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Abstract

While complex-valued transforms have been widely used in image processing and have

their deep connections to biological vision systems, complex-valued convolutional neu-

ral networks (CNNs) have not seen their applications in image recovery. This paper

aims at investigating the potentials of complex-valued CNNs for image denoising. A

CNN is developed for image denoising with its key mathematical operations defined in

the complex number field to exploit the merits of complex-valued operations, includ-

ing the compactness of convolution given by the tensor product of 1D complex-valued

filters, the nonlinear activation on phase, and the noise robustness of residual blocks.

The experimental results show that, the proposed complex-valued denoising CNN per-

forms competitively against existing state-of-the-art real-valued denoising CNNs, with

better robustness to possible inconsistencies of noise models between training samples

and test images. The results also suggest that complex-valued CNNs provide another

promising deep-learning-based approach to image denoising and other image recovery

tasks.

Keywords: Complex-Valued Operations; Convolutional Neural Network; Image

Denoising; Deep Learning

1. Introduction

Image denoising refers to the task of removing the measurement noise from an in-

put image. It is not only of practical importance with the prevalence of photography
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using mobile devices, but also serves as a key component in most image recovery tasks;

see e.g. [1, 2]. Inspired by the great success of deep leaning in many computer vision5

applications, in recent years, there have been extensive studies on deep-learning-based

image denoising methods. Most of these methods are built upon convolutional neural

networks (CNNs). Such CNN-based approaches showed promising performance, pro-

vided that the training samples fit well the characteristics of test data, in terms of both

image content and noise characteristics.10

1.1. Motivations

All the existing CNN-based methods for image denoising are built upon real-valued

CNNs. In recent years, complex-valued neural networks (NNs) have started to receive

increasing attention. Many works suggest that using complex numbers in NNs could

enhance the representational capacity [3] and lead to other advantages, e.g. easier op-15

timization [4], better generalization performance [5], and noise-robust memory mech-

anisms [6]. In many recognition tasks, the performance of complex-valued NNs has

been very competitive against that of their real-valued counterparts. However, to the

best of our knowledge, complex-valued NNs have not been investigated for their po-

tential applications in image processing, which contradicts the wide adoption of many20

well-known complex-valued transforms in image processing. To list some, discrete

Fourier transform, Gabor transform, and dual-tree complex wavelet transform.

Indeed, complex-valued transforms have deep connections to biological vision and

visual perception. It is known that the primate’s area V1 (visual cortex) is dominated by

complex cells (see e.g.[7]), i.e., the cells whose responses are characterized by the se-

lectivity to orientation and frequency. Most cells of area V4 were also found to be more

similar to V1’s complex cells rather than simple cells (see e.g.[8]). The receptive fields

and responses of complex cells are usually modeled by Gabor wavelets [9]. Further-

more, the so-called phase introduced by the complex-valued representation dominates

the perception of visual scenes [10]. Recall that a signal f under a complex-valued

transform, denoted by F(f), can be interpreted in terms to two quantities: magnitude

|F(f)| and phase φ(f):

F(f) = |F(f)|eiφ(f). (1)
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It is also known in computer vision, the phase of an image provides sufficient informa-

tion of objects on shapes, edges and orientations. It is sufficient to recover most infor-

mation of an image only using the phase of the Fourier transform of this image [11].25

The benefits of complex-valued transforms motivated us to investigate the potentials of

complex-valued NNs for image recovery, and this paper focuses on one core problem:

image denoising.

1.2. Merits of complex-valued representation

The main mathematical operations to build a CNN for image recovery include con-30

volution, activation and residual learning. In the next, we discuss some merits of the

complex-valued versions of these operations for image denoising.

Convolution. A 2D complex-valued filter has its special structure which is different

from its real-valued counterpart. The filters with orientation selectivity are usually pre-

ferred in image processing, as local image edges are oriented in different directions.

These filters are usually non-separable such that they cannot be expressed as the tensor

product of two 1D real-valued filters, except the ones with the horizontal/vertical ori-

entation. In contrast, the tensor product of two 1D complex-valued filters, denoted by

a1 + ib1 and a2 + ib2, is not separable regarding its real part and imaginary part:

(a1 + ib1)(a2 + b2i)
> = (a1a

>
2 − b1b>2 ) + i · (a1b

>
2 + b1a

>
2 ). (2)

In other words, complex numbers allow using the tensor product of two 1D complex-

valued filters to simulate 2D non-separable filters with different orientations. See Fig-

ure 1 for an illustration using 1D Gabor filters. Such a property leads to a more compact35

form of 2D non-separable filters with fewer freedoms. More specifically, the tensor

product of two 1D complex-valued filters defined in CL, will lead to two 2D real-

valued filters defined in RL×L: one is from the real part, and the other is from the

imaginary part. Thus, complex numbers enable using 4L freedoms to generate two

2D non-separable filters defined in RL×L, which needs 2L2 freedoms when using real40

numbers. As a result, complex numbers allow a more compact representation for the

operation of 2D convolution, which helps avoiding overfitting. This could be important

when designing CNNs for image denoising. In image denoising, the training samples
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include both truth images and their noisy versions. Although the set of truth images

can be sufficient for training, their noisy counterparts could be insufficient, especially45

when the distribution of noise is complex or is spatially-varying. The amount of noisy

data could be overwhelming in order to train a CNN with good generalizability.

(a) Real part (b) Imaginary part

Figure 1: Complex-valued 2D filters generated by the tensor products of all pairs of seven 1D Gabor filters

in C7.

