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ABSTRACT

Non-uniform blind motion deblurring is a challenging yet important problem in image processing that
receives enduring attention in the last decade. The non-uniformity nature of motion blurring leads to
great variations on the blurring effects across image regions and over different images, which makes
it very difficult to train an end-to-end deblurring neural network (NN) with good generalization per-
formance. This paper introduces an attention mechanism for the blind deblurring NN, including both
spatial and channel attention, so as to effectively handle the significant spatial variations on blurring
effects. In the attention mechanism, the spatial attention is introduced in both the encoder for discrimi-
native exploitation of image edges and smooth regions and the decoder for discriminative treatment on
different regions with different blurring effects. The channel attention is introduced for better general-
ization performance of the NN, as it allows adaptive weighting on intermediate features for a particular
image. Building such an attention mechanism into a multi-scale encoder-decoder framework, an at-
tentive NN is developed for practical non-uniform blind image deblurring. The experiments on several
benchmark datasets show that the proposed NN can effectively restore the images degraded by spa-
tially-varying blurring, with state-of-the-art performance.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Image blurring is one often-seen type of image degradation,

which causes the loss of image details. In addition to yield-

ing poor picture quality unwanted in digital photography, im-

age blurring also have negative impacts on many vision tasks,

e.g. automatic driving, object tracking, and visual surveillance.

Image deblurring is then about recovering a clear image with

sharp details from an input blurred image. The effect of image

blurring may come from multiple sources, e.g. out-of-focus and

motion blur. In practice, motion blurring effect often is non-

uniform (spatially-varying), i.e., different image regions have
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different blurring effects, when the camera motion is not the

translation along image plane, or there are large variations on

scene depth, or there exist independent moving objects. This

paper focuses on the study of how to remove spatially-varying

motion blurring effect from the images of dynamic scenes.

This paper concerns the motion blurring process that can be

formulated as:

g = K f + n, (1)

where g denotes the input blurred image, f denotes the latent

image with sharp details, n denotes the measurement noise, and

K denotes some linear operator that models the blurring pro-

cess such that
∑

i K(i, j) = 1,∀ j and K(i, j) ≥ 0,∀i, j. In other
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words, the value of each blurred pixel is the weighted average

of the values of all its neighboring sharp pixels (Denis et al.,

2015). It is noted that the linear model (1) is not applicable to

the images where there are occlusions occurring during shutter

time. In the case of uniform blurring, as most existing deblur-

ring methods (e.g. (Cai et al., 2009; Danielyan et al., 2011; Shan

et al., 2008; Xu and Jia, 2010)) assume, all blurred pixels take

the same weighting average scheme. Thus, the operator K can

be expressed as a convolution operator with a smoothing ker-

nel. When the blurring is not uniform over the image, different

blurred pixels will take different weighting schemes. Clearly,

as both the operator K and image f are unknown, the blind de-

blurring is a very challenging ill-posed problem to solve.

For images with complex spatially-varying blurring effects

((Nah et al., 2017; Caglioti and Giusti, 2009; Seibold et al.,

2017)), the operator K has a very high degree of freedom, which

makes it very difficult to resolve the ambiguity of the solution

in blind image deblurring. In the past, there have been sev-

eral approaches that impose certain structural prior on the blur-

ring operator K, e.g. two-layer-based model for defocus blur-

ring (Chan and Nguyen, 2011), patch-based model for non-

uniform motion blurring (Ji and Wang, 2012), and non-uniform

motion blurring model parameterized by 3D camera intrinsic

motion (Whyte et al., 2012). Nevertheless, the applicability of

these models is limited. For instance, they are not applicable

to the blurring effects in dynamic scenes with moving objects

of different speeds or for the blurring effects caused by very

complex scene depths.

In order to have a blind deblurring method that covers a

wide range of spatially-varying blurring effects, an alternative

approach is to directly recover each blurred image pixel with-

out explicitly modeling its associated blurring operator. Deep

learning provides a powerful tool to learn such a direct recovery

process. In recent years, many deep-learning-based approaches

(e.g. (Nah et al., 2017; Nimisha et al., 2017; Sharma et al.,

2018; Su et al., 2017; Xin et al., 2018)) have been proposed

for blind image deblurring. Most of these methods train a con-

volutional neural network (CNN) that models the mapping be-

tween a blurred image to its clear version, using many pairs of

blurred images and their clear versions. The NN models trained

by these approaches have shown promising performance on re-

moving spatially-varying blur from input blurred images.

1.1. Motivations

To train an NN that models the mapping between the pair

of blur/clear images with good generalization performance, a

great amount of training data is needed to provide a compre-

hensive coverage of the instances of different image contents

and different blurring effects. In comparison to uniform blur,

the variations of blurring effects in non-uniform blur are much

more significant, as the spatial configurations of blurring ef-

fects can be very different across image regions and over dif-

ferent images. Thus, it is overwhelming to build a training data

set that is sufficiently comprehensive to avoid possible overfit-

ting when training the NN. As a result, the performance gain

of existing deep-learning-based approaches over the traditional

ones is limited, and increasing their model size does not help

much for further performance improvement; see e.g. the stud-

ies in (Xin et al., 2018; Zhang et al., 2019).

It is well known in human visual perception that blur directly

participates in visual experience especially for space percep-

tion. It is shown in (Khan et al., 2011) that blurring has an im-

portant influence on visual attention, and there is deep connec-

tion between blur and extraction of salient regions. Indeed, hu-

man visual system can directly estimate local blur effects from

many salient structures (e.g. edges and corner points) and gen-

eralize them to more global salient regions. This motivated us

to investigate the introduction of the spatial attention mecha-

nism to the NN so that the NN can be learned to effectively ex-

ploit salient image features to deal with spatially-varying blur-

ring effects. Also, how to restore image regions with different

blurring effects in one NN is another concern that needs to be

handled. As different blur effects require different processes

for restoration, the NN for processing non-uniformly blurred

images needs to be spatially-varying as well. Clearly, spatial

attention is one solution to introduce such a spatially-varying

nature in the NN, specially for the CNN.
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Channel attention is another widely-used attention mecha-

nism in deep NNs for image classification and processing (Hu

et al., 2018). Channel attention allows the intermediate fea-

tures of the CNN have varying weights over different images,

and thus improve the adaptivity of the features of the CNN to

different image contents. Such an adaptivity is certainly very

appealing when the CNN need to handle a wide range of image

contents, as well as blurring effects.

In summary, the potential benefits of spatial attention and

channel attention in handling non-uniform blur, inspired us

to investigate the attention mechanism for deep-learning-based

non-uniform blind deblurring.

1.2. Basic Ideas

In this paper, using a multi-scale encoder-decoder CNN as

the backbone, we propose a deep attentive NN with built-in

attention mechanism for non-uniform blind image deblurring.

The attention mechanism we use for the deblurring NN include

both spatial attention and channel attention.

