reflection and the successive
second reflection. In other words, The displacement and the
difference of average brightness is parameterized by d and c
in k. These two parameters depend on the reflectance property
and the configuration of glass surface.

Most existing methods, e.g. [12], take a two-stage approach
for reflection removal with ghosting effect. Such an approach
first estimates the two parameters of the kernel k and then
estimates the reflected image region R using the estimated k.
The second stage requires solving a challenging ill-posed in-
verse problem, i.e. simultaneously estimating the transmission
layer T and the reflection layer R⊗k from (1). Motivated by
the fact that the reflection layer R⊗ k contains the replicates
of the same object, the method proposed in [12] imposes
the periodicity prior on R ⊗ k for separating two layers.
Unfortunately, such a prior also holds true for the transmission
layer as well, especially for urban scenes. Thus, the periodicity
prior on the reflection layer is not sufficient for distinguishing
the ownership of repeating patterns. Therefore, the output from
the method proposed in [12] often show noticeable artifacts
on the transmission layer that contains periodic patterns. See
Fig. 4 for an illustration. It can been seen that there are artifacts
on the windows and the long white roof.
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where δ denotes the Dirac impulse function, and c, d are two
parameters. It can be seen that the reflection layer contains
two replicates of an image pattern with different positions
and different overall brightness. The position difference is
characterized by their displacement, denoted by d, and the
overall brightness difference is characterized by the ratio,
denoted by c in the kernel. These two parameters in the
ghosting kernel k depend on the reflectance properties and
relative configurations of glass surfaces.

To remove the reflection R ⊗ k from an input image Y ,
one needs to estimate both the two parameters of the kernel k
and reflected image region R. In this paper, we propose a two-
stage approach for reflection removal, which first estimates the
kernel k and then estimates the reflected image region R. The
key component of such an approach is an effective method
of separating the transmission layer T and the reflection
layer R ⊗ k. As both T and R are the contents of natural
scenes, they cannot be distinguished directly via using natural
image priors. The exist approach [14] exploited the following
assumption to separate the two layers: the layer R⊗k has local
image regions with strong periodicity, while the transmission
layer T does not. Such an assumption often does not hold
true in practice, especially for the scenes in urban regions.
As a result, the outputs from the method proposed in [14]
often show noticeable artifacts on the transmission layer with
local periodic patterns. See Fig. 3 for a demonstration. (The
periodic pattern in Fig. 3, e.g. the windows and the long white
roof shows artifacts in the image recovered by the method of
Shi et al. [14] . )(description)

Image with local periodic patterns Shih et al. [14]

Fig. 3: Demonstration of the results of the method proposed
by shih et al. [14] on the image which contain local periodic
patterns.(Hey!The subtitle!)

This paper aims at developing an effective method for re-
moving reflections from the images with ghosting effects. The
focus is on how to accurately separate the transmission layer
and reflection layer, even when the transmission layer contains
local periodic patterns. The main ideas of the proposed method
include
• A strategy to accurately distinguish the transmission layer

and reflection layer.
• A wavelet-frame-based regularization for extracting the

transmission layer and reflection layer.
(contribute kernel estimation?–a bit: filter large edges first )

The experiments on both the synthesized data and real data
showed that the proposed method outperformed the existing
ones.(compared to Shi(GMM training), less data-dependent,
more accurate. Compared to deep network(large training data),
training-free?)

The paper is organized as follows. In section II we give
a brief discussion on the related work on reflection removal.
In section III, we present the proposed method, as well as
the implementation details. In section IV the experiments are
done to evaluate the proposed work, with the comparison to
other related methods. In Section V we conclude the paper
and investigate our future work.

II. RELATED WORK

General reflection removal considers the following compos-
ite model for images with undesired reflection (see e.g. [16],
[2], [6], [12], [7], [17]):

Y = T +R, (3)

where Y ∈ RM×N is the input which is the superposition
of the transmission layer T ∈ RM×N and the reflection layer
R ∈ RM×N . The goal of reflection removal is then to estimate
the transmission layer T from Y . Clearly, the problem of
reflection removal is an ill-posed problem with the ambiguities
between T and R. Additional priors or additional sources on
both T and R are needed to separate these two layers.

Based on the number of input sources, reflection removal
can be classified into two categories, i.e. multiple-image based
approach and single-image based approach.

A. Multiple-image based general reflection removal

The early reflection removal algorithms regarded the prob-
lem as a blind signal separation problem, assuming that the
two mixing components are the source signal and independent
to each other. Farid et al. [18] collected two images taken
with different polarization angles and estimated the mixing
coefficients using independent component analysis. Richard et
al. [19] proposed to use constrained least squares to recover the
background layers based on an arbitrary number of composite
images with known motion estimates. Bernard and Michal [20]
presented an approach for separating reflections under various
real-world scenarios, including images obtained under differ-
ent polarizations or videos with non-rigid transparent motions.
Ni et al. [21] aimed to deal with images captured by light field
cameras which could provide extra directional information of
incoming rays. Such methods directly model the reflection
synthetic process and solve it ignoring the intrinsic properties
of each layer.