Activation function. There are many candidates of activation functions for complex-

valued NNs. One is the generalization of the widely-used Rectified Linear Unit (ReLU)

function from the real domain to the complex domain, which is defined as CReLU [12]:

CReLU(z) = ReLU(<(z)) + i · ReLU(=(z)), (3)

where <(·) and =(·) denote the real part and imaginary part respectively. Recall that

one key quantity introduced by the complex-valued representation is the phase, which

the real-valued representation lacks. Consider a complex number in Figure 2. The50

CReLU not only has the same activation mechanism as the real-valued ReLU in terms

of magnitude, but also has a quite complicated non-linear activation on the phase of the

input. The concatenation of such non-linear operations on phase enables the definition

of very sophisticated mappings in the phase domain. In other words, complex-valued

NN allows defining the mapping between noisy images and noise-free images in both55

the amplitude domain and the phase domain.

Residual learning. The complex-valued representation is also related to the residual

learning of NNs. It is shown in [6] that using complex numbers in the memory units

could facilitate noise-robust retrieval mechanisms on the associative memory. In fact,
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Phase → 0

Real

Imaginary

Amplitude → 𝕴

Phase → 0

Phase kept

Amplitude kept

Amplitude → 𝕽Amplitude → 0

Real

Imaginary

ℂReLU 𝒛 = 𝟎 ℂReLU 𝒛 = 𝕽 𝒛

ℂReLU 𝒛 = 𝕴 𝒛 ℂReLU 𝒛 = 𝒛

Figure 2: Activation on the amplitude and the phase of the input using CReLU.

the widely-used residual block [13] shares a similar architecture with the memory unit,60

in the sense that in each block the residual is computed and inserted into the “memory”

provided by the identity connection [6]. Such a similarity implies the possible bet-

ter robustness of the complex-valued residual block over its real-valued counterpart. It

also implies the potential of complex-valued representation in residual learning for bet-

ter robustness to noise model inconsistencies, i.e., the noise characteristics of training65

samples are different from that of test images.

1.3. Contributions and significance

The contributions of our paper are three-fold:

• First work that studies complex-valued CNN for image denoising. In the past

years, real-valued CNNs are the prominent choices of designing deep-learning-70

based methods for image recovery. In contrast, complex-valued representations

and transforms are also widely used in image processing, including Gabor trans-

form and dual-tree complex wavelet transform. The research in biological vision

also showed the connections between complex-valued transforms and low-level

processing in visual perception. This paper is the first one that investigates the75

potential of complex-valued CNN for low-level vision tasks, such as image de-

noising. Our study showed that the complex-valued CNN has its merits for image

denoising.

• New design of complex-valued essential mathematical operations involved

in a denoising CNN. It is known that the success of NNs to solve a problem lies80
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in both the careful design of NN architecture and the appropriate choice of essen-

tial operations. In this paper, we developed a complex-valued CNN for image

denoising, as well as defined several basic operations in the complex number

field to exploit possible advantages over their counterparts in the real number

field. Namely, (i) a compact representation of 2D filters via the tensor product of85

1D complex-valued filters, which is helpful to avoid overfitting; (ii) non-linear

activation on phase, which helps improving denoising performance; and (iii)

residual blocks with better robustness to the noise model inconsistencies that

often occur in practice.

• A practical denoising CNN with state-of-the-art performance and good ro-90

bustness to noise model inconsistencies. The experimental results on standard

datasets show that our complex-valued CNN offers an alternative approach to de-

signing effective denoising CNNs. The proposed complex-valued CNN showed

competitive performance to the state-of-the-art real-valued denoising CNNs in

the setting where the noise model of training samples exactly fits that of test im-95

ages. Moreover, it has its advantages over other methods on the robustness to

noise model inconsistencies, including the case where the noise levels of test im-

ages are unknown, where the standard deviation of noise varies among different

pixels, and where the noise is a mixture of different types of noise.

1.4. Organization of The Work100

The remaining part of the paper is organized as follows. In section 2, we give a

literature review on related image denoising methods and existing complex-valued NNs

designed for different applications. The proposed complex-valued denoising CNN is

presented in Section 3 with all details. In Section 4, the experiments are conducted

for the evaluation of the proposed method and the comparison to other closely-related105

methods. Section 5 concludes the paper.

2. Related Work
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2.1. Image denoising

There is abundant literature on image denoising. This section focuses more on the

discussion on the deep-learning-based approaches. The very early approaches modeled110

image denoising as either a filtering problem or a diffusion process; see [14] for a

comprehensive survey. In the last two decades, sparsity-based regularizations have

become one preferred choice for image denoising, which regularize a noise-free image

by exploiting the sparsity prior of image under certain transforms, such as complex-

valued ridgelet transform [15], wavelet [16] and adaptive dictionaries [17, 18, 19].115

Another prominent approach is non-local methods (e.g. [20, 21, 22, 23]), which are

based on the patch recurrence prior of natural images. The BM3D method [20] is

arguably the most popular one which applies collaborative filtering to similar patches.

The WNNM [24] and TWSC [25] are another two popular non-local methods that

exploit the low rank structures of similar patches for denoising.120

Instead of using the sparsity prior or the patch recurrence prior, some approaches

learn image priors from visual data. Portilla et al. [26] proposed to learn a Gaussian

scale mixture model on the wavelet coefficients of natural images. Roth et al. [27]

proposed to learn a high-order Markov random field for modeling natural images. The

classic EPLL approach [28] learns a Gaussian mixture model of image patches. Xu et125

al. [29] proposed to learn the distribution prior on similar patch groups. Instead of

learning image priors, an alternative approach is to directly learn the denoising pro-

cess. Schmidt et al. [30] unfolded the variational model of image denoising into a

process with learnable parameters of filters and of shrinkage. Chen et al. [31] turned

the diffusion process to a trainable one. Such approaches indeed can be viewed as130

training an NN for denoising.