In the proposed approach, the spatial attention is introduced

in both the encoder and the decoder, and they have different

functions. In an encoder-decoder CNN, the encoder functions

as a feature extractor for capturing essential image features that

provide essential information for image recovery while are ro-

bust to the blurring. It is shown in edge-selection-based uniform

blind motion deblurring methods (e.g. (Cho and Lee, 2009; Xu

et al., 2013; Yang and Ji, 2019)) that focusing on strong im-

age edges with different orientations for kernel estimation can

provide very robust estimation of blur kernels, which in turn

greatly improves the deblurring performance. For instance,

strong horizontal/vertical edges will not be erased by blurring,

and they provide all information regarding the blurring effect

along the vertical/horizontal direction.

According to the success of edge selection techniques in uni-

form blind deblurring methods, different stages of an effective

encoder should discriminatively treat image edges and smooth

regions, or say some stages emphasize edges and some empha-

size smooth regions. Therefore, we introduce the spatial atten-

tion into the encoder part. Such an attention mechanism is ex-

pected to allow the encoder to treat different spatial image fea-

tures with different weights. As a result, the features extracted

from the encoder with spatial attention will focus on those im-

age features encoding more information regarding the blurring

effect, e.g. strong image edges with isotropic orientations. See

Fig. 1 (middle row) for an illustration of the spatial attention

in the encoder part, which makes the NN focus more on strong

image edges with various orientations.

In our approach, spatial attention is also introduced into the

decoder part of the encoder-decoder CNN, but with a different

function from its counter-part in the encoder part. Recall that

the decoder can be interpreted as an image recovery process that

maps the extracted features from the encoder to a clear image.

In the case of non-uniform blind deblurring, different image re-

gions have different blurring effects. Thus, different image re-

gions should be treated by different reconstruction processes.

For example, a region with more severe blurring should be paid

more attention to, as more details need to be recovered. A

plain version of the deblurring CNN without spatial attention is

not effective on modeling such highly location-dependent map-

pings. The introduction of spatial attention in the decoder en-

ables efficient modeling on location-dependent operations. See

Fig. 1 (bottom row) for an illustration of the spatial attention

in the decoder part, where the spatial attention distinguishes

well the image regions with different blur degrees, e.g. focus-

ing more on fast-moving persons.

In addition to spatial attention, the channel attention is also

employed for further improvement on the generalizability of the

CNN in non-uniform blind deblurring. As the intermediate fea-

tures from the CNN are supposed to cover a wide range of im-

ages with different contents, many features are not very related

to one particular image. Such a redundancy in features will

cause severe issues in the case of image blurring, as there will

exist certain ambiguities among different images when they are

severely blurred. The channel attention allows the CNN to im-

pose different weights on different channels (i.e. different fea-

ture maps), which makes the CNN more adaptive to the input

image.
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Similar to other existing works (Xin et al., 2018; Zhang et al.,

2019), we also implement a multi-scale version of the encoder-

decoder CNN as the backbone, and built the aforementioned

attention mechanisms into the NN. The multi-scale architecture

of the NN provides better guidance for the encoder to extract the

blur-invariant representations as well as the decoder to recover

image details.

Fig. 1. Images with spatially-varying blurring and their spatial attention
maps generated by the proposed attentive CNN. Upper row: input images.
Middle row: spatial attention maps generated in the 5th block of encoder.
Bottom row: spatial attention maps generated in the 5th block of decoder.

1.3. Main Contributions

The main contribution of this paper is the introduction of at-

tention mechanism into the NN for non-uniform blind image

deblurring. One main limitation of the existing deep learning

methods for non-uniform blind deblurring lies in their unsatis-

factory generalization performance, owing to significant varia-

tions among spatially-varying blurring effects. Introducing the

attention mechanism has several benefits toward better gener-

alization performance, including (i) the spatial attention in the

encoder makes the NN focus more on those image features that

are closely related to the blurring estimation; (ii) the spatial at-

tention in the decoder enables spatially-varying treatments on

different image regions, and (iii) the channel attention allows

image-adaptive deblurring procedures.

Based on the spatial and channel attention mechanisms, this

paper present an encoder-decoder CNN with light-weight con-

current spatial and channel attention modules. The proposed

CNN can effectively restore the images degraded by complex

spatially-varying blurring, with relatively-small model size.

The experiments on standard benchmark datasets show that

the proposed model achieved the state-of-the-art performance,

which have justified the value of the attention mechanism in

deep-learning-based non-uniform blind image deblurring.

2. Related work

In the last decade, there have been many approaches pro-

posed for single-image-based blind motion deblurring. De-

pending on the setting of motion blurring effects, most existing

approaches can be classified into three categories: non-blind

motion deblurring which assumes the parameters of blur pro-

cessing are known, blind uniform motion deblurring which as-

sumes the blur is generated by convolving with an unknown

kernel, and blind non-uniform motion deblurring which con-

siders complex spatially-varying blurring effects. As the paper

aims at non-uniform blind motion deblurring, the following lit-

erature review will focus more on the last category.

2.1. Non-Blind Image Motion Deblurring

Non-blind motion deblurring often assumes the blurring ef-

fect is uniform and models the blurring process by the convo-

lution with a given low-pass filter. The focus of non-blind de-

blurring is about designing suitable priors to regularize clear

images so as to suppress the magnification of the measure-

ment noise when reversing the convolution process. The often-

used image priors include (i) the sparsity of image gradients

which is often implemented by total variation (TV) minimiza-

tion (e.g. (Chan and Wong, 1998)), `0/`1-norm regularization

under wavelet frames (e.g. (Cai et al., 2009; Bao et al., 2016)) or

gradient sparsity (Javaran et al., 2017); and (ii) the patch recur-

rence prior implemented by nonlocal operators (e.g. (Danielyan

et al., 2011; Quan et al., 2014)). Recently, there are some

deep-learning-based approaches (e.g. (Zhang et al., 2017; Kruse
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et al., 2017)), which unroll some optimization process of certain

regularization method and replace the pre-defined prior by the

learnable prior modeled by a deep NN. The NNs in these meth-

ods act as the denoisers. These deep-learning-based approaches

showed better performance than the non-learning methods.

In comparison to the development of non-blind uniform mo-

tion deblurring methods, the study on non-blind non-uniform

methods has been scant in the literature. One main reason is the

non-uniform blurring operator is difficult to simulate or cap-

ture. One available work is (Tai et al., 2010). Assuming the

projective motion is given, this work extended the traditional

Richardson-Lucy algorithm for uniform deblurring to handling

non-uniform motion deblurring. In (Whyte et al., 2012), based

on the rotational camera motion during exposure, a parameter-

ized geometric model is built up to capture the non-uniform

motion blur caused by camera shake. With the parameterized

model, the non-blind deblurring is conducted.

