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Abstract. Cartoon-texture image decomposition is about decomposing an image into the linear sum of two5
layers: cartoon and texture, where the key challenge is how to resolve the ambiguity between two6
layers. It is observed that the recurrence of texture patches occurs along multiple orientations,7
and the recurrence of cartoon patches only occurs along certain orientation. This paper proposes to8
separate these two layers by exploiting their orientation characteristics of image patch recurrence, i.e.,9
isotropy property of texture patch recurrence versus anisotropy property of cartoon patch recurrence.10
Together with the sparsity-based regularizations in the image domain, a variational method is then11
developed in this paper for cartoon-texture decomposition. The experiments show that the proposed12
method noticeably outperforms many well-established ones on test images.13
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1. Introduction. How to decompose an image into different semantic layers is an impor-16

tant problem with many applications in practice. One such problem is about decomposing17

an image into the linear combination of a cartoon layer and a texture layer, i.e. the so-called18

cartoon-texture image decomposition. Cartoon layer refers to the one with piece-wise smooth19

parts, and texture layer refers to the one with repetitive patterns. For instance, a cartoon layer20

contains homogeneous regions, object contours, and significant image edges, while a texture21

layer contains grasses, fabric textures, barks and many others with small repetitive features.22

Cartoon-texture decomposition sees its usage in many image processing tasks. As cartoon23

layer and texture layer exhibit rather different characteristics in terms of visual appearance,24

the operations on these two layers are often different in many applications. In image recovery,25

cartoon regions and texture regions need to be treated differently for better visual quality26

[4, 20, 33]. For optical flow estimation in motion analysis, texture parts need to be removed27

from images for improved robustness to shading reflections and shadows [48]. For depth28

estimation in stereoposis, cartoon parts are extracted from images for better stability of the29
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2 R. XU,Y. XU,Y. QUAN, H. JI

algorithm [10]. Other applications include image segmentation [11], image compression [27],30

image editing [26, 29], color transfer [26], pattern recognition [18], biomedical engineering [18],31

remote sensing [1, 22, 50], and many others.32

In the past, there have been extensive works on cartoon-texture decomposition. Following33

the seminal works [32, 36], most existing works model an image f as the sum of two layers:34

(1.1) f = u + v,35

where u denotes the cartoon layer and v denotes the texture layer. The goal is then to36

estimate both u and v from f . Clearly, it is an under-determined linear inverse problem with37

many solutions. To resolve such an ambiguity, one prominent approach is to impose certain38

priors on both u and v. Then, the problem (1.1) is re-formulated as an optimization problem:39

(1.2) min
u,v

φ(u) + ψ(v), s.t. u + v = f ,40

where φ(·) and ψ(·) denote the regularization terms on the two layers u and v respectively,41

which are derived from the priors imposed on u,v.42

The decomposition quality using (1.2) largely depends on the choice of the two priors43

imposed on u and v. To have a high-quality cartoon-texture decomposition, the priors need44

to satisfy two conditions:45

1. The imposed prior fits the characteristics of the corresponding layer well.46

2. The priors on the two layers are sufficiently discriminative to resolve the ambiguity47

between them.48

Indeed, one main difference among existing methods lies in what kind of prior is imposed on49

cartoon/texture for decomposition. In the next, we give a brief review on existing cartoon-50

texture decomposition methods.51

1.1. Related Work. In most existing approaches, cartoon layer is modeled as the part52

that can be well approximated by a piece-wise smooth function, i.e. the function whose discon-53

tinuities are geometrically regular and well separated in space. The prominent regularization54

for estimating such piece-wise smooth functions is the `1-norm-relating functional that ex-55

ploits the sparsity of its discontinuities. For example, the total variation (TV) based approach56