Recently, many NN-based image denoisers have been proposed [1]. Jain et al. [32]

trained a shallow CNN for denoising. Burger et al. [33] trained a multi-layer per-

ceptron to denoise image patches. Agostinelli [34] trained a denoising auto-encoder

for removing different types of noises. Vemulapalli et al. [35] unfolded the Gaussian135

conditional random field to a deep NN with automatic estimation of noise variance.

Zhang et al. [36] proposed a deep CNN called DnCNN, with residual learning for

blind denoising. The DnCNN is trained to map noisy images to the noise, which helps
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the robustness of the NN to different noise levels. Nowadays, the DnCNN has become

the benchmark method for evaluating CNN-based denoisers. Zhang et al. [37] further140

extended their work to deal with spatially-varying noise, which is done by combining a

tunable noise level map into the input of the CNN. To obtain more training images for

blind denoising, Chen et al. [38] trained a generative adversarial network (GAN) that

estimates the noise distribution over the input noisy images and generates noisy image

samples as additional training data. Lefkimmiatis et al. [39] inserted non-local filtering145

layers into the CNN to exploit the inherent patch recurrence of natural images. All the

above CNNs are real-valued CNNs.

2.2. Complex-valued convolutional networks

The early works on complex-valued NNs mainly focus on addressing the basics

of learning; see [40, 5, 3] for more details. In recent years, there have been extensive150

studies on complex-valued CNNs. Oyallon and Mallat [41] constructed a learning-

free CNN with well-designed complex-valued wavelet filters. The resulting complex-

valued CNN has its mathematical treatment, but with limited adaptivity as it is not

learnable. Then, some mathematical understandings were presented in [42] for a train-

able complex-valued CNN. The practical techniques for building trainable complex-155

valued CNNs were comprehensively studied and discussed in [3, 12]. For gaining

certain invariance, several complex-valued CNNs were developed. Chintala et al. [43]

proposed a complex-valued CNN with scale invariance. A similar architecture was

proposed in [44]. Worrall et al. [45] replaced regular CNN filters with circular har-

monics for the invariance to complicated rotations. We note that the applications of160

above complex-valued CNNs all focus on recognition tasks.

3. Proposed Method

3.1. Framework

The complex-valued CNN proposed in this paper is called CDNet (Complex-valued

Denoising Network). The CDNet maps a noisy image Y to a noise-free imageX:

CDNet : Y ∈ RM1×M2 →X ∈ RM1×M2 . (4)
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Figure 3: Diagram of framework of CDNet. Abbreviations: Conv for Convolution, ↓ 2 for downsampling

by stride 2, BN for Batch Normalization, RB for Residual Block, and ReLU for Rectified Linear Unit.

See Figure 3 for the outline of CDNet. Briefly, the input image is passed to 24

sequentially-connected convolutional units. Each convolutional unit except the first165

one contains a complex-valued convolutional layer which is sequentially followed by

the complex-valued batch normalization and the complex-valued ReLU. All the con-

volutional layers use 64 convolutional kernels. The middle 18 convolutional units

are implemented as 9 residual blocks [13] equipped with complex-valued represen-

tations for better performance and faster convergence [13]. To enlarge the receptive170

field for further improvement and better computational efficiency, we adopt a convo-

lutional/deconvolutional layer with stride 2 in the convolutional units before the first

residual block and after the last residual block for the function of down-scaling/upscaling

the feature maps. Finally, a merging layer is employed to transform the complex-valued

features from the previous convolutional unit to a real-valued image. We also use the175

skip connection to connect the input of the first residual block with the output of the last

residual block for preserving image details. It can be seen that there are mainly five

basic blocks in CDNet: (i) complex-valued convolutional layer; (ii) complex-valued

ReLU; (iii) complex-valued batch normalization; (iv) complex-valued residual block;

and (v) merging layer.180

3.2. Complex-valued convolutional layer

The complex-valued convolutional layer is constructed by simply replacing the

real-valued kernel by the complex-valued kernel in the convolution process. The layer

takes a complex-valued feature cube A as input and outputs another complex-valued

9



feature cube Ã:

Conv : A ∈ CN1×N2×D1 → Ã ∈ CN
′
1×N

′
2×D2 . (5)

More specifically, the layer is composed ofD2 convolution operations with the complex-

valued filters {Ki ∈ CL×L×D1}D2
i=1, which extends through the full depth ofA (i.e.D1).

During the forward pass, each kernel Ki is convolved across the width and height of

A as follows:

(A ∗Ki)(x, y) =
∑

x0,y0,z0

A(x− x0, y − y0, z0)Ki(x0, y0, z0), (6)

which produces a 2-dimensional feature map regardingKi. Stacking the feature maps

for all filters along the depth dimension forms the full output. In practice, we set L = 3

for all the convolutional layers.

In all residual blocks, the 2D convolution is implemented by two consecutive 1D

convolutions. Concretely, we use the following scheme:

A ∗Ki → A ∗ k1i ∗ k2i , (7)

where k1i ∈ CL×1×D,k2i ∈ C1×L×D. Such a factorization represents the 2D convolu-185

tion in a more compact way, i.e., the number of parameters of each convolutional layer

is reduced from DL2 to 2DL, where D is number of channels.