2.2. Blind Uniform Motion Deblurring

Blind uniform motion deblurring methods also assume the

blurring is uniform and model the blurring by the convolution

with an unknown blur kernel; see e.g. (Shan et al., 2008; Levin

et al., 2009; Sun et al., 2013; Perrone and Favaro, 2014; Ren

et al., 2016; Yang and Ji, 2019). In comparison to the non-

blind ones, these blind uniform deblurring methods aim at es-

timating the blur kernel. Once the kernel is determined, the

clear image can be restored by calling some non-blind deblur-

ring method. Many existing methods estimate the blur kernel

based on selected strong edges. Cho and Lee (Cho and Lee,

2009) proposed to use simple image processing techniques to

predict strong edges from an estimated latent image, which are

then solely used for kernel estimation. Sun et al. (Sun et al.,

2013) proposed to estimate the blur kernel and latent image by

imposing a patch prior specifically tailored towards modeling

the appearances of image edges and corner primitives. Wang et

al. (Wang et al., 2018) developed an elastic-net regularization

of singular values computed from similar patches of an image

to guide kernel estimation. Schuler et al. (Schuler et al., 2015)

proposed to use a CNN to extract local image features for blur

kernel estimation. Ren et al. (Ren et al., 2016) proposed to re-

tain the dominant edges and eliminate fine texture and slight

edges in the intermediate images using a thresholding strat-

egy, allowing robust kernel estimation. Pan et al. (Pan et al.,

2016) proposed a maximum a posterior framework for moving

object deblurring, which jointly estimates object segmentation

and camera motion. Yang et al. (Yang and Ji, 2019) proposed

an adaptive edge selection scheme for blur kernel estimation,

which is implemented by a variational probabilistic framework.

2.3. Non-uniform Blind Motion Deblurring

Uniform deblurring methods have their limitations in real ap-

plications. There are many approaches proposed for handling

spatially-varying motion blur. Levin (Levin, 2007) proposed

to segment a motion-blurred image into layers that contain dif-

ferent blur generated from an one-dimensional box filter. The

sharp image is recovered by the uniform deblurring at each

layer. Ji and Wang (Ji and Wang, 2012) proposed to approx-

imate non-uniform motion blurring by a piece-wise uniform

blurring model. Then the image is deblurred by using a robust

version of `1-norm relating regularization method. The above

two approaches are based on two-stage frameworks which may

be sub-optimal. Kim et al. (Kim et al., 2013) proposed a unified

framework that jointly conducts blur region segmentation, local

blur kernel estimation and sharp image recovery for deblurring

images of dynamic scenes.

Recent approaches for blind non-uniform motion deblurring

are based on deep learning. Sun et al. (Sun et al., 2015) pro-

posed to estimate the heterogeneous motion blur in the form of

motion field by a CNN and then deconvolve the blurred image

with the estimated motion field. The image is first divided into

overlapping patches on which the local blur kernels are learned

with a CNN. Then the learned blur kernels are merged into

the motion field based on a Markov random process. Gong et

al. (Gong et al., 2017) proposed to learn a CNN to predict the

motion flow directly without post-processing.

The aforementioned deep approaches explicitly model the

blurring process with spatially-varying blur kernels. There are

also kernel-free deep approaches that learn to end-to-end de-



6

blurring, i.e. learning the mapping from blurry images to the

clear ones directly. Nah et al. (Nah et al., 2017) proposed a

multi-scale CNN with coarse-to-fine structure. A multi-scale

loss is used to train the CNN. To enlarge the receptive field

of the CNN, they used a large number of convolutional lay-

ers with residual connections in each scale, which however in-

creases/decreases the difficulty/efficiency of training. For re-

ducing the number of parameters so as to make the CNN train-

ing easier, Tao et al. (Xin et al., 2018) imposed the recur-

rent structure onto the multi-scale encoder-decoder CNN. They

also introduced the long short-term memory (LSTM) units to

model the dependencies of the intermediate features across

scale. Gao et al. (Gao et al., 2019) proposed a selective weights

sharing mechanism onto the multi-scale CNN. They further ex-

tended the skip connections to nested skip connections which

encode second-order information for better capturing image

features. Zhang et al. (Zhang et al., 2018) proposed a spatially-

variant recurrent NN for dynamic scene deblurring, where the

recurrent structures are inspired by the recursive filtering. In-

stead of using downsampling to generate multi-scale represen-

tations as input, Zhang et al. (Zhang et al., 2019) proposed to

crop image patches to generate the multi-scale input. At each

scale, the cropped patches are processed and then merged as

the patch of the upper scale. In (Zhang et al., 2019), an efficient

scheme is also proposed for stacking deblurring CNN models

for better performance.

There are some approaches using generative adversarial net-

works (GANs). Kupyn et al. (Kupyn et al., 2018) modeled im-

age deblurring as a style transfer problem and use a GAN from

image translation for deblurring. Liu et al. (Liu et al., 2018)

combined a conditional GAN with the NN of (Xin et al., 2018)

to enhance the visual quality of the deblurring results. It is

worth mentioning that there are some deep approaches specifi-

cally designed for text images (e.g. Quan et al. (2020)) instead

of natural dynamic scenes, which is not considered in our work.

2.4. Attention Mechanism for Image Deblurring

There are some deep learning approaches using attention

mechanisms for deblurring. Purohit et al. (Purohit and Ra-

jagopalan, 2019) proposed a feature transformation with a non-

local spatial attention to deal with motion blurs. The spatial at-

tention is computed based on pair-wise inner products of pixels,

which has higher computational cost than ours. Wu et al. (Wu

et al., 2020) used a dual attention for video deblurring, where

an internal attention module is used to select the optimal tem-

poral scales for restoring the sharp center frame, and an exter-

nal attention module is used to aggregate and refine multiple

sharp frame estimates. This method does not employ spatial

or channel attention as ours to handle spatially-varying blurs.

Shen et al. (Shen et al., 2019) proposed an NN that uses a mask

to separate a blurry image into background and front objects

(i.e. humans), with two decoders to recover the sharp results of

the background and objects separately. This method requires

manual masks to train the NN and essentially assume all the

moving objects as the same type, which limits its applications.

In contrast, our method has no such requirements and assump-

tions.

3. Proposed method

3.1. Network Architecture

The proposed CNN for image deblurring is outlined in Fig. 2,

whose backbone is an encoder-decoder NN repeated with a

multi-scale fashion. Such a backbone is inspired by the work

of (Xin et al., 2018; Zhang et al., 2019). Concretely, there

are T modules, denoted byM1(·; Θ), · · · ,MT (·; Θ), in the pro-

posed CNN, each of which module is an encoder-decoder net-

work whose weights are shared with other modules. Given a

blurry image f as input, we first generate its multi-scale repre-

sentations, denoted by f↓s1 , . . . , f↓sT by downsampling f with

scale factors s1, · · · , sT and the bi-linear interpolation, where

st = ct−1 with c > 1 for all t. We set T = 3 and c = 2 in

practice. The proposed CNN generates a sequence of deblurred

images g1, · · · , gT at different scales by the modules:

MT (·; Θ) : [ f↓sT , f↓sT ]→ gT , (2)

Mt(·; Θ) : [ f↓st , g↑st
t+1]→ gt, (3)
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Fig. 2. Diagram of framework of proposed NN. The symbol ’c’ indicates concatenation in ’Scale Connection’. The symbol ’+’ indicates element-wise
addition in ’Skip Connection’.

where ↑ st denotes the operation of upsampling to scale st

with bi-linear interpolation, and [·, ·] denotes the concatenation

operation. In other words, at each scale, we concatenate the

downsampled image of the current scale and the deblurred im-

age from the previous scale as input, and then generate the de-

blurred image at the current scale as output. The output ofM1

is defined as the final output of the CNN.