In recent years, most proposed approaches [22], [6], [4],
[9], [12], [7], [13], [8] focused on discovering the intrinsic
properties of each layer or exploiting the different behaviors
between layers in the motion. The most common-used natural
image prior is the sparsity of image gradients [22], [6], [4],
[9], [12], [13]. The Laplacian approximation is used in [6],
[9] for its quick convergence and simplicity. The Hyper-
laplacian approximation used in [12], [13] is regarded as a
better distribution to model the long-tail distribution of the
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where Y ∈ RM×N is the input which is the superposition
of the transmission layer T ∈ RM×N and the reflection layer
R ∈ RM×N . The goal of reflection removal is then to estimate
the transmission layer T from Y . Clearly, the problem of
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both T and R are needed to separate these two layers.

Based on the number of input sources, reflection removal
can be classified into two categories, i.e. multiple-image based
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The early reflection removal algorithms regarded the prob-
lem as a blind signal separation problem, assuming that the
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with different polarization angles and estimated the mixing
coefficients using independent component analysis. Richard et
al. [19] proposed to use constrained least squares to recover the
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of each layer.

In recent years, most proposed approaches [22], [6], [4],
[9], [12], [7], [13], [8] focused on discovering the intrinsic
properties of each layer or exploiting the different behaviors
between layers in the motion. The most common-used natural
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[9], [12], [13]. The Laplacian approximation is used in [6],
[9] for its quick convergence and simplicity. The Hyper-
laplacian approximation used in [12], [13] is regarded as a
better distribution to model the long-tail distribution of the

Image with local periodic patterns Results by Shih et al. [12]

Fig. 4: Demonstration of the results from Shih et al. [12] on
the image whose transmission layer contains periodic patterns.

Motivated by the weakness of existing methods that use
the ghosting effect for reflection removal, this paper aims at
developing a more powerful method for removing reflection
from the input image, which focuses on a better regularization
model for distinguishing the repetitive patterns on the trans-
mission layer and that from the reflection layer. Notice that
the number of the repeats of natural image patterns usually is
different from that of ghosting patterns: the former is usually
more than two while the latter is fixed to two. Thus, the
number of repetitive patterns along the direction of the esti-
mated ghosting shift indicates the ownership of the repetitive
patterns. Motivated by such an observation, in this paper we
propose a wavelet transform based regularization method with
a novel re-weighting scheme for solving the inverse problem
of reflection removal. Together with a refined version of the
estimator of ghosting parameters used in [12], the proposed
method provides better performance than existing methods on
both synthetic data and real data. In short, the contributions
of the proposed method are summarized as follows:
• A new periodicity-based prior for accurately identify the

ownership of repeating patterns for two layers.
• A wavelet transform based regularization model with a

novel re-weighting scheme for effectively separate the
two layers.

In addition to the performance gain, the proposed one has
other merits over existing ones. For example, Shih et al.’s
method [12] requires a large dataset for GMM (Gaussian
Mixture Model) training and requires solving a complex
optimization problem. In contrast, the proposed one is free
from training and data, and has a much simpler optimization
problem to solve.

The paper is organized as follows. In section II we give
a brief discussion on the related work on reflection removal.
In section III, we present our method and the implementation
details. In section IV, the experiments are conducted for the
evaluation of the proposed work and for the comparison to
other related methods. Section V concludes the paper.

II. RELATED WORK

Generally, reflection removal considers the following com-
posite model for images with reflections (see e.g. [13], [2],
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[6], [14], [7], [15]):

Y = T + R̃, (3)

where Y ∈ RM×N is the input which is the superposition
of the transmission (background) layer T ∈ RM×N and the
reflection layer R̃ ∈ RM×N . The goal of reflection removal
is then to estimate the transmission layer T from Y . Clearly,
the problem of reflection removal is ill-posed, owing to the
ambiguities between T and R̃. Additional priors on both
T and R̃ are needed to separate these two layers from the
input. Based on available input source, reflection removal can
be classified into two categories, i.e. multiple-image based
approach and single-image based approach.

A. Multiple-image based reflection removal

Earlier work on reflection removal treated the problem as
a blind source separation problem, which separates the mixed
signals into two independent signals. Farid et al. [16] collected
two images taken with different polarization angles and esti-
mated the mixing coefficients using independent component
analysis. Richard et al. [17] proposed to use constrained
least squares to recover the background layers based on an
arbitrary number of composite images with known motion
estimates. Bernard and Michal [18] presented an approach
for separating reflections under various real-world scenarios,
including images obtained under different polarizations or
videos with non-rigid transparent motions. Ni et al. [19]
focused on the images captured by light field camera which
provides extra directional information of incoming rays. These
methods directly model the reflection generation process and
solve it without using specific properties of each layer.

More recent work [20], [6], [4], [9], [14], [7], [21], [8] fo-
cused on finding specific properties of each layer or exploiting
the different motion behaviors between layers. The most often-
seen natural image prior is the sparsity of image gradients [20],
[6], [4], [9], [14], [21]. The Laplacian approximation is used
in [6], [9] for its quick convergence and simplicity. The Hyper-
laplacian approximation used in [14], [21] is regarded as a
better distribution to model the long-tail distribution of the
image gradients. In order to make the distribution of image
gradients adaptive to input, Gai et al. [20] proposed to learn
the distribution of gradients from the given data.