Many existing CNN toolboxes do not support complex-valued convolutions. We

implement the complex-valued convolution using the real-valued convolutions avail-

able in existing toolboxes. The complex-valued convolution can be expressed as

A ∗K = (<(A) ∗ <(K)−=(A) ∗ =(K))

+ (<(A) ∗ =(K) + =(A) ∗ <(K))i. (8)

It can be seen from (8), the complex-valued convolution can be implemented by four

real-valued convolutions. Thus, each convolutional layer is the mapping of <(·) ∈ RN1×N2×D

=(·) ∈ RN1×N2×D

→
 <(·) ∈ RN1×N2×D

=(·) ∈ RN1×N2×D

 , (9)
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which allows using existing real-number-based toolboxes. It is noted that such an im-

plementation is similar to a double-width CNN. The main difference is that the convo-

lution in complex number field introduces additional interactions between the real part190

and the imaginary part of a complex-valued feature. Such interactions can be imple-

mented in a real-valued NN with additional connections, but no real-valued NNs will

do such a connection without the motivations from complex-valued convolutions.

The back-propagation about the complex-valued convolution kernels is similar to

that of their real-valued counterparts, except that the related operations are defined on

complex numbers. More specifically, letK,A denote a complex-valued kernel and an

input complex-valued feature map respectively. Let B = A ∗K and f(B) is a scalar

function on B. This sufficiently covers the calculation of the gradients encountered in

the training of complex-valued CNNs. By the chain rule in complex analysis, we have

∂f(B)

∂K
=
∂f(B)

∂B

∂B

∂K
=
∂f(B)

∂B
∗A. (10)

Note that ∂f(B)
∂B and A are both complex-valued, and thus ∂f(B)

∂K is also complex-

valued with the form: ∂f(B)
∂K = <(∂f(B)

∂K ) + i · =(∂f(B)
∂K ). Based on (8) we have

<(
∂f(B)

∂K
) = <(

∂f(B)

∂B
) ∗ <(A)−=(

∂f(B)

∂B
) ∗ =(A), (11)

=(
∂f(B)

∂K
) = <(

∂f(B)

∂B
) ∗ =(A) + =(

∂f(B)

∂B
) ∗ <(A). (12)

3.3. CReLU for complex numbers

The ReLU is arguably the prominent choice for the activation functions in CNNs

for image recovery, which is also used in CDNet. Same as the real-valued one, the

complex-valued ReLU (CReLU) activation is an element-wise mapping denoted by

CReLU : CN1×N2×D → CN1×N2×D, (13)

CReLU(A)(k) = CReLU(A(k)). (14)

There are many choices for these CReLUs. In this paper, we propose to use the

CReLU [12] as the CReLU that enables sophisticated non-linear operations on the

phase, which is defined by

CReLU(z) = ReLU(<(z)) + i · ReLU(=(z)), (15)
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for a complex-valued vector z. The CReLU applies the ReLU activation on the real

part and imaginary part of the input respectively. It can be seen from Figure 2 that the

CReLU allows four different patterns in the ring of phase. In addition to CReLU, there

are also other options for CReLUs. One is the Modular ReLU (MoeReLU) [3] defined

by

ModReLU(z) =

(|z|+ b) z
|z| , if |z|+ b ≥ 0;

0, if |z|+ b < 0,

(16)

where b ∈ R is a trainable bias parameter. The ModReLU can maintain the phase after

the activation. It is implemented by feeding the magnitude to the real-valued ReLU,

followed by the modulation with the original phase. Another choice is the zReLU [3]

defined by

zReLU(z) =

z, if φ(z) ∈ [0, π2 ];

0, otherwise,

(17)

where φ(·) denotes the phase. The zReLU is activated when both the real part and the

imaginary part are positive. It is implemented by

zReLU(z) =
ReLU(<(z) · =(z))

=(z)
+ i

ReLU(<(z) · =(z))

<(z)
. (18)

It will be shown in the experiments that, with a simple yet effective nonlinear operation195

on phase, CReLU yields better results than ModReLU and zReLU.

3.4. Complex-valued batch normalization

Batch normalization is a commonly-used module for better generalization perfor-

mance as well as better convergence of training, which is denoted by

BN : CN1×N2×D → CN1×N2×D. (19)

We adapt batch normalization to the complex number field by separately running batch

normalization on the real and imaginary parts of complex numbers respectively:

BN(z) = ReBN(<(z)) + i · ReBN(=(z)) (20)

where ReBN(·) is the standard batch normalization with real-valued input.

12



C
o

m
p

le
x 

 C
o

n
v

C
o

m
p

le
x 

 B
N

C
o

m
p

le
x 

 R
eL

U

C
o

m
p

le
x 

 C
o

n
v

C
o

m
p

le
x 

 B
N

C
o

m
p

le
x 

 R
eL

U

.

Figure 4: Diagram of complex-valued residual block. Abbreviations: Conv for Convolution, RB for Residual

Block, and ReLU for Rectified Linear Unit.

3.5. Complex-valued residual block

Residual blocks [13] not only deal with the vanishing gradients in the back propa-200

gation during training, but also benefit the preservation of image details in denoising by

passing the previous features to the subsequent layers. The generalization of residual

blocks to the complex number field is straightforward. See Figure 4 for an illustration

of the structure of the complex-valued residual block. It is noted that the residual block

shares similarity with the memory unit, by regarding that the residual is computed and205

inserted into the ”memory” provided by the identity connection [6]. It is shown in [6]

that introducing complex numbers into the memory units could facilitate noise-robust

retrieval mechanisms on the associative memory. Therefore, the extension of the resid-

ual block to complex number field is beneficial to the robustness of the CNN to noise

model inconsistencies.210

3.6. Merging layer

The merging layer transforms the complex-valued feature maps into the output real-

valued image:

Merging : CM1×M2×D → RM1×M2 . (21)

Given a feature cube A ∈ CM1×M2×D as input, we first apply a convolution with a

L×L×D kernel to mapA to a feature mapB ∈ CM1×M2 . The conversion ofB into

a real-valued imageX ∈ RM1×M2 is done as follows:

X =
√
<(B)2 + =(B)2. (22)

In other words, the conversion is done by only taking the amplitude of a complex-

valued signal.