All the modules M1, · · · ,MT share the same structure as

well as the same weights. Each module is an encoder-decoder

network which consists of an encoder and a decoder. For the

convenience of presentation, the encoder/decoder is divided

into several groups, denoted by EGs/DGs, as shown in Fig. 2.

The EGs and DGs have symmetric structures. The feature

maps passing through the 1st/2nd/3rd EG are with the same size

as those of the 3rd/2nd/1st DG. Each EG sequentially connects

a convolutional/downsampling layer and three residual atten-

tion blocks (RABs), while each DG sequentially connects three

RABs and a upsampling/deconvolutional layer. Skip connec-

tions are added from the 1st/2nd EG to the 3rd/2nd DG.

The RABs in the EGs and DGs have the same structure,

which is shown in Fig. 3. An RAB sequentially connects a

convolutional (Conv) layer, a rectified linear unit (ReLU), a

Conv layer and an attention module, with a skip connection

that connects the RAB’s input and output by a summation oper-

ation. The number of convolution kernels is 32/64/128 on the

1st/2nd/3rd RAB as well as on the 3rd/2nd/1st RAB. The sizes of

the convolution kernels in the two Conv layers in all RABs are

set to 5 × 5. The residual links in the RABs, as well as the skip

connections between EGs and DGs, bring two benefits. For the

forward pass, it enables the network to reuse the features out-

put by its previous layers for gaining higher visual quality. For

the backward pass, it help avoids the gradient vanishing prob-

lems and thus allows the NN to be deeper while trainable. The

attention mechanisms in RABs are another critical parts in our

model, which will be detailed in the next.

3.2. Attention Modules

Ideally, for image deblurring, the encoder acts as a robust

image feature extractor that preserves essential image compo-

nents while eliminating the blurring effects, while the decoder

progressively recovers the image details on the output of the en-
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Fig. 3. Diagram of residual attention block.

coder. When the blur is spatially-varying, it is very challenging

for the encoder to extract the essential yet robust features, as

the regions with very similar contents can have totally differ-

ent blur degrees and different regions can degenerate to simi-

lar ones due to the varying blur. It is also challenging for the

decoder to the recover the image details as the degradation is

varying on different regions owing to the spatially-varying blur.

To better handle such problems, we introduce spatial attention

(SA) modules to both encoder part and decoder part. Recall that

the role of SA is different in the encoder part and the decoder

part. The former is to discriminatively exploit image edges and

smooth regions while the latter one is to exploit the spatially-

varying blur degrees. However, considering simplicity, we use

the same scheme to define them.

Borrowing the idea of squeeze-and-excitation (SE) (Hu et al.,

2018) for constructing channel attention, we define the SA

module, which is shown in Fig. 4, as follows. Let X ∈ RW×H×C

denote the feature maps of C channels with spatial size W × H.

Let pi, j = X(i, j, :) ∈ RC denote vector that collects all fea-

tures across different channels at the spatial location (i, j). We

pass pi, j to a multi-layer perceptron (MLP) to form the spatial

attention A(i, j) at the spatial location (i, j), for all (i, j). The

MLP sequentially contains a fully-connected (FC) layer, a rec-

tified linear unit (ReLU), a FC layer and a sigmoid function.

The sizes of two FC layers are C × C
16 and C

16 × 1 respectively.

Formally, A(i, j) is generated by

A(i, j) = σ(W2ReLU(W1 p)), (4)

where W1 ∈ R C
16×C ,W2 ∈ R1× C

16 denote two FC layers and σ

denotes the sigmoid function. Due to the use of sigmoid func-

tion, all elements in A(i, j) are in [0, 1]. The proposed spatial

attention can lead to good results in the experiments with few

parameters involved.

The channel attention (CA), shown in Fig. 5, is for improv-

ing the generality of the network across different images. When

handling the images with different types/degrees of blur or dif-

ferent image patterns, it is better to give different contribu-

tions to different feature channels. The CA determines the

contribution of each feature channel by exploiting the inter-

dependencies among different channels. Let q = [q1, · · · , qC]

where qc is the result of global average pooling on the feature

map of the cth channel, i.e. calculating the mean value of all

elements on X(:, :, c). The vector q encodes the information of

each feature map, and it is input to an MLP to predict the im-

portance of each feature map. The MLP has a similar structure

with that used by the SA module, which sequentially contains

an FC layer, an RelU, an FC layer and a sigmoid function. The

sizes of two FC layers are C
16 × C and C × C

16 respectively. The

output of the MLP is denoted by ā = [ā1, · · · , āC] and used as

the channel attention map. Formally, ā is calculated by

ā = σ(V2ReLU(V1q)), (5)

where V1 ∈ R
C
16×C ,V2 ∈ RC× C

16 denote the two FC layers.

The combined attention is done by re-calibrating the feature

maps using the combination of SA and CA as follows:

X̂ = X � (A ⊗ ā), (6)

where ⊗ denotes the Kronecker product and � denotes the

element-wise product.

Conv.
（1×1）

Conv.
（1×1）

Element-wise 
Multiplication

Fig. 4. Diagram of spatial attention module.

3.3. Loss

Let ∇ denote the gradient operator. In training, given the

blurry/clear image pair set {(gk, f k)}Kk=1, we optimize the fol-
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Global
Average
Pooling

Conv.
（1×1）

Conv.
（1×1）

Element-wise 
Multiplication

Fig. 5. Diagram of channel attention module.

lowing loss function to train our network:

min
Θ
L(Θ) := Lmse(Θ) + λLgrad(Θ), (7)

whereLmse, Lgrad the multi-scale mean square error (MSE) and

gradient loss respectively:

Lmse(Θ) :=
K,T∑

k=1,t=1

‖Mt(gk
↓st

; Θ) − f k
↓st
‖22, (8)

Lgrad(Θ) :=
K∑

k=1

‖∇M1(gk
↓s1

; Θ) − ∇ f k
↓s1
‖22. (9)

Following the previous work (Xin et al., 2018; Zhang et al.,

2019), we use the multi-scale MSE to measure the loss of the

model at each scale level. Regarding the loss function, we

adopted a simple gradient loss on the final output of the net-

work to train the network. The gradient loss makes the model

pay more attention on the edges of output images, as image

edges are the main focus of deblurring and more sensitive to

blurring than the smooth regions. As a result, such a loss en-

courages the model to recover images with sharper edges. It is

noted that more sophisticated loss functions, such as the per-

ceptual loss and adversarial loss used in (Nah et al., 2017; Liu

et al., 2018) might also work for the similar purpose.