In addition to the image-prior-based approaches, there is
also a class of approaches which utilizes motion cues from
different layers for reflection removal. Based on the fact that
the reflection layer moves slower than the background since
it is closer to the camera than the transmission layer, Xue et
al. [9] proposed to separate the two layers using the difference
of motion speed between layers. Built upon the observation
that the background layer as the major part of an image is
rather static, a number of approaches used the SIFT flow [22]
to first warp the images to the reference one, and then to esti-
mate the edge map using different techniques, e.g. the sparsity
of edge occurrence [6], the low-rank matrix completion [8], the
motion and intensity score [7]. One main challenge in these
flow-based methods is that the flow estimation often is not
stable for images with reflections. Yang et al. [23] addressed

such an issue by considering a generalized version of the
brightness constancy constraint. Ajay et al. [24] constructed
a spatio-temporal optimization model which jointly solves the
flow estimation and reflection separation.

B. Single-image based reflection removal

As single-image based reflection removal problem is ill-
posed, additional information is required for the separation.
Levin et al. [13] searched for a decomposition of two layers
with the minimal amount of edges and corners. Additionally,
Levin et al. [25] also required user interactions for marking a
number of edges within backgrounds or reflection labels, and
then refined the separation framework based on the sparsity
of derivative filters with an iterative re-weighted least squares
scheme. Wan et al. [15] proposed to retrieve external patches
based on a natural image database and combine the sparsity
prior and non-local similarity prior of images for the removal.

Similar to some multiple-image-based ones, some single-
image-based methods also considered the different properties
of the two mixed layers. An assumption is used in [26], [27],
[10] that the background is in focus of the camera and the
reflection is out of focus. Thus, the reflection layer is rela-
tively smoother than the background layer. Based on such an
assumption, Li et al. [26] separated the two layers by imposing
different sparsity properties on two layers respectively: first-
order derivative filters on the transmission layer and second-
order derivative filter on the reflection layer. Wan et al. [27]
used a multi-scale technique to calculate the confidence map
for background edge selection. Nikolaos et al. [10] directly
removed the reflections based on a Laplacian data fidelity and
an `0 gradient sparsity term. Shih et al. [12] exploited the
ghosting cue that happens on images taken through double-
panel window. The work of Shih et al. is the most related one
to the proposed method.

Recently, taking the advantages of deep learning, several
approaches [28], [29], [30], [31] have been proposed to use
neural networks for reflection removal. Fan et al. [28] used
synthetic images to train a deep neural network. However, it
did not show noticeable performance gain on real images when
compared to the traditional non-learning methods. Such a phe-
nomena comes from the difference between synthetic images
and real images, in terms of complex optical characteristics
of reflection. Thus, Wan et al. [32], [29] built a dataset of
real images with reflections, and combined it with synthetic
images to train a multi-scale edge-guided concurrent network
for reflection removal. Using both real data sets and synthetic
data sets, Zhang et al. [31] optimized the convolutional neural
network in terms of perceptual loss.

C. Single-image reflection removal for ghosting effect

The existing work on removing reflection with ghosting
effect is the most related to this paper. Indeed, there are few
single-image based reflection removers that are specifically
designed for the reflection with ghosting effect. The seminal
work along this line is done in [11] which formulated mul-
tiple reflections (i.e. ghosting reflection) by the convolutional
model (1) with a kernel of the form (2). The transmission layer



IEEE TRANSCATIONS ON COMPUTATIONAL IMAGING 4

is then recovered by a deconvolution process. The advantage
of convolution model for ghosting, i.e., R̃ = R ⊗ k, is that
it introduces different properties of the transmission layer T
and the reflection layer R̃. This helps resolving the ambiguities
between T and R̃, and the separation becomes feasible.

Following the model of [11], Shih et al. [12] proposed to
solve the reflection removal problem by a two-stage approach.
The proposed method first estimated the two parameters of
kernel k, i.e. the spatial shift d and the attenuation c in (2),
and then imposed the mixture of Gaussian prior on each layer
for layer separation. The ghosting effect of the reflection layer
is implemented by imposing periodic prior on reflection layer.
Better results than precedent methods were reported on both
the real and synthetic images. However, the method often
yields poor results when the transmission layer also contain
repeating patterns, which is often seen in urban scenes. See
Fig. 4 for an example. It can be seen that the method [12]
wrongly treats the background objects with the period similar
to the shift distance as the reflection and tries to remove such
objects from the background, which results in poor separation
of the two layers. Also, the method [12] is built on the patch-
based GMM [33] learned from a large set of natural images.

It is noted that the ghosting effect is also studied in the
merging of multi-exposure images; see e.g. [34], [35], [36].
In such a case, the pixels of the different images are to be
aligned. The motion of the camera or moving objects in the
scene will cause ghosting artifacts if the motion is large.
Then, a de-ghosting is needed for recovering images from
such a degradation. Such problems have a different setting
from ours in terms of available sources, and they are usually
not formulated as a layer separation problem as ours.