13



3.7. Training

Given the training data {(Yk, X̄k)}Kk=1 where Yk, X̄k represent the kth noisy im-

age (patch) and its truth respectively. Let θ denote the parameter vector encoding all

parameters of the CDNet. The loss function for training is simply defined by the mean

square error as follows:

`(θ) :=
1

K

K∑
k=1

‖CDNet(Yk;θ)− X̄k‖22. (23)

The weights are initialized using Xavier, and the training loss is optimized by Adam.215

4. Experiments

We applied the CDNet to image denoising under different settings, including non-

blind removal of additive white Gaussian noise (AWGN), blind AWGN removal, and

removal of spatially-varying noises. The quantitative results reported in the following

are the average values over multiple runs. The CDNet is implemented using Tensor-220

Flow with CUDA acceleration. The experiments were carried out on a workstation with

a 3.2GHz Intel Core i7-8700 CPU, 32G RAM and an NVIDIA Gefore RTX 2080Ti

GPU. Throughout the experiments, all convolutional layers are with kernel sizes of

3× 3 and zero padding of length 2. The number of channels is set to 64 for all convo-

lutional layers except that it is the same as the number of channels of the input image225

for the last convolutional layer. As described in Section 3, there are totally 24 convo-

lutional layers in CDNet. It is worth mentioning that the depth and width parameters

were simply adjusted by trying some common values used in the existing methods

such that the resulting model has similar size with the standard benchmark methods,

e.g. DnCNN. We did not fine-tune the depth and width, as this is a very time-consuming230

task.

4.1. Non-blind removal of AWGN

4.1.1. Test methodology

In this setting, we aim at denoising the images degraded by the AWGN of known

noise levels. Since the noise levels are known, the denoisers are separately trained and235
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tested on different noise levels. Regarding the training of CDNet, we follow [31, 36,

31] for fair comparison, which uses 400 BSD images [36] of size 180 × 180. Same

as [36], the images are cut into patches of size 40 × 40 for data augmentation, and

then 226800 of them are sampled and degraded by the AWGN for training. Both low

and high noise levels are used for training, including σ = 15, 25, 35, 50, 60, 70, 75, 80.240

For each noise level, the CDNet model is trained with 70 epochs and with the learning

rate decaying from 1 × 10−2 to 1 × 10−3. The training time takes around 9 hours on

each noise level. For test, we select two widely-used benchmark datasets including

Set12 [36] and BSD68 [27]. There is no overlap between the set of test images and

the set of training images, and the content of test images has sufficient variations and245

is different from that of training images. All the images used in the experiments are

gray-scale. With each of the above noise levels, we use the corresponding AWGN to

corrupt the test images, and then the CDNet trained on that level is used to denoise the

noisy images. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)

on the denoised images are used for quantifying the performance.250

4.1.2. Results and comparison

We compare our CDNet with both the classic methods and the state-of-the-art

ones, including BM3D [20], WNNM [24], EPLL [28], TNRD [31], DnCNN [36], IR-

CNN [2], SF-20L [46], UNLNet [39], TWSC [25] and FFDNet [37]. These methods

cover different types of image denoisers. Among them, BM3D, WNNM, EPLL and255

TWSC are four representative traditional methods, while others are the recent deep-

learning-based methods. The reported results of the compared methods, whenever

possible, are quoted from the published works. Or otherwise they are produced by the

codes published by the original authors. The test and training (if possible) of these

compared methods are done in the same manner as ours, which makes the comparison260

fair.

Table 1 and Table 2 show the PSNR values of all the compared methods with dif-

ferent noise levels on the Set12 and BSD68 datasets respectively. The corresponding

SSIM values are given in Table 3 and Table 4. It can be seen that our CDNet performs

better than other compared methods on both light AWGN and heavy AWGN. We show265
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some denoising results in Figure 5 and Figure 6 for visual comparison.

Table 1: Average PSNR(dB) of denoised images by different methods on Set12 in non-blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D 32.37 29.97 28.40 26.72 25.95 25.25 24.93 24.63

WNNM 32.69 30.25 28.69 27.05 26.20 25.50 25.19 24.91

EPLL 32.14 29.69 28.11 26.47 25.60 24.89 24.59 24.30

TNRD 32.50 30.05 n/a 26.81 n/a n/a n/a n/a

IRCNN 32.77 30.38 28.80 27.14 n/a n/a n/a n/a

DnCNN 32.85 30.43 28.82 27.17 26.27 25.67 25.33 25.01

TWSC 32.60 30.18 28.63 26.96 26.08 25.34 25.00 24.67

FFDNet 32.75 30.43 28.92 27.32 26.54 25.83 25.49 25.22

CDNet 32.87 30.53 28.99 27.38 26.58 25.89 25.58 25.30

Table 2: Average PSNR(dB) of denoised images by different methods on BSD68 in non-blind AWGN re-

moval.

σ 15 25 35 50 60 70 75 80

BM3D 31.07 28.57 27.08 25.62 25.07 24.52 24.28 24.05

WNNM 31.37 28.83 27.30 25.87 25.16 24.63 24.38 24.15

EPLL 31.21 28.68 27.21 25.67 25.01 24.43 24.18 23.95

TNRD 31.42 28.92 n/a 25.97 n/a n/a n/a n/a

IRCNN 31.63 29.15 27.66 26.19 n/a n/a n/a n/a

DnCNN 31.73 29.23 27.69 26.23 25.41 24.87 24.70 24.44

TWSC 31.28 28.76 27.25 25.77 25.04 24.44 24.17 23.93

SF-20L 31.29 28.82 n/a 26.02 n/a n/a 24.43 n/a

FFDNet 31.63 29.19 27.73 26.29 25.62 25.05 24.79 24.55

CDNet 31.74 29.28 27.77 26.36 25.67 25.10 24.85 24.63

4.2. Blind AWGN removal

4.2.1. Test methodology

In practice, the blind AWGN removal (i.e. denoising without knowing the noise

level) is more valuable. We evaluate our CDNet on the blind AWGN removal on the270

previously-used Set12 and BSD68 datasets. The noisy images are generated as follows.