4. Experiments

4.1. Datasets and Configurations

The proposed approach is evaluated on three public bench-

mark datasets for blind image deblurring, including the Go-

Pro dataset (Nah et al., 2017), the VideoDeblurring dataset (Su

et al., 2017) and the Köhler dataset (Köhler et al., 2012). The

details of these three datasets are as follows:

• The GoPro dataset (Nah et al., 2017) contains 3214

blurry/sharp image pairs of resolution 720 × 1280, which

are extracted from 33 videos captured by the GoPro Hero

4 Black Camera. The blurred images are generated by av-

eraging seven to thirteen successive latent frames to simu-

late complex camera shakes and complex object motions.

Same as the protocol of (Xin et al., 2018), 2103 image

pairs are used for model training and the remaining 1111

pairs are used for test. The performance is measured by the

PSNR (Peak-Signal-to-Noise Ratio) and SSIM (Structural

Similarity).

• The Köhler dataset (Köhler et al., 2012) contains 4 clear

images as the ground truths, each of which has 12 dif-

ferent blurry versions. The blurry versions are generated

by replaying the recorded 6D camera motions with linear

CRF (Camera Response Function) assumed. Same as (Xin

et al., 2018), we train our model on the GoPro dataset and

test the trained model on all images in the Köhler dataset.

Following the standard protocol, the PSNR and MS-SSIM

(Multi-Scale SSIM) are used as the quantitative metrics.

• The VideoDeblurring dataset (Su et al., 2017) contains

videos captured by various devices (e.g. iPhone, GoPro

and Nexus). The dataset contains 71 videos, each of which

consists of 100 frames of resolution 720 × 1280. Follow-

ing (Zhang et al., 2019), two schemes are used for the eval-

uation: (i) training on 61 videos and testing on the remain-

ing ten videos; and (ii) training on GoPro’s training set

and testing on the ten videos. During training, each video

is used as an image. In test, the videos are processed frame

by frame. The PSNR is used as the quantitative metric.

In addition to the three datasets, we also use some real de-

graded images to evaluate the generalizability of the proposed

approach to real scenarios.

4.2. Implementation Details

Our approach is implemented using TensorFlow and run on

a PC with Intel Core i7-6700K CPU and an NVIDIA Titan V

GPU. To train our model, we used the Adam solver (Kingma
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and Ba, 2014) with default parameters (i.e. β1 = 0.9, β2 = 0.999

and ε = 10−8). The learning rate is initialized to 1e−4 and ex-

ponentially decayed with power 0.3. Totally 4000 epochs are

used for training. At each epoch, a batch of 16 blurry/sharp im-

age pairs are generated by randomly cropping 256 × 256-pixel

patches from the training set. In addition, the data augmentation

is used by left-right flipping and up-down flipping the training

images. During training, each image is normalized to the range

[0, 1], and all the trainable variables are initialized by using

Xavier (Glorot and Bengio, 2010). The hyper-parameter set-

ting described above is consistent throughout all experiments.

The parameter λ is empirically set by the following rule, We set

λ = 1 first to train the model. Then the values of the two terms

are calculated, and their ratio which is approximately 2.5, is

used to set the λ. All our codes will be available at our website.

4.3. Results and Comparisons

Several state-of-the-art image deblurring approaches are se-

lected for performance comparison, including WFA (Delbracio

and Sapiro, 2015), Sun et al. (Sun et al., 2015), Nah et al. (Nah

et al., 2017), Zhang et al.(Zhang et al., 2018), Liu et al. (Liu

et al., 2018), SRN (Xin et al., 2018), and DMPHN (Zhang et al.,

2019). Note that there are several models in DMPHN (Zhang

et al., 2019), we choose the DMPHN(1-2-4-8) which has almost

the same parameter numbers with ours for fair comparison. We

also list the results of Stack(4)-DMPHN, the largest model of

DMPHN, for comparison. There are also two versions of Sun et

al. (Sun et al., 2015) and we choose its ”single frame” version

which works on single image. Regarding the experimental re-

sults of these methods, whenever possible, we directly quote

the results reported in the literature. Otherwise, we use the pre-

trained models from the authors to generate the results. If only

code is available, we made the effort on adjusting the parame-

ters for optimal performance on test data. If none is available,

we leave it blank.

4.3.1. Results on GoPro dataset

The quantitative results on the GoPro dataset and are listed in

Table 1. It can be seen that the proposed approach outperforms

other compared methods in terms of both PSNR and SSIM, and

the PSNR improvement over the SRN (Xin et al., 2018) is about

1.1dB. Such noticeable performance improvement has demon-

strated the effectiveness of the proposed approach. We also list

the model size and running time of all compared methods in Ta-

ble 1. It can be seen that our proposed CNN performs the best

with a relative lighter model size and less running time.

We show some deblurring results in Fig. 6 for visual in-

spection. It can be seen that the deblurred images out-

put by our model have the best visual quality. Whyte et

al.’s method (Whyte et al., 2012) yields unsatisfactory results.

Sun et al. (Sun et al., 2015)’s methods does not work well on

most images. The results of Tao et al. (Xin et al., 2018) are bet-

ter than the previous two, but still with some artifacts as well

as blurry edges and unclear objects. Note that Tao et al. (Xin

et al., 2018) uses a multi-scale CNN similar to ours but without

the attention mechanisms. In comparison, benefiting the use

spatial/channel attention in both the encoder and decoder, our

results are of the highest visual quality with sharper edges and

clearer objects.

Table 1. Quantitative results on GoPro test set. The best results are bold-
faced and the second best results are underlined.

Model
PSNR

SSIM
Model Size Running

(dB) (MB) Time

Sun et al.(Sun et al., 2015) 24.64 0.8429 54.10 20min
Nah et al.(Nah et al., 2017) 29.23 0.9162 303.60 3.09s

Zhang et al.(Zhang et al., 2018) 29.19 0.9306 37.10 1.4s
SRN (Xin et al., 2018) 30.10 0.9323 33.60 1.87s

Liu et al.(Liu et al., 2018) 30.28 - 33.60 1.87s
Gao et al.(Gao et al., 2019) 30.92 0.9421 2.84 2.3s

DMPHN (Zhang et al., 2019) 30.25 0.9351 29.01 0.032s
DMPHN(4) (Zhang et al., 2019) 31.20 0.9453 86.8 0.57s

Ours 31.23 0.9455 26.34 0.28s

4.3.2. Results on Köhler dataset

Table 2 summarizes the quantitative results of different meth-

ods on the Köhler dataset. Recall that the tested models are

trained on the GoPro dataset. Thus, the test on the Köhler

dataset can evaluate whether a model can generalize well across

different datasets. It can be seen that our model again outper-

forms other compared ones by a considerable margin (around

0.9dB over the second best), which double confirms the effec-

https://github.com/zhuyeye/Attentive-Deblurring
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Fig. 1. Visual comparisons of different methods on some blurred images from the test datasets. From Top to bottom: Input, Whyte et
al. [?], Sun et al. [?], SRN [?] and ours.