(e.g. [32, 47, 36, 4, 1, 51, 52, 22, 15, 53, 49, 43, 26]) defines φ(u) = ‖∇u‖1, where∇ denotes the57

first-order gradient operator or its higher-order generalizations. The wavelet/curvelet trans-58

form based approach (e.g. [45, 41, 16, 42, 31, 35]) uses high-pass wavelet/curvelet transform to59

measure the intensity variation, and regularizes the cartoon layer by defining φ(u) = ‖Wu‖1,60

where the operator W denotes the high-pass wavelet/curvelet transform.61

These `1-norm relating regularizations work well when recovering cartoon regions in many62

image processing tasks, e.g. image denoising and deconvolution. However, for cartoon-texture63

decomposition, there is no clear cut on cartoon and texture in terms of sparsity degree of64

discontinuities. For instance, a small portion of image edges (discontinuities) with large mag-65

nitude in the cartoon layer might be wrongly assigned to the texture layer, as such assignments66

will make the cartoon layer contain even less discontinuities. In other words, such an erro-67

neous assignment does not break the discontinuity-based sparsity prior of the cartoon layer.68

In short, although the discontinuity-based sparsity prior holds true for the cartoon layer, but69
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CARTOON-TEXTURE IMAGE DECOMPOSITION 3

it is not powerful enough to correctly determine the ownership of each individual image edge,70

i.e., which layer it belongs to.71

In comparison to the cartoon layer, the texture layer is more difficult to characterize. In72

the past, many characterizations have been proposed for modeling texture. Each has its own73

strength and weakness, and is only applicable to certain types of textures. Early works [32, 47]74

model texture as the patterns with strong oscillation, characterized in the Besov space B−1,∞∞ .75

Since then, there is an enduring effort on the analysis of the model and the development of76

related numerical methods; see e.g. [36, 40, 1, 2, 3, 22, 15]. There are also other variations with77

strong motivations from the works above, including linear filtering models [7, 8] and multi-78

scale model [21]. Also, similar idea is used for solving other texture-related image processing79

problems; see e.g. [4, 27, 33]. Nevertheless, it is pointed out in [39] that one main weakness80

of such an approach is that it often fails on the texture parts that contain regular patterns81

with small magnitude.82

Similar to the sparsity-based prior on the gradients of cartoon layers, one alternative ap-83

proach to model texture layers assumes that texture can be sparsely approximated under84

some transform; see e.g. [41, 16, 31, 35, 11, 53, 37, 24]. The transform for sparsifying tex-85

ture can be either a pre-defined one such as local Fourier transform [31], or the one learned86

from texture images [53, 37]. Then, the regularization on texture can be formulated as some87

sparsity-prompting functional, e.g. `1-norm or `0-norm, on the transform coefficients of tex-88

ture. These sparse-approximation-based characterizations work well for texture with regular89

patterns. However, they do not work well on natural textures generated by some stochastic90

processes. Furthermore, to resolve the ambiguity between cartoon and texture, the sparsifying91

transform for texture should have very low coherence with that of cartoon, which leads to a92

challenging non-convex minimization problem; see [16] for more details.93

Instead of using sparsity-based characterization, another approach to model texture is to94

examine the rank of the matrix of texture patches after certain alignment. Motivated by linear95

dependence of texture patches after alignment, Schaeffer and Osher [39] proposed a low-rank96

prior on the matrix formed by these aligned texture patches, and used a nuclear-norm-based97

regularization for texture extraction. The nuclear norm used is replaced in [17] by the so-98

called log-determinant function for better performance. As these two methods use all texture99

patches of the whole image to form the matrix, they are not applicable to the texture layer100

which contains different types of textures. To address such an issue, Ono and Miyata [34]101

proposed to consider the matrix formed by the texture patches in a local region. However,102

it is challenging to set appropriate region size for an image with multiple texture regions of103

varying size.104

Recently, following the same idea of the BM3D method for image denoising [13], Ma et105

al. [30] proposed to decompose cartoon and texture over the group of matched similar patches.106

In the matrix formed by a group of matched image patches, the matrix is decomposed into107

the sum of a low-rank one and a structured sparse one, where the low-rank one represents108

the texture layer and the sparse one represents the cartoon layer. Similarly, texture parts are109

extracted in Sur et al. [44] over the group of matched patches by using some power-spectrum-110

based statistical measurements. It is noted that the low-rank-based characteristic on texture111

proposed in [30, 44] is different from that in [39, 34, 17]. The characteristic proposed in [30, 44]112

is based on the phenomena of non-local patch recurrence in natural images [13, 38], i.e., small113
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Figure 1. Top row: Anisotropic patch recurrence in cartoon layer. Bottom row: Isotropic patch recurrence
in texture layer.