III. MAIN BODY

Through the paper, unless specified, bold upper letters are
used for matrices, e.g. Y ,T , bold lower letters for column
vectors (e.g. y, t), light lower letters for scalars (e.g. y, t),
and calligraphic letters for operators (e.g. S, T ). Let 0 and
I denote zero matrix and identity matrix respectively. Let N
denote the set of natural numbers, Z denote the set of integers,
ZM denote the integer set 1, · · · ,M , and R denote the set of
real numbers. Given a sequence {y(t)}t∈N, y(t) denotes the t-
th entry in the sequence. For a vector x ∈ RN , let x(i) denote
the i-th element of x, and define ‖x‖2 =

√∑
x(i)2. For a

matrix X , let X(i, j) denote the element of X at the i-th row
and the j-th column. Define ‖X‖F =

√∑
i,j(X(i, j))2 and

‖X‖1 =
∑
i,j |X(i, j)|. For matrix concatenation, semicolons

are used for adding elements row-wisely and commas are used
for adding elements column-wisely.

We proposed the following regularization-based optimiza-
tion model for estimating both layers R and T :

min
T ,R

1

2
‖Y − T −R⊗ k‖2F + λΓ1(T ) + βΓ2(R), (4)

where the first term denotes the fidelity term in the presence
of i.i.d. Gaussian noise, the second term and the third term
represent the regularizations on both two layers. It is noted
that the ghosting kernel k is also unknown. Same as [12], we
also take a two-stage approach to solve the above problem:

• First stage: estimate the ghosting kernel k. In this stage,
our method is mainly based on the techniques proposed
in [11], [12], with further refinements for better perfor-
mance.

• Second stage: estimate two layers R and T via solv-
ing (4). The main effort in this stage is how to construct
two regularization terms Γ1,Γ2 so as to accurately dis-
tinguish T and R.

The key issue we aim to address when designing two regu-
larization terms is how to accurately determine the ownership
of repeating patterns for two layers. Our idea is based on
the observation that the repeating times of such patterns are
different between the two layers. In addition, the difference
of the sharpness between the two layers is also exploited.
These observations lead to a weighted wavelet transform
based regularization for effectively separating the two layers.
Compared to Shih et al.’s method [12], ours use a more
accurate prior on pattern recurrence to separate two layers.
Also, our wavelet transform based method is not learning
based method, and thus is less computation demanding and
data demanding than the GMM prior used in [12].

A. Estimation of ghosting kernel

Recall that the ghosting kernel k defined by (2) is a two-
impulse kernel with two parameters: the amplitude c and
displacement d of the displaced impulse. We proposed a
refined version of the techniques proposed in [12] to more
accurately estimate such two parameters.

In [12], the displacement d is the first to be estimated and
the amplitude c is the second. The displacement d of the kernel
k is actually the displacement of the reflected contents, which
can be estimated by checking the position difference of the
edges of reflected contents. Consider an input image Y ∈
RM×N , its edge map, denoted by S ∈ RM×N , is obtained by
running the Sobel edge detector:

S(i, j) =
√
|(gx ⊗ Y )(i, j)|2 + |(gy ⊗ Y )(i, j)|2, (5)

where gx = [−1, 0, 1;−2, 0, 2;−1, 0, 1] and gy =
[1, 2, 1; 0, 0, 0;−1,−2,−1]. Then, the autocorrelation map of
the edge map S:

C = S ⊗ S(·−), (6)

measures the self-similarity of S with different displacements.
A local maximum of C would indicate possible repetitive
patterns in S, i.e. shifted copies of the reflection layer R
in the context of ghosting effect. In our implementation of
maxima detection, we apply the max pooling on C, i.e. to
search on C for all local maximums using a neighbor of size
r×r. For better robustness, the following local maximums are
discarded:
• Local maximums in C corresponds to the value in S

larger than a threshold σ (= 0.2 in default setting). Such
maximums are likely to be the repeating patterns in the
transmission layer, as they corresponding edges are those
strong ones.

• Local maximum within t (= 5 in default setting) pixels
from the original point. This is an often-seen trick to
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remove the ambiguities caused by the edges with large
width, as a edge with large width can be viewed as
repetitive patterns.

Finally, the estimation of the ghosting displacement d is
defined as the displacement to the origin of the one which has
the largest magnitude among all remaining local maximums.
The sign of d remain to be determined, and we choose the
sign of d such that c < 1, which is based on the assumption
that the second reflection has lower energy than the first one.

The amplitude parameter c is evaluated as follows. Firstly, a
set of interest points are detected from the input using a Harris
corner detector. Secondly, a 5×5 contrast normalized patch is
extracted around each corner feature. Lastly, the variances of
each pair of matched patches, denoted by var[pi] and var[pj ]
respectively, are calculated. Lastly, the parameter c is defined
as the weighted summation over the ratios of two variances:

c =
1

z0

∑
ij

wij

√
var[pi]
var[pj ]

, (7)

where z0 is the normalization factor, and wij is the weight for
evaluating the contribution of each pair of patches to estimate
the attenuation c, which is set as

wij = exp(−‖pi − pj‖22/0.1)

in the implementation.
It is noted that the kernel estimation scheme described above

can be viewed as a refined version of that of [11], [12], with
the improvement on simplicity and performance. The main
refinements over that of [11], [12] are listed as follows.
• The Laplacian operator is replaced by the Sobel edge

detector to construct the edge map, for better performance
on detecting strong edges and better robustness to noise.