Given a clean image, the noise level σ is randomly picked up from [5, 80]. Then the
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Table 3: Average SSIM of denoised images by different methods on Set12 in non-blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D .8963 .8509 .8111 .7661 .7377 .7088 .6980 .6860

WNNM .8938 .8457 .8071 .7562 .7289 .7039 .6932 .6838

EPLL .8938 .8457 .8071 .7562 .7289 .7039 .6932 .6838

IRCNN .9008 .8601 .8256 .7804 n/a n/a n/a n/a

DnCNN .9027 .8618 .8259 .7827 .7369 .7026 .6842 .6710

TWSC .8989 .8549 .8192 .7731 .7454 .7200 .7086 .6974

FFDNet .9029 .8641 .8316 .7906 .7673 .7451 .7332 .7214

CDNet .9034 .8646 .8328 .7924 .7696 .7494 .7393 .7308

Table 4: Average SSIM of denoised images by different methods on BSD68 in non-blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D .8744 .8044 .7511 .6931 .6627 .6363 .6248 .6137

WNNM .8780 .8100 .7553 .6984 .6660 .6458 .6333 .6213

EPLL .8824 .8120 .7558 .6915 .6581 .6307 .6181 .6073

IRCNN .8881 .8249 .7746 .7171 n/a n/a n/a n/a

DnCNN .8906 .8278 .7765 .7189 .6422 .5998 .5785 .5657

TWSC .8782 .8077 .7530 .6903 .6573 .6293 .6168 .6050

FFDNet .8902 .8295 .7815 .7261 .6959 .6697 .6579 .6443

CDNet .8916 .8314 .7833 .7272 .6974 .6737 .6619 .6518

Original image Noisy image / 12.57dB BM3D / 32.22dB EPLL / 32.05dB

WNNM / 32.44dB DnCNN / 33.53dB FFDNet / 34.16dB CDNet / 34.57dB

Figure 5: Denoising results of an image from BSD68 dataset in non-blind AWGN removal with noise level

σ = 60.
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Original image Noisy image / 12.56dB BM3D / 24.07dB EPLL / 24.24dB

WNNM / 24.57dB DnCNN / 24.72dB FFDNet / 24.71dB CDNet / 25.23dB

Figure 6: Denoising results of image ”starfish” in non-blind AWGN removal with noise level σ = 60.

AWGN with σ is added to the image. For the training of CDNet for blind denoising,

we follow the scheme used in [39], which divides the noise level σ ∈ [5, 80] into three

intervals: [5, 30], [30, 55] and [55, 80]. Then the CDNet is trained on these intervals275

respectively. The aforementioned 400 BSD images are used for training. Similar to the

previous experiment, the images are cut into 40 × 40 patches for data augmentation,

and then 226800 of them are sampled and degraded by the AWGN with the randomly-

chosen levels in the interval for training. The CDNet model is trained with 140 epochs

and with the learning rate decaying from 1 × 10−2 to 1 × 10−4. The training takes280

around 15 hours. In test, we generate the images corrupted by the AWGN with σ =

15, 25, 35, 50, 60, 70, 75, 80 respectively and report the results for each noise level.

In addition to gray-scale images, we also train our model for denoising color images

with known noise levels. We use a color version of the Berkeley segmentation dataset,

of which 432 color images are used for training and the remaining 68 images are used285

to form the test set. Similar to the gray image denoising, the color images are cut into

patches of size 40 × 40 for training. The model are trained at three different noise

levels, including σ = 25, 35, 50, and the number of epoch per training is fixed at 51.

We compare our CDNet with CBM3D (BM3D for color images) and DnCNN [36].

18



4.2.2. Results and comparison290

Results on gray-scale image denoising. We compare our CDNet with two CNN-based

denoisers that support blind denoising, including DnCNN [36] and UNLNet [39]. The

BM3D [20] is also used for comparison. The test and training (if possible) of these

compared methods are also done in the same blind manner as ours. The PSNR results

are summarized in Table 5 and Table 6, and the SSIM results are given in Table 7 and295

Table 8. The results of the compared methods are quoted from [39] whenever available,

or otherwise produced by the published codes from the authors of the original works.

Note that UNLNet has no available results on Set12 and no published code either, we

only compare it on BSD68. It can be seen that our method is powerful in the task of

blind AWGN removal. On both datasets, our CDNet achieved the best results among300

all the compared methods. We visualize some denoising results in Figure 7 and Fig-

ure 8. Compared to other methods, CDNet can better handle both the textured regions

and smooth regions. The improvement of CDNet over other compared methods has

demonstrated benefits of using complex numbers in denoising CNN for better general-

ization to the processing of unknown noise level which is an often-seen type of noise305

model inconsistencies. It can also be observed that the PSNR improvement of CDNet

tends to be larger as the noise level increases. The reason is probably that higher un-

known noise levels may cause worse inconsistencies of noise models and our CDNet

has better robustness to those inconsistencies.

Results on color image denoising. Table 9 shows the PSNR and SSIM values of all the310

compared methods with different noise levels on the color version of BSD68 datasets

respectively. It can be seen that our CDNet is the top performer among all compared

methods. We show some denoising results in Figure 9 for visual comparison.