image patches are very likely to repeat themselves over the whole image.114

1.2. Main Idea. The prior of patch recurrence is a powerful one that has seen its success115

in many image recovery tasks. For instance, many image denoising methods with state-of-the-116

art performance are the non-local methods based on such a non-local patch recurrence prior117

for nature images, including BM3D [13], non-local means [6], low-rank approximation [25],118

and many others. It is noted that, in order to exploit such a non-local prior, one needs to run119

a patch matching to search image patches over the image that are similar to a given candidate120

patch. Such a process can be very computationally expensive if one searches all possible121

image patches of the whole image. It is empirically observed that similar patches are much122

more likely to exist in the neighborhood of the candidate image patch. Indeed, the practical123

implementation of most non-local methods only utilizes the prior of local patch recurrence by124

searching similar patches in the neighborhood of a given candidate patch; see e.g. [13, 6, 25].125

Indeed, the prior of local patch recurrence is a powerful prior for texture. In many image126

recovery tasks, it is the texture layer where those non-local methods outperform the sparsity-127

based regularization methods. The main reason is that the sparsity prior of local intensity128

variation does not hold true for texture regions. However, such a prior cannot be directly129

used for cartoon-texture decomposition, as it holds true for both cartoon and texture. There130

are only few attempts on investigating the potential of patch recurrence in cartoon-texture131

decomposition [30, 44]. In [30, 44], the decomposition of cartoon and texture is done by132

examining the rank of the matrix associated with matched patches. Such an approach does133

not work well on the textures with complex patterns.134

1.2.1. Orientation-based prior on patch recurrence. Based on the local patch recurrence135

of natural images, this paper proposes a new characteristic for distinguishing cartoon layers136
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CARTOON-TEXTURE IMAGE DECOMPOSITION 5

from texture layers, which examines the orientation property of the spatial distribution of the137

matched patches in the neighborhood of a candidate image patch. Such a prior is motivated138

by the following observation:139

• Anisotropic recurrence for cartoon patches: Consider a candidate cartoon patch, most140

of its similar patches are likely to exist along a specific direction in its neighborhood.141

• Isotropic recurrence for texture patches: Consider a candidate texture patch, most142

of its similar patches are likely to scatter around in its neighborhood without any143

preference on some specific direction.144

See Figure 1 for an illustration of anisotropic patch recurrence (cartoon) vs isotropic patch145

recurrence (texture) of some sample images. The anisotropic recurrence prior for cartoon146

patches comes from the fact that a cartoon patch usually only contains some isolated edge147

segment, which is one part of the contour of an object. Thus, similar patches can be found148

along the direction of such a line segment, but not other directions. In contrast, the isotropic149

recurrence of texture patches comes from the fact that a candidate texture patch is inside a150

statistically-homogeneous texture region, e.g., patterns in clothes, markings of animals, and151

grains of woods.152

The patch-recurrence-based orientation prior can be formulated by considering running a153

specific ordering scheme on matched patches. Briefly, given a candidate patch, we stack its154

matched patches column-wisely in a specific order to form a matrix. Such a matrix shows155

strong oscillations row-wisely for the cartoon parts and is smooth for the texture parts. Then,156

for the stack of cartoon patches, the anisotropic recurrence prior is reformulated as a period-157

icity prior. For the stack of texture patches, the isotropic recurrence prior is re-formulated as158

a smoothness prior. See Figure 2 for an illustration of the stack of matched patches and its159

associated prior: periodic oscillation (cartoon) vs. smoothness (texture). It is interesting to160

see that based on the proposed patch stack, we have161

• Cartoon: Piece-wise smoothness prior column-wise (image domain) vs periodicity prior162

row-wise (patch recurrence).163

• Texture: Deterministic/statistical periodicity prior column-wise (image domain) vs164

smoothness prior row-wise (patch recurrence)165

The priors listed above lead to new regularization strategies on the stacks of cartoon patches166

and texture patches for image decomposition.167

Proposed Patch 
Ordering

Cartoon Patch Stack

Texture Patch Stack

Oscillating 
along z-axis

Smooth 
along z-axis

Oscillating in spatial domain

Input Image

Smooth in spatial domain

Spatial
Domain

Stacking 
Dimension

Ca
rt

oo
n

piece-wise 
smoothness Oscillating

Te
xt

ur
e

Oscillating Nearly Constant

Properties in image/stacking axis

…
…

Latent Cartoon Component

Proposed Patch 
Ordering

Latent Texture Component

Figure 2. Illustration of discriminative properties of cartoon/texture patch stacks.
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6 R. XU,Y. XU,Y. QUAN, H. JI