• A thresholding strategy is implemented to discard those
estimations on displacement that are likely to obtained
from the edges belonging to the transmission layer.

B. Regularization model for layer separation

After estimating the ghosting kernel k using the procedure
described in the previous section, the next step is to separate
two layers via solving the optimization model (4). The success
of the model (4) lies in about how to design two regularization
terms: one for the transmission layer and the other for the
reflection layer. We proposed the following regularization
models. Let {fi}Li=1 denote the filter bank of a wavelet
transform, and let A denote the weighting matrix which is
very related to the likeliness of the ownership of the edges for
two layers. Then, the regularization model is expressed as:

min
T ,R

1

2
‖Y − T −R⊗ k‖2F + λ

∑
i

‖A� (fi ⊗ T )‖1

+β
∑
i

‖(1−A)� (fi ⊗R)‖1
, (8)

where � is the element-wise multiplication. The regularization
model above involves two components: the `1-norm relating
regularization under wavelet transform, and a weighting matrix
A. In the following, we give detailed discussions on them.

C. Wavelet transform based regularization

It can be seen that there are two operations involved in the
`1-norm relating regularization for each layer. The coefficients
{fi ⊗ T } and {fi ⊗R} denote the high-pass wavelet coeffi-
cients of the layer T and the layer R respectively. The `1-norm
regularization on natural images under wavelet transform has
been widely used in many image recovery tasks; see e.g. [37],
[38], [39], [40]. Such a regularization exploits the sparsity
prior of the wavelet coefficients of natural images.

A single-level undecimal wavelet transform is implemented
in this paper, which consists of an analysis operator and a
synthesis operator. Given the filter bank {f`}L`=1 of a wavelet
transform, the analysis operator is defined by

W : T→ C := [C1;C2; . . . ;CL] (9)

where C` = f`(−·) ⊗ T. In other words, the output of the
analysis operator is the collection of the input convoluted with
a set of filters. The synthesis operator is the adjoint operator
of W , which is defined as

W> : C→
L∑
`=1

f` ⊗C`.

The wavelet transform has the so-called perfect reconstruction
property: W>W = I , which avoids calculating W>W
in our numerical scheme. Also, the filter bank associated
with wavelet transform contains the filters that correspond
to the difference operators with different orders at different
orientations, which is very helpful to suppressing artifacts. In
the implementation, the linear B-spline framelet transform [41]
is implemented, which contains totally nine two-dimensional
filters composed by the tensor product of the following three
one-dimensional filters:

f1 =
1

4
(1, 2, 1)>; f2 =

√
2

4
(1, 0,−1)>; f3 =

1

4
(−1, 2,−1)>.

The wavelet transform based regularization is effective on
suppressing the undesired artifacts along image edges when
separating two layers. However, it does not provide sufficient
discrimination capability to accurately separate two layers. The
discriminative information of two layers is indeed encoded in
the weighting matrix A. Recall that high-pass wavelet coef-
ficients are very related to the image gradients with different
orientations and different orders. The role of the weighting
matrix A is then for the assignment of image gradients to
which layer, with a particular focus on distinguishing the
difference in terms of edge periodicity.

D. Construction of weighting matrix

One main challenge when attempting to separate the trans-
mission layer and the reflection layer is that the content in
the transmission layer with strong globally repetitive patterns
can also be well modeled by the convolution process used in
the reflection layer. As a result, the repetitive patterns in the
transmission layer might be wrongly assigned to the reflection
layer, and vice versa. the weighting matrix A in (8) aims at
resolving such ambiguities. The range of all entries of A is
[0, 1], and the entry value indicates the likeliness that a point
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contains the content of the reflection layer. Larger value is
assigned to A(i, j) if an edge of the reflection layer is more
likely on the point (i, j), which leads to more penalty on the
image gradients of T than on R. As a result, the majority of
image gradient at that point goes to the reflection layer.

We propose the following scheme to define A:

A =
A1 + A2

2
, (10)

where the definitions of A1,A2 ∈ RM×N are motivated from
the following two priors:
• Difference in sharpness. The background objects in the

transmission layer are often sharper and much more
clear than that in the reflection layer. This is also the
assumption used in the kernel estimation for discarding
strong edges in the transmission layer.

• Difference in periodicity. The repeating patterns of the
objects in the transmission layer often repeat several times
within a local region (i.e. the repeats of such patterns are
larger than one), while the objects in the reflection layer
only repeat once in the image for ghosting effect. Such
an observation is particularly useful for the weak edges
wrongly processed under the first assumption.