Fig. 6. Visual comparisons of different methods on some blurred images from the test datasets. From top to bottom: Input, Whyte et al. (Whyte et al.,
2012), Sun et al. (Sun et al., 2015), SRN (Xin et al., 2018) , ours and groundtruth.



12

tiveness and generalizability of the proposed approach. The

better generalizability of our model comes from the use of the

attention mechanisms which make the model more adaptive to

the spatially-varying blur and image structures of a test image.

Table 2. Quantitative results on Köhler test set. The best results are bold-
faced and the second best results are underlined.

Model PSNR(dB) MS-SSIM

Kim et al.(Kim et al., 2013) 24.68 0.7937
Sun et al.(Sun et al., 2015) 25.22 0.7735
Nah et al.(Nah et al., 2017) 26.48 0.8079

SRN (Xin et al., 2018) 26.75 0.8370
DMPHN (Zhang et al., 2019) 24.66 0.7641

Ours 27.65 0.8596

4.3.3. Results on VideoDeblurring dataset

The results on the VideoDeblurring dataset are listed in Ta-

ble 3, where both individual results and the overall results are

given. Recall that there are two training setting on this dataset,

by which both the generalizability within the dataset and that

across different datasets can be evaluated. It can be seen from

Table 3 that in both settings, our model exhibit superior per-

formance to the compared methods. Furthermore, our model

performs consistently better across all the test images. Such

results have demonstrated both the effectiveness and stability

of the proposed approach. Note that our model works well on

videos even that it processes the video frame by frame with-

out utilizing the temporal cues. Thus, the results also suggest

the potential of the extension of the proposed approach to video

deblurring.

4.3.4. Results on real images

The blurring effects in the above test data are synthesized

based on specific cameras, which may still differ from the real

blurry images taken from conventional cameras. Therefore, we

also test on some real blurry images obtained from the Inter-

net without ground-truths. The model trained on the GOPRO

dataset is used. Please see Fig. 7 for the visual comparison on

some real degraded images. It can be seen that our model gen-

eralizes well on these real images. The deblurred images of our

method have the highest visual quality and contain fewer arti-

facts than other compared methods. For instance, our model can

recover sharp edges of the flowers (the 3rd row) well, while the

results of other approaches are more blurry with detail loss. It

can be seen that our method as well as others does not perform

well on the zoomed-in text region in the last row. The reason

is probably that the training set (i.e. GoPro dataset) is mainly

on outdoor scenes and contains little text content, which limits

the generalizability of the trained model in handling blurry text.

See more failure cases in Section 4.6.

4.4. More Analysis on Spatial Attention

In order to verify the different roles of SA layers in encoder

and decoder, we visualize the SA maps in different blocks in

Fig. 8. The first row of Fig. 8 shows the input images with com-

plex blur due to camera motion or object motion. The second

row gives the corresponding deblurring results of our method.

The 3rd to 5th rows are the spatial attention maps from encoder

part. It can be observed that in the encoder part, the SA maps

mainly focus on the edges of the input image (3st row and 4nd

row) and gradually turn to focus on some smooth areas at the

end of the encoder part (5rd row). Such observations indicate

that there exists high correlation between the estimated SA map

and the edges/smooth areas of input image in the encoder part.

Such a characteristic of SA helps the model for better feature

extraction in the encoder part. The 6th to 8th rows are the SA

maps from the decoder part. It can be seen that the SA maps

in decoder firstly focus more on the less-blurry areas such as

still buildings and peoples (6th row). At the deeper layers of

decoder, the SA tends to pay more attention on the dominant

motion blurred areas (7th row), e.g. the moving persons. Such

observations indicate the high relations between the estimated

SA maps and the dominant motion blurred regions. It can be

considered that the SA in decoder helps to guide the model to

distinguish blurry regions from non-blurred regions during the

recovery process in decoder.

4.5. Ablation Study

4.5.1. Ablation study on cross-scale weight sharing

We verified the effectiveness of sharing weights across dif-

ferent scales by examining the performance influence caused
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Fig. 1. Visual comparison of different methods on real blurred images, from left to right are the blurry input, results of Sun et al. [?],
results of SRN [?] and Ours.

Fig. 7. Visual comparison of different methods on real blurred images, from left to right are the blurry input, results of Sun et al. (Sun et al., 2015), results
of SRN (Xin et al., 2018) and Ours.
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Fig. 8. Visualization of spatial attention maps. Red color indicates higher values in attention maps while the blue color indicates lower values. The 1st and
2nd rows are the input images and the corresponding deblurring results of our method. The 3rd to 5th rows are the spatial attention maps from the 2nd , 5th

and 8th encoder block respectively. The 6th to 8th rows are the spatial attention maps from 2nd , 5th and 8th decoder block respectively.
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Table 3. PSNR results (dB) on the ten test videos of VideoDeblurring dataset. In the names of methods, no ’+’ indicates that the results are obtained by
the model trained on the GoPro dataset, and ’+’ indicates that the results are obtained by the model trained on the VideoDeblurring training set. The best
results are boldfaced and the second best results are underlined. Note that WFA is a learning-free method and thus the results of WFA and WFA+ are the
same.

.
Model #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

Input 24.14 30.52 28.38 27.31 22.60 29.31 27.74 23.86 30.59 26.98 27.14
WFA (Delbracio and Sapiro, 2015) 25.89 32.33 28.97 28.36 23.99 31.09 28.58 24.78 31.30 28.20 28.35

Su et al.(Su et al., 2017) 24.95 30.75 29.05 28.12 22.97 29.73 28.61 25.35 31.14 27.56 27.82
SRN (Xin et al., 2018) 28.37 32.42 30.03 30.78 25.24 31.10 29.22 25.82 33.21 28.57 29.48

DMPHN (Zhang et al., 2019) 25.91 30.71 28.95 28.84 23.28 30.13 28.32 24.70 32.42 27.76 28.10
Ours 28.80 32.92 30.90 31.06 25.47 31.55 29.61 26.23 33.58 29.39 29.95

WFA+ (Delbracio and Sapiro, 2015) 25.89 32.33 28.97 28.36 23.99 31.09 28.58 24.78 31.30 28.20 28.35
Su et al.+ (Su et al., 2017) 25.75 31.15 29.30 28.38 23.63 30.70 29.23 25.62 31.92 28.06 28.37
SRN+ (Xin et al., 2018) 29.07 33.39 30.86 31.07 25.33 32.11 29.86 26.71 34.14 29.76 30.23

DMPHN+ (Zhang et al., 2019) 29.89 33.35 31.82 31.32 26.35 32.49 30.51 27.11 34.77 30.02 30.76
Ours+ 30.47 34.16 32.21 32.05 26.43 32.71 30.53 27.42 35.28 30.63 31.19

by setting the parameter weights non-shared. The results of

using weight sharing and non-sharing weights are listed in Ta-

ble 4. It can be seen that sharing weights across different scales

leads to better performance. The reason is probably that sharing

weights across different scales can make each scale aim to solve

the same problem; otherwise, using different weights may intro-

duce instability and cause the extra problems of un-restrictive

solution space. Moreover, without weight sharing, the solution

may over-fit to a specific image resolution or motion scale (Xin

et al., 2018).