1.2.2. Outline of the proposed method. Based on the orientation prior discussed in168

the previous section, we propose a variational method for cartoon-texture decomposition.169

Two transforms will be used in the proposed method. One is high-pass wavelet transform,170

denoted by W , which will be used for regularizing cartoon as it is known for the optimality171

on modeling piece-wise smooth functions [41, 16, 9]. The other is high-pass discrete cosine172

transform (DCT), denoted by D, which will be used for regularizing cartoon, as it is very173

effective on modeling oscillation patterns. Let L,H represent the operators that convolves174

a patch stack along the stacking axis by the low-pass filter [1, . . . , 1] and the high-pass filter175

[1,−1] respectively.176

Consider a cartoon patch stack U and a texture patch stack V . We propose to regularize177

them by the following functional terms:178

Φ(U) = α1‖W ◦ U‖1︸ ︷︷ ︸
Image domain

+α2‖L ◦W ◦ U‖1︸ ︷︷ ︸
Patch stack

,(1.3)179

Ψ(V ) = β1‖D ◦ V ‖1︸ ︷︷ ︸
Image domain

+β2‖H ◦D ◦ V ‖1︸ ︷︷ ︸
Patch stack

.(1.4)180

181

In the regularization (1.3) on cartoon, the first term exploits the piece-wise smoothness prior182

of cartoon in the image domain. The second term exploits the periodicity prior of a cartoon183

patch stack along the stacking axis. Such a prior is equivalent to the prior that the overall184

energy of its low-pass components is close to 0. In the regularization (1.4) on texture, the185

first term exploits the oscillation prior of texture in the image domain, which is equivalent to186

the prior that the energy of its DC component is close to 0. The second term exploits the187

smoothness prior of a texture patch stack along the stacking axis, which is equivalent to the188

prior that the overall energy of its high-pass components is close to 0.189

In both (1.3) and (1.4), owing to its robustness to the outliers in patch matching, the190

`1-norm is used as the metric for measuring the energy associated with the priors of patch191

recurrence. Furthermore, Each entry of cartoon/texture layer will appear in many patches.192

If one processes each patch independently and then fuse them to form the final result of the193

two layers, the cartoon/texture layer appears to be blurry as the estimate of each entry is the194

average of multiple estimations from multiple patches. For reducing such blurring effects, we195

re-formulate the regularization defined on patch stacks to the one defined directly on image196

pixels.197

Consider a set of image patches that covers all image pixels. Let Pi denote the projection198

operator that maps an image to the i-th patch, and let Si denote the projection operator that199

maps an image to the patch stack containing the patches matched to the i-th patch. Then,200

we propose the following regularization model for cartoon-texture decomposition:201

(1.5) min
u,v

φ(u) + ψ(v), subject to u + v = f ,202

where203

(1.6)

{
φ(u) =

∑
i λ

c
i (α1‖W ◦ Pi ◦ u‖1 + α2‖L ◦W ◦ Si ◦ u‖1),

ψ(v) =
∑

i λ
t
i(β1‖L ◦ Pi ◦ v‖1 + β2‖H ◦D ◦ Si ◦ v‖1).

204
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CARTOON-TEXTURE IMAGE DECOMPOSITION 7

The rest of this paper is organized as follows. Section 2 first presents the construction of205

the matched patch stack with a specific ordering, and then analyzes its orientation property.206

Section 3 is devoted to the description of the proposed model and the corresponding numerical207

solver. The experimental evaluation is given in Section 4. Section 5 concludes the paper.208

2. Construction of Patch Stack and Analysis of Its Orientation Property. Similar to
the practical implementations of most non-local image recovery methods [13, 6, 25], given a
candidate image patch, we only search the similar patches in its neighborhood. The similarity
between two patches is measured by the `2-norm-based distance. In this section, we propose a
new scheme of patch matching such that the resulting patch stack shows different orientation
characteristics between cartoon and texture. Throughout this paper, bold upper letters are
used for denoting operators, normal upper letters for matrices, bold lower letters for images
or image patches, and normal lower letters for vectors. Let 0 and I denote the zero vector
and the identity matrix. Let diag(x) denote the square diagonal matrix with the elements of
x on its main diagonal, i.e., for x ∈ Rn,

diag(x) =


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

 ∈ Rn×n.