Regarding the assumption of sharpness, we use the edge
map S defined in (5) to select the background edges. First,
we use K-means to cluster the values of S into three clus-
ters. Such a single-dimensional clustering form four intervals:
{[a0, a1], [a1, a2], [a2, a3], [a3, a4]} with a0 < a1 < a2 < a3.
The first interval [a0, a1] corresponds to the strongest edges,
while the last interval correspond to the flat or nearly-flat
regions. See Fig. 7 (a) for one example on the clustering.
Clearly, the first interval basically contains all the strong edges
in transmission layer. The matrix A1(i, j) is then defined by:

A1(i, j) =

{
1, S(i, j) < a1
0, S(i, j) ≥ a1 . (11)

In other words, A1 assigns an edge point to the reflection layer
if its associated edge is in the clusters of non-strong edges.

Regarding the prior on periodicity difference, refer to Fig. 5
for some examples. It can be seen that the repetitive patterns
in the transmission layer often repeats more than twice. Thus,
we propose to calculate A2 as follows. Firstly, the edge map
M ∈ RM×N of the input image Y ∈ RM×N is calculated by

M = g ⊗ (C ◦ Y ), (12)

where C is the Canny edge detector1 and g is a Gaussian
smoothing kernel with the standard deviation 0.5 which is a
default value in many image processing methods. Secondly,
for each position x ∈ ZM × ZN in M , we extract the patch
centered at x with size p×p, which is denoted by P (x). The
correlation coefficients between P (x) and P (x + d),P (x−
d),P (x + 2d),P (x− 2d) are calculated respectively where
d is the displacement parameter of the ghosting kernel that
has been estimated, and the first two maximums of these four

1We use the Canny detector instead of the previously-used Sobel detector
for obtaining additional information.

coefficients denoted by Q1(x),Q2(x). Define Q = |Q1−Q2|,
then we define

A2(i, j) =

{
1, Q(i, j) > α & M(i, j) 6= 0,
0, otherwise, (13)

where the constant α is a predefined threshold (0.5 in the
implementation). In other words, based on the periodicity
prior, A2 tells whether an edge point on a weak edge belongs
to the reflection layer or not. If an edge point on a weak
edge has repetitive patterns that repeat only once around its
neighborhood, then it is likely to belong to the reflection layer.

See Fig. 6 for an example of the correlation coefficients.
It can be seen that for an edge pixel on the reflection layer
(e.g. for the center pixel in the third blue rectangle), its four
correlation coefficients have one large value and three small
values, and thus the difference between Q1 and Q2 would
be large. In contrast, for an edge pixel on the transmission
layer (e.g. the center pixels in the third yellow, red, magenta
rectangles), there are at least 2 large values or all 4 small val-
ues in the four correlation coefficients, and thus the difference
between Q1 and Q2 would be small. Thus, the reflections
from background can be recognized according to the value of
the difference of matrix Q1 and Q2. See Fig. 7 (b) for the
visulization of the difference map Q

Fig. 5: Periodic patterns of real objects and reflected contents.
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Fig. 6: Local correlation coefficients of an image shown
in (a). (b)-(e) Correlation coefficients between the central
patch and its neighboring four patches with displacement
−2d,−d,d, 2d respectively. The bar in each sub-figure cor-
responds to the patches with the same color in (a).

Once A1 and A2 are constructed, we have the weighting
matrix A defined using (10). See Fig. 8 for an example of the
matrices A1,A2,A. See Alg. 1 for the outline of our method.
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(a) (b)

Fig. 7: Illustration of intermediate results for calculating A1

and A2. (a) Clustered intervals on the Sobel edge map for
generating A1. (b) The map Q computed on the sorted
maximal correlation coefficients for generating A2.

(a) A1 (b) A2 (c) A

Fig. 8: Illustration of matrices A1, A2 and A. (a) Matrix A1.
(b) Matrix A2. (c) Spatial weight matrix A.

E. Numerical solver

For completeness, this section give a detailed description on
the numerical algorithm used for solving model (8). For the
convenience of presentation, we represent the related variables
by the vectorization form. Let y, t, r,a ∈ RMN×1 denote
the vectorization of the input image Y , the transmission
layer T , the reflection layer R, and the weighting matrix
A respectively. The vectorization is done by sequentially
concatenating the columns of the matrix. Let K ∈ RMN×MN

denote the convolution matrix for the two-dimensional kernel
k, that is, the Kr is equivalent to the vectorization of k⊗R.
Let D(x) denote the diagonal matrix with x as its diagonal
elements. Let W denote the analysis operator of the two-
dimensional B-spline wavelet frame. Using these notations,
the model (4) can be rewritten as

min
u

1

2
‖y −Hu‖2F + ‖Du‖1, (14)

where u = [t>, r>]>, D =

[
D(λa)W 0

0 (β −D(βa))W

]
,

and H =
[
I K

]
. The problem (14) is a standard `1-

minimization problem which can be efficiently solved by the
split-Bregman method [42]. See Appendix A for all the details.

Regarding the initialization, we define u(0) = [t(0), r(0)]
with t(0) = y and r(0) = 0. For better performance, we first
set a = [0.5, · · · , 0.5] and run the algorithm for 5 iterations.
Then the outputs are used as the initialization to restart the
algorithm. The final output t is reshaped into an image, with
values projected to [0, 255].