Table 4. Ablation study on weights sharing across different scales. Superior
results are boldfaced.

weights sharing PSNR (dB) SSIM

× 30.86 0.9413
√

31.23 0.9455

4.5.2. Ablation study on attention mechanisms

To verify the necessity of the attention mechanisms, we

formed different ablated versions of our model by removing

some of the attention modules:

• ’w/o all’: removing all attention modules;

• ’w/ CA’: removing all except the CA modules;

• ’w/ SA(E)’: only keeping SA module in encoder part;

• ’w/ SA(D)’: only keeping SA module in decoder part;

• ’w/ SA’: removing all except the SA modules.

• ’w/ (SA+CA)’: the proposed model with both CA and SA

modules.

The results in PSNR value of the ablated versions on the Go-

Pro dataset are listed in Table 5, where ’w/ (SA+CA)’ refers

to the proposed model with all attention modules. It can be

seen that spatial attention or channel attention alone brings no-

ticeable performance improvement, as both ’w/ SA’ and ’w/

CA’ has around 0.9dB advantage over ’w/o all’ in PSNR value.

While both spatial attention and channel attention can lead to

noticeable performance gain alone, their combination leads to

further improvement. However, the benefit of the combina-

tion of both attentions does not double the performance gain

of each individual attention. The further performance gain over

each individual attention, spatial attention or channel attention,

is around 0.22dB. One plausible cause of such a minor per-

formance improvement when combining both attention mech-

anism is that there exist redundancy between the SA and CA

modules in terms of their functions. As a result, the combi-

nation of both modules does not provide significantly further

improvement over individual module.

In addition, the ablation studies showed how the SA in en-

coder and that in decoder contribute to the performance im-

provement; see the results with respect to ’w /SA(E)’ and

’w /SA(D)’ in the table. It shows that separate treatment on
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different spatial locations and different channels is useful for

blind motion deblurring, and spatially-varying treatment plays

a more important role than channel-varying treatment in han-

dling spatially-varying blurring. See also Fig. 9 for the deblur-

ring results of ’w/o all’ and ’w/ (SA+CA), where the deblurred

result obtained by the method with both attention mechanism is

sharper than that result of ’w/o all’.

Table 5. Ablation study on attention mechanisms. Best results are bold-
faced.

Model CA SA (encoder) SA (decoder) PSNR (dB)

w/o all × × × 30.09
w/ CA

√
× × 30.95

w/ SA(E) ×
√

× 30.73
w/ SA(D) × ×

√
30.82

w/ SA ×
√ √

31.01
w/(SA+CA)

√ √ √
31.23

Input (28.28dB) Input (24.02dB)

w/o all (29.30dB) w/o all (28.00dB)

w/ (CA+SA) (31.16dB) w/ (CA+SA) (29.64dB)

Fig. 9. Comparison of visual results of our model w/ and w/o attention.

4.5.3. Ablation study on combination configurations of atten-

tion modules

We formed different combination configurations of attention

modules to verify the impact of different combination configu-

rations of attention modules:

• ’parallel-concat’: parallel concatenation combination of

SA and CA modules;

• ’parallel-addition’: parallel addition combination of SA

and CA modules;

• ’serial-cascade’: serial cascade combination of SA and CA

modules.

The PSNR results of different combination configurations on

the GoPro dataset are presented at Table 6. It can be seen that

the serial cascade combination of SA and CA modules performs

best.

Table 6. Ablation study on different combination configurations of atten-
tion modules. Best results are boldfaced.

Model PSNR (dB) SSIM

parallel-concat 31.14 0.9449
parallel-addition 31.11 0.9446

serial-cascade 31.23 0.9455

4.5.4. Ablation study on loss function

We verified the effectiveness of each component of the total

loss in training our CNN by (i) replacing the multi-scale MSE

loss with the finest-scale MSE loss (i.e. single-scale MSE); (ii)

removing the gradient loss from the total loss function. The

results are listed in Table 7. It can be seen that both multi-scale

MSE loss and gradient loss are useful in our CNN training.

Table 7. Ablation study on loss function. Best results are boldfaced.

MSE loss gradient loss PSNR (dB) SSIM

single-scale × 30.53 0.9386
single-scale

√
30.71 0.9409

multi-scale × 31.05 0.9432
multi-scale

√
31.23 0.9455

4.6. Study of the cases that challenge the proposed method

To have a more complete picture of the proposed method,

we select several representative unsatisfactory cases from test

datasets, and compare the results from our methods to that from

other methods. See Fig. 10 for a visual inspection. It can be

seen that, our method does not perform well on the image with

occlusion of similar objects shown in the first row, and the im-

age with dominant text content shown in the second row.

The unsatisfactory performance on handling occlusion is not

supervising as the linear model used for modeling non-uniform
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Input (Whyte et al., 2012) (Sun et al., 2015) SRN (Xin et al., 2018) Ours Ground-Truth

Fig. 10. Illustration of some unsatisfactory results from the proposed method and the comparison to other methods.

blurring does not take occlusions into consideration. Indeed,

how to effectively handle occlusions in blind motion deblur-

ring remains an open question. Regarding the ineffectiveness

on processing texts. One reason is that the training dataset do

not contain images with intensive text contents. As a result, the

model trained on such training dataset cannot effectively pro-

cess text. Indeed, the recovery of text images have their specifi-

cally designed deep learning solutions (e.g. Quan et al. (2020)),

which is trained over a dataset with text images.

We would like to point out that while our method did not

perform well on these images, other existing methods do not

perform well either. Indeed, in comparison, our method still

output comparably with or relatively better results than other

compared ones. The images presented in Fig. 10 raise great

challenges to existing blind non-uniform deblurring methods,

and we will investigate how to handle these cases in our future

study on blind non-uniform deblurring.

5. Summary

In this paper, we tackle the challenging single-image blind

deblurring problem based using a multi-scale residual CNN

with spatial attention and channel attention. One big challenge

is the large variations from the spatially-varying blurring effects

across image regions and over different images, which makes

a deep NN hard to generalize well. This paper demonstrated

that introducing the spatial and channel attention mechanisms

can improve the generalizability and performance a deep neural

network in blind image deblurring. Our model exhibited state-

of-the-art performance with relatively-small model size. While

our method is applied to deblurring dynamic scenes, it can be

also applied to other non-uniform blur setting, e.g. out-of-focus,

which is one of our future work.

We also showed that the different roles played by the spatial

attention in the encoder part and that in the decoder part. The

former is for discriminative exploitation of image edges and

smooth regions, while the latter is for discriminative treatment

on different regions with different blurring effects. We believe

such results can benefit the better understanding on the attention

mechanism for blind image deblurring and motivate the studies

on new attention mechanisms for removing spatially-varying

blur. One possible improvement on the attention mechanism

comes from that the overall attention in our model is formed

by the tensor product of spatial attention and channel attention,

which assumes independence between them. In the future, we

would like to investigate new mechanisms that consider region-

varying channel attention.
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Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S., 2012.