Table 5: Average PSNR(dB) of denoised images by different methods on Set12 in blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D 32.37 29.97 28.40 26.72 25.95 25.25 24.93 24.63

DnCNN 32.71 30.29 28.69 27.11 26.25 25.53 25.22 24.85

CDNet 32.79 30.47 28.71 27.34 26.46 25.87 25.55 25.29
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Table 6: Average PSNR(dB) of denoised images by different methods on BSD68 in blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D 31.07 28.57 27.08 25.62 25.07 24.52 24.28 24.05

UNLNet 31.47 28.96 27.50 26.04 n/a n/a n/a n/a

DnCNN 31.61 29.11 27.54 26.17 25.44 24.85 24.61 24.32

CDNet 31.64 29.18 27.61 26.27 25.56 25.05 24.78 24.59

Table 7: Average SSIM of denoised images by different methods on Set12 in blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D .8963 .8509 .8111 .7661 .7377 .7088 .6980 .6860

DnCNN .8970 .8499 .8191 .7616 .7417 .7039 .6848 .6671

CDNet .9022 .8616 .8211 .7894 .7634 .7467 .0751 .7272

Table 8: Average SSIM of denoised images by different methods on BSD68 in blind AWGN removal.

σ 15 25 35 50 60 70 75 80

BM3D .8744 .8044 .7511 .6931 .6627 .6363 .6248 .6137

DnCNN .8803 .7977 .7611 .6808 .6616 .6276 .6085 .5894

CDNet .8911 .8228 .7764 .7140 .6956 .6627 .6476 .6411

Original image Noisy image / 12.58dB DnCNN / 24.95dB CDNet / 25.62dB

Original image Noisy image / 12.59dB DnCNN / 29.11dB CDNet / 30.02dB

Figure 7: Denoising results on two noisy images in blind AWGN removal with noise level σ = 60.
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Original image Noisy image / 12.37dB DnCNN / 24.13dB CDNet / 24.32dB

Original image Noisy image / 11.82dB DnCNN / 24.86dB CDNet / 25.13dB

Figure 8: Denoising results on two noisy images in blind AWGN removal with noise level σ = 75.

Table 9: Average PSNR(dB) and SSIM results of color image denoising by different methods on BSD68 in

non-blind AWGN removal.

Method
PSNR SSIM

25 35 50 25 35 50

CBM3D 30.64 28.83 27.31 0.931 0.901 0.870

DnCNN 31.31 29.65 28.01 0.884 0.844 0.792

CDNet 31.34 29.84 28.14 0.937 0.915 0.882

Original image Input / 14.15dB CBM3D / 28.31dB DnCNN /29.05dB CDNet / 29.21dB

Figure 9: Denoising results on a color image with noise level σ = 50.
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4.3. Removal of spatially-varying noises

4.3.1. Test methodology315

We further evaluate the performance of our CDNet on blindly removing spatially-

varying noises. We use a similar setting to [38], with two types of spatially-varying

noises considered. The first is the AWGN with spatially-varying high noise levels.

We use two settings: (i) 70% pixels corrupted by N (0, 60) and 30% pixels corrupted

by N (0, 75); and (ii) 50% pixels corrupted by N (0, 60), 35% pixels corrupted by320

N (0, 70) and 15% pixels corrupted by N (0, 80). The second type is the spatially-

varying light AWGN/uniform noise. Each pixel is either degraded with the AWGN of

a small variance, or the uniform noise in the range of [−s, s]. We fix the AWGN to be

N (0, 1) on 20% pixels and N (0, 0.02) on 70% pixels and set s = 5, 10, 15.

In the blind setting, it is complicated to generate the training images that contain325

the above spatially-mixed noises of all possible combinations. Therefore, we do not

re-train our model but instead directly use the one trained for blind AWGN removal

during the test. This indeed tests the generalizability and transferability of a trained

CNN to the processing of other noise models.

4.3.2. Results and comparison330

For comparison, we select BM3D [20], WNNM [24], EPLL [28] and DnCNN [36].

The former three are the training-free methods and we run their published codes with

their parameters finely tuned. Regarding DnCNN, for fair comparison with ours, we

also use its pre-trained model in the blind AWGN removal for the test. Table 10 sum-

marizes the PSNR results on the removal of spatially-varying noises. Some denoising335

results are shown in Figure 10 and Figure 11. Both the PSNR results and visual results

have demonstrated the superior performance of CDNet over other approaches when

generalized for handling the noise with different characteristic from that of training

samples. Such improved generalizability comes from the better robustness of CDNet

to noise model inconsistencies.340

4.4. More Discussions
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Table 10: Average PSNR(dB) of denoised images on Set12 and BSD68 datasets by different methods in

removing spatially-varying noises.

Method

Mixed AWGN AWGN + Uniform

Setting#1 Setting#2 s = 5 s = 10 s = 15
SE

T
12

BM3D 25.55 25.46 40.48 40.2 37.32

EPLL 25.16 25.05 41.24 40.82 37.89

WNNM 24.85 24.74 40.21 39.22 36.19

DnCNN 25.91 25.77 41.14 40.25 39.51

CDNet 26.15 26.04 44.13 42.52 40.66

B
SD

68

BM3D 24.79 24.68 41.21 40.68 36.72

EPLL 24.68 24.58 42.55 41.74 37.73

WNNM 24.14 24.06 41.02 40.05 35.73

DnCNN 25.09 24.99 41.89 40.94 39.72

CDNet 25.31 25.22 45.78 43.21 40.74

Original image Noisy image / 13.40dB BM3D / 23.97dB

WNNM / 22.98dB DnCNN / 24.13dB CDNet / 24.49dB

Figure 10: Denoising results of an image from BSD68 dataset in spatially-varying AWGN removal with

Setting 1.
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Original image Noisy/13.65dB BM3D/28.43dB WNNM/28.26dB DnCNN/28.56dB CDNet/29.13dB

Figure 11: Denoising results of an image from BSD68 dataset in spatially-varying AWGN removal with

Setting 2.