IV. EXPERIMENTS

To evaluate the proposed method, we conducted several
experiments on both synthetic data sets and real images. For

Algorithm 1 Removing reflection with ghosting effect

INPUT: Image Y with ghosting reflections
OUTPUT: Transmission layer T
Main procedure:

1) Estimate the ghosting kernel k;
2) Calculate the weighting matrix A;
3) Solve T from (4).

comparison, in addition to Shih et al. [12] which is the most
related work to ours, we also compared our method against
the other state-of-the-art methods: Li et al. [26] and Nikolaos
et al. [10]. The results of these methods for comparison are
either directly cited from published paper or generated using
the codes from the authors with suggested parameter setting.

Through all the experiments, the parameters of the proposed
method are set as follows. The two parameters in the model (4)
are set as λ = 0.01, β = 0.01, according to the simple
parameter tuning on several images with the candidate values
{0.001, 0.01, 0.1, 0.5, 1}. In kernel estimation, the neighbour-
hood size used in searching local maximums is set to r = 5.
The patch size for computing local correlation coefficients in
the calculation of weighting matrix A is set to p = 8. The pa-
rameters in the split-Bregman are simply set as γ1 = 1, γ2 = 1.

A. Results on synthetic images

Fig. 9 shows the results by the proposed method and by the
method [12] on an synthetic image. Such a synthetic images
is synthesized as follows. The transmission layer is composed
of a long rectangle and five short rectangles, which are the
simulation of real objects, and the reflection layer contains
the ghosting version of the circle, which is generated using
model (1) with the convolution kernel parameters d = [25, 0],
c = 0.5. The periods of the short rectangles are the same as the
shifted distance of ghosting circle, and the period of the long
rectangle is less than half the length. The results by [12] are
shown in Fig. 9 (b-c) and the results of our method are shown
in Fig. 9 (e)-(f). It can be seen that the results by [12] are not
good, which mix up the reflections and the period patterns
in transmission layer. In contrast, by utilizing the periodicity
difference of repeating patterns in two layers, our method can
identify the background objects which show similar shifting
properties and thus achieved better results.

To quantitatively evaluation, totally 143 images with ghost-
ing reflections are synthesized using the model (1). In the
synthesis, the brightness parameter c is randomly sampled
from [0.5, 1], and the displacement parameter d is a random
vector with 1 < ‖(d)‖2 ≤ 20. The transmission layer T and
reflection layer R are randomly sampled from the BSDS-500
dataset [43]. See Fig. 10 for some synthesized examples.

The results by ours and other methods on such a dataset
are evaluated in terms of both PSNR and SSIM. See Table I
for the results. The results from our method score average
PSNR of 20.43dB and SSIM [44] of 0.81, while the results
from Li et al.’s method [26] only score average PSNR of
14.48dB and SSIM of 0.57. The other two methods for
comparison perform better than Li et al.’s method [26] but
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(a) (b) (c)

(d) (e) (f)

Fig. 9: Comparison of the results from ours and [12] on a
synthesized image shown in (a). (b) Transmission layer T
computed by [12]. (c) Reflection layer R computed by [12].
(d) Spatial weight matrix A computed by the proposed
scheme. (e) Transmission layer T computed by our method.
(f) Reflection layer R computed by our method.

TABLE I: PSNR and SSIM values by different methods on
synthetic images. Left/right values are for the result with and
without boundary regions being removed.

Metric Li et al. [26] Nikolaos et al. [10] Shih et al. [12] Ours

PSNR (dB) 14.48/14.28 17.77/17.72 17.48/18.29 20.43/20.55
SSIM 0.5694/0.5642 0.7862/0.7846 0.7820/0.7993 0.8098/0.8146

still outperformed by our method. In Fig. 11, some recovered
results are visualized. Clearly, the results from our method
have overall the best visual quality. The results from Li et
al.[26] generally are darker caused by the issue of the method
on color fidelity. Nikolaos et al.’s method [10] can preserve
more details and achieve better color quality, but it failed to
remove the reflections from the images. Both Shih et al.’s
method [12] and our method performed better than others on
removing reflection from images.

Compared with Shih et al.’s method [12], the proposed
method shows better performance when processing the images
with repetitive transmission objects, which leads to much less
artifacts on the boundaries of objects. See Fig. 11 for the
demonstration of the artifacts along the boundaries of objects
in the results of Shih et al.’s method. We also recalculated
the numerical results by cutting 25 pixels off around image
boundaries. The recalculated results are also listed in Table I.
It is found that discarding the issue on image boundaries, our
method still outperformed Shih et al.’s method.

B. Results on real images from [12]

Three real images from [12] are used for evaluating our
method. The results are shown in Fig. 12, 13, 14. It can be
seen that our method outperforms the other three compared
methods in terms of visual quality. In Fig. 12, the chimney at
the top right is hardly removed by the methods of Li et al. [26]
and Nikolaos et al. [10], while our method can remove the

TABLE II: PSNR(dB) under different thickness of glass on
the SIR2-Postcard dataset.