Recording and playback of camera shake: Benchmarking blind deconvo-

lution with a real-world database, in: Proc. European Conf. Comput. Vision,

Springer. pp. 27–40.

Kruse, J., Rother, C., Schmidt, U., 2017. Learning to push the limits of efficient

fft-based image deconvolution, in: Proc. IEEE Int. Conf. Comput. Vision,

IEEE. pp. 4586–4594.

Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J., 2018. De-

blurgan: Blind motion deblurring using conditional adversarial networks,

in: Proc. IEEE Conf. Comput. Vision Pattern Recognition, pp. 8183–8192.

Levin, A., 2007. Blind motion deblurring using image statistics, in: Proc. Ad-

vances Neural Info. Process. Syst., pp. 841–848.

Levin, A., Weiss, Y., Durand, F., Freeman, W.T., 2009. Understanding and

evaluating blind deconvolution algorithms, in: Proc. IEEE Conf. Comput.

Vision Pattern Recognition, IEEE. pp. 1964–1971.

Liu, J., Sun, W., Li, M., 2018. Recurrent conditional generative adversarial

network for image deblurring. IEEE Access 7, 6186–6193.

Nah, S., Hyun Kim, T., Mu Lee, K., 2017. Deep multi-scale convolutional

neural network for dynamic scene deblurring, in: Proc. IEEE Conf. Comput.

Vision Pattern Recognition, pp. 3883–3891.

Nimisha, T.M., Kumar Singh, A., Rajagopalan, A.N., 2017. Blur-invariant deep

learning for blind-deblurring, in: Proc. IEEE Int. Conf. Comput. Vision, pp.

4752–4760.

Pan, J., Hu, Z., Su, Z., Lee, H.Y., Yang, M.H., 2016. Soft-segmentation guided

object motion deblurring, in: Proc. IEEE Conf. Comput. Vision Pattern

Recognition, pp. 459–468.

Perrone, D., Favaro, P., 2014. Total variation blind deconvolution: The devil is

in the details, in: Proc. IEEE Conf. Comput. Vision Pattern Recognition, pp.

2909–2916.

Purohit, K., Rajagopalan, A., 2019. Efficient motion deblurring with feature

transformation and spatial attention, IEEE. pp. 4674–4678.

Quan, Y., Ji, H., Shen, Z., 2014. Data-driven multi-scale non-local wavelet

frame construction and image recovery. Journal of Scientific Computing 63.

doi:10.1007/s10915-014-9893-2.

Quan, Y., Yang, J., Chen, Y., Xu, Y., Ji, H., 2020. Collaborative deep learning

for super-resolving blurry text images. IEEE Trans. Comput. Imaging PP,

1–1. doi:10.1109/TCI.2020.2981758.

Ren, W., Cao, X., Pan, J., Guo, X., Zuo, W., Yang, M.H., 2016. Image deblur-

ring via enhanced low-rank prior. IEEE Trans. Image Process. 25, 3426–

3437.

Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B., 2015. Learning to

deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1439–1451.

Seibold, C., Hilsmann, A., Eisert, P., 2017. Model-based motion blur estima-

tion for the improvement of motion tracking. Computer Vision and Image

Understanding 160, 45–56.

Shan, Q., Jia, J., Agarwala, A., 2008. High-quality motion deblurring from a

single image. ACM Trans. Graphics 27, 73.

Sharma, M., Verma, A., Vig, L., 2018. Learning to clean: A gan perspective,

in: Asian Conf. Comput. Vision, Springer. pp. 174–185.

Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., Shao, L., 2019. Human-

aware motion deblurring, pp. 5572–5581.

Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O., 2017.

http://dx.doi.org/10.1007/s11263-015-0817-x
http://dx.doi.org/10.1007/s11263-015-0817-x
http://dx.doi.org/10.1007/s10915-014-9893-2
http://dx.doi.org/10.1109/TCI.2020.2981758


19

Deep video deblurring for hand-held cameras, in: Proc. IEEE Conf. Comput.

Vision Pattern Recognition, pp. 1279–1288.

Sun, J., Cao, W., Xu, Z., Ponce, J., 2015. Learning a convolutional neural net-

work for non-uniform motion blur removal, in: Proc. IEEE Conf. Comput.

Vision Pattern Recognition, pp. 769–777.

Sun, L., Cho, S., Wang, J., Hays, J., 2013. Edge-based blur kernel estimation

using patch priors, in: Proc. IEEE Int. Conf. Comput. Photography, IEEE.

pp. 1–8.

Tai, Y.W., Tan, P., Brown, M.S., 2010. Richardson-lucy deblurring for scenes

under a projective motion path. IEEE Transactions on Pattern Analysis and

Machine Intelligence 33, 1603–1618.

Wang, H., Pan, J., Su, Z., Liang, S., 2018. Blind image deblurring using elastic-

net based rank prior. Computer Vision and Image Understanding 168, 157–

171.

Whyte, O., Sivic, J., Zisserman, A., Ponce, J., 2012. Non-uniform deblurring

for shaken images. Int. J. Comput. Vision 98, 168–186.

Wu, J., Yu, X., Liu, D., Chandraker, M., Wang, Z., 2020. David: Dual-

attentional video deblurring, pp. 2376–2385.

Xin, T., Gao, H., Yi, W., Shen, X., Wang, J., Jia, J., 2018. Scale-recurrent net-

work for deep image deblurring. Proc. IEEE Conf. Comput. Vision Pattern

Recognition .

Xu, L., Jia, J., 2010. Two-phase kernel estimation for robust motion deblurring,

in: Proc. European Conf. Comput. Vision, Springer. pp. 157–170.

Xu, L., Zheng, S., Jia, J., 2013. Unnatural l0 sparse representation for natural

image deblurring, in: Proc. IEEE Conf. Comput. Vision Pattern Recogni-

tion, pp. 1107–1114.

Yang, L., Ji, H., 2019. A variational em framework with adaptive edge selection

for blind motion deblurring, in: Proc. IEEE Conf. Comput. Vision Pattern

Recognition, pp. 10167–10176.

Zhang, H., Dai, Y., Li, H., Koniusz, P., 2019. Deep stacked hierarchical multi-

patch network for image deblurring, in: Proc. IEEE Conf. Comput. Vision

Pattern Recognition, pp. 5978–5986.

Zhang, J., Pan, J., Ren, J., Song, Y., Bao, L., Lau, R.W., Yang, M.H., 2018.

Dynamic scene deblurring using spatially variant recurrent neural networks,

in: Proc. IEEE Conf. Comput. Vision Pattern Recognition, pp. 2521–2529.

Zhang, K., Zuo, W., Gu, S., Zhang, L., 2017. Learning deep cnn denoiser

prior for image restoration, in: Proc. IEEE Conf. Comput. Vision Pattern

Recognition, pp. 3929–3938.