4.4.1. Effectiveness of 1D convolution

Recall that in CDNet the convolutional layers of residual blocks are built upon

1D complex-valued convolutions. We replace such convolutional layers with the ones

that directly use 2D complex-valued convolutions and then test the performance of the345

modified CDNet in nonblind AWGN removal. On all the results the PSNR changes

are bounded in [−0.06dB, 0.06dB]. In addition, the original CDNet outperforms the

modified one on more than half the results. In other words, the complex-valued CNN

allows using compact 1D convolutions which have comparable expressibility and even

better generalization performance than the 2D ones. See Table 11 for some results.350

4.4.2. ReLU selection

The definition of the CReLU is not unique. Recall that there are another two

choices: ModReLU defined by (16) and zReLU defined by (17). We are interested

in how these CReLUs perform in denoising. Thus, we replace all CReLUs in CDNet

with the ModReLUs and zReLUs respectively, and re-conduct the denoising experi-355

ments in blind AWGN removal.

See Table 11 for some results. The ModReLU performed worse that CReLU with

0.15dB-0.3dB PSNR gap. The reason is probably that the ModReLU keeps the phase

unchanged, which limits the expressibility of the complex-valued CNN for denoising.

Note that the phase indeed encodes the main image structures and may be corrupted360

by noises, which should be deliberately treated in denoising. The zReLU performed

even much worse than CReLU. We note the expressibility of zReLU is not as good
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as CReLU, considering that zReLU generates only two different patterns in the ring

of phase, with limited operations on the phase. Recall from Figure 2 that CReLU

generates four different patterns with richer phase operations. Another disadvantage365

of zReLU is that its implementation is more complicated than the other two ReLUs,

which may increase the difficulty in optimizing the resulting loss.

Table 11: Average PSNR(dB) by CDNet with different modifications in blind AWGN denoising with noise

level σ = 60. ’Original’: CDNet without modifications; ’2D Conv’: replace 1D convolutions with 2D ones

in residual blocks; ’ModReLU’: replace CReLU with ModReLU; ’zRELU’: replace CReLU with zReLU;

Real: replace all complex-valued units with real-valued ones and with double number of channels.

Dataset Original 2D Conv zReLU ModReLU Real

Set12 26.46 26.43 22.53 26.23 26.11

BSD68 25.56 25.55 22.69 25.40 25.28

4.4.3. Benefits of complex-valued architecture

We evaluate the benefits of using complex numbers in denoising CNN by compar-

ing it to a real-valued version of CDNet. The real-valued version is constructed by370

replacing all complex-valued units in CDNet with the real-valued ones. The number

of channels in each convolution is doubled for fairness. The comparison is done on

the blind AWGN removal with σ = 60, in which the PSNR result of the real-valued

version is 0.35dB/0.28dB less than the original CDNet on the Set12/BSD68 dataset.

See Table 11 for the results and Figure 12 for some visual comparison. While a larger375

real-valued model can gain better expressibility, the side-effect is possible overfitting.

In contrast, complex-valued NNs implicitly impose additional regularizations on the

convolution processes, which is helpful for alleviating the overfitting. In other words,

CDNet is not a simple double-dimension real-valued CNN; it has its own specific char-

acteristics. Such characteristics can lead to better denoising results over its real-valued380

counterpart. We also evaluated the running time. The results show that CDNet is 1.4

times slower than its real-valued counterpart.
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Original image Noisy image / 12.56dB Real-valued version / 28.18dB CDNet / 28.66dB

Figure 12: Denoising results of image ”Lena” in blind AWGN removal with noise level σ = 60.

5. Conclusion

In this paper, we proposed the CDNet, a complex-valued CNN for image denois-

ing. Introducing complex-valued essential operations to the CNN-based denoiser has385

several merits: compact form of 2D non-separable convolution, non-linear activation

on phase, and better noise robustness of residual blocks. By exploiting these merits in

the proposed CDNet, the CDNet showed its good performance on non-blind AWGN

removal, as well as its advantages on blind AWGN removal and blind removal of noise

with spatially-varying standard deviations.390

In the past, many studies have shown that complex-valued CNNs can benefit high-

level vision tasks such as image recognition, but none has been conducted to investi-

gate their potentials in low-level vision tasks. Our work is the first one that showed

the potential of the complex-valued CNN in a fundamental low-level task, i.e. image

denoising. The results in this paper provide strong inspirations to the development of395

complex-valued CNNs for other low-level vision tasks. Though our method was only

tested on real-valued images, with small modifications it can be directly applied to

processing complex-valued signals.

In future, we would like to extend the proposed CDNet to solving other image

recovery problems, especially the ones involving complex-valued images. In addition,400

we would like to further refine the architecture and operations of the CDNet to have

more performance gain in image recovery. One possible direction is designing other

non-linear activation functions on phase and introducing convolution-based operations

on phase. The design of such functions and operations is a challenging task. Recall that
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the direct calculation of phase is not numerically stable when its corresponding value is405

small and is wrapped to [0, 2π] (or [−π, π]) for resolving the periodicity ambiguity of

phase. As a result, the NN will suffer from possible instability of back propagation and

related computational issues for gradient-descend-based training. Thus, it is a better

option to design the activation functions and operations on phase without explicitly

calling phase as input. As phase has clear physical meaning, it is highly non-trivial to410

design such functions and operations with strong physical motivations.
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