3mm 5mm 10mm Average

Shih et al. [12] 19.60 19.29 19.50 19.46
Ours 19.72 19.35 19.63 19.57

chimney and yields consistent color at the upper right corner
of the recovered image. Shih et al.’s method [12] can deal with
the chimney well but has poor color consistency. Moreover,
the result leave the long white roof and repetitive windows
in the image, which indicates it did not wrongly assigned the
ownership of repeating pattern in these regions. In contrast, our
method achieved better visual results on the long white roof
and repetitive windows. Similarly, in Fig. 13. The repetitive
windows recovered by Shih et al. [12] are bad on both color
consistency and structure, while our result has better visual
quality. In Fig. 14, our method performed comparably with
Shih et al.’s [12] and performed much better than that of Li
et al. [26] and Nikolaos et al. [10].

C. Results on SIR2-Postcard dataset

We also evaluate our method on one real image dataset,
SIR2-Postcard dataset [32], which uses postcards to compose
20 different controlled scenes. In the experiments, 20 groups
of images are taken from SIR2, which are taken under three
controlled thickness of glass (3mm, 5mm, and 10mm). Each
group of images is composed of a triplet, which contains the
mixture image, as well as the ground truth of background and
reflection. The mixture image is captured through the thick
glass, the ground truth of the reflection is captured with a sheet
of black paper behind the glass, and the ground truth of the
background is obtained by removing the glass. The numerical
results are listed in Table II, where we show the average PSNR
values on the dataset as well as on each glass thickness. It
can be seen that our method have 0.11dB gain over Shih et
al.’s method. Some results after resizing are shown in Fig. 15-
Fig. 17, where the results from our method has better visual
quality than that of the others.

V. SUMMARY

Based on the convolutional composite model for ghosting
reflection, this paper proposed a regularization model for
separating the transmission layer and reflection layer. The main
issue we addressed here is how to determine the ownership of
repeating patterns for two layers. Based on the observation
that repeating times of such patterns are different between the
two layers, a weighted wavelet transform based regularization
is developed for effectively separating the two layers. The
experiments showed that the proposed method outperformed
the existing related ones.

ACKNOWLEDGEMENT

Yuhui Quan would like to acknowledge the support from
National Natural Science Foundation of China (Grant No.



IEEE TRANSCATIONS ON COMPUTATIONAL IMAGING 9

1

Fig. 10: Samples of synthetic images used for evaluation.

61602184, 61872151, U1611461), Natural Science Founda-
tion of Guangdong Province (Grant No. 2017A030313376),
Science and Technology Program of Guangzhou (Grant No.
201707010147), and Fundamental Research Funds for the
Central Universities (x2js-D2181690). Yong Xu would like
to acknowledge the support from National National Natural
Science Foundation of China (61672241, U1611461), Culti-
vation Project of Major Basic Research of NSF-Guangdong
Province (2016A030308013), and Science and Technology
Program of Guangzhou (201802010055). Hui Ji would like
to acknowledge the support from Singapore MOE AcRF
Research Grant R146000229114 and MOE2017-T2-2-156.

APPENDIX A
THE DETAIL OF NUMERICAL OPTIMIZATION SCHEME

The split-Bregman algorithm for solving (14) is as follows.
First, the problem is rewritten as the constrained problem:

min
u

1

2
‖y −Hu‖2F + ‖d‖1, s.t. d = Du, (15)

which is the ”splitting” step to separate u from the `1 penalty.
Next, the Bregman iteration is used to solve (15) as follows:

(u(k+1),d(k+1)) = argmin
u,d

1

2
‖Hu− y‖22+

‖d‖1 + γ1
2 ‖Du− d + b(k)‖22

b(k+1) = b(k) + γ2(Du(k+1) − d(k+1))

(16)

for k = 0, 1, · · · , where γ1, γ2 > 0 are two parameters arising
from the Bregman iteration. By decomposing its first sub-
problem into two sub-problems, we rewrite (16) as follows:

u(k+1) = argmin
u

1

2
‖Hu− y‖22 +

γ1
2
‖Du− d(k) + b(k)‖22

d(k+1) = argmin
d

‖d‖1 +
γ1
2
‖Du(k+1) − d + b(k)‖22

b(k+1) = b(k) + γ2(Du(k+1) − d(k+1))

the first sub-problem has an analytic solution:

u(k+1) = (H>H+γ1D
>D)−1(D>y+γ2D

>(d(k)−b(k))),

which is calculated by the conjugate gradient method. The
second sub-problem also has the analytic solution given by

d(k+1) = S 1
γ1

(Du(k+1) + b(k)), (17)

where Sβ(·) is the soft-thresholding operation defined by

Sβ(x) = sgn(x)max(|x| − β, 0). (18)

Combining all together, the problem (14) is solved by
u(k+1) = (H>H + γ1D

>D)−1

(H>y + γ1D
>(d(k) − b(k)))

d(k+1) = S1/γ1(Du(k+1) + b(k))
b(k+1) = b(k) + γ2(Du(k+1) − d(k+1))

.
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Fig. 11: The results on synthetic images. The odd/even rows show the whole/zoomed-in results.
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Fig. 12: Results on image ”Factory”.
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Fig. 13: Results on image ”Lake”.
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Fig. 14: Reflection results on image ”Flower”.
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Fig. 15: Results on image ”Church”.
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Fig. 16: Results on image ”Bridge”.
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