Let comma and semicolon denote the horizontal and vertical concatenation operators of vec-
tors, and let ⊗ denotes the Kronecker product. Recall that, given two matrices A ∈ Rm×n
and B ∈ Rp×q, the Kronecker product A⊗B is defined as

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq.

2.1. Construction of Patch Stack with A Specific Ordering. Given a patch p of size209

m × m centering at r0, we consider finding its similar patches inside its neighborhood, a210

region centering at r0 and of size n× n. The neighborhood is then partitioned into R bands211

centered at r0 and slanted at R different orientations: 0◦, 180
◦

R , · · · , (R − 1)180
◦

R . As these212

bands overlap at a small centering region, such a centering region is excluded from the bands213

to avoid the patches inside repeating themselves in the search. See Figure 3(a) for an example214

of R = 4, where four bands used for patch matching are colored by yellow, green, blue and215

purple respectively, and the region colored by red is the excluded overlap region. Denote these216

bands by B(1), B(2), . . . , B(R) clockwise.217

Different from the patch matching done in existing non-local methods which finds the218

set of most similar patches in the neighborhood of the patch pi, the patch matching in our219

approach is about finding K patches with the smallest distance to the candidate patch pi in220

each band B
(r)
i , for r = 1, 2, . . . , R. The outcome is then R sets of matched patches denoted by221

{S(r)i }Rr=1. The number K is fixed for all the bands, which is set to 16 in the implementation.222

See Figure 3(b) and Figure 3(c) for the illustration of patch matching inside each band. In223

other words, the matched patches in our approach are not the KR patches most similar to224
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8 R. XU,Y. XU,Y. QUAN, H. JI

pi, but the union of the sets each of which contains the K patches with the smallest distance225

to pi in a band. Such a process enables us to exploit the orientation characteristic of the226

distribution of similar patches.227

More specifically, consider a cartoon patch containing a dominant line segment, which is228

very likely one part of a line in the image. Then, its similar patches are likely to distribute229

along the same orientation of that line segment. As a result, only the K patches matched along230

one orientation are similar to the candidate. The other patches along different orientations231

have large distances to the candidate patch, i.e., they are much less similar to the candidate232

patch. In contrast, for a texture patch containing oscillation patterns, its similar patches are233

likely to scatter over all orientations. Thus, those K patches along each orientation will have234

small distances to the candidate patch. Thus, they are all similar to the candidate patch.235

(a) Schematic diagram of pro-
posed partition scheme.

(b) Matching on cartoon region. (c) Matching on texture region.

Figure 3. Illustration of directional patch matching using neighborhood partition with four directions (R = 4).

Based on the patch matching scheme described above, we propose the following ordering

scheme to assemble the patch stack. Consider the i-th image patch pi ∈ Rm×m. Let {p(r)
k }

K
k=1

denote the set of the K matched patches along the r-th band as described above. Then, the

patch stack for pi is formed by concatenating the set of all matched patches {p(r)
k }1≤r≤R,1≤k≤K

in the following order:

[pi,p
(1)
1 ,pi,p

(2)
1 , . . . ,pi,p

(R)
1︸ ︷︷ ︸,pi,p(1)

2 ,pi,p
(2)
2 , . . . ,pi,p

(R)
2︸ ︷︷ ︸, . . . ,pi,p(1)

K ,pi,p
(2)
K , . . . ,pi,p

(R)
K︸ ︷︷ ︸].

In other words, the stack is formed by alternatively connecting the candidate and the top k-th236

matched patches from each band. For each patch pi ∈ Rm×m, let pi ∈ RM with M = m2237

denotes the column vector formed by sequentially concatenating all columns of pi. Then, we238

define a matrix form of the patch stack w.r.t. the candidate patch of pi:239

(2.1) S̃i = [pi, p
(1)
1 , . . . , pi,p

(R)
1 , pi, p

(1)
2 , . . . , pi,p

(R)
2 , . . . , pi, p

(1)
K , . . . , pi,p

(R)
K ] ∈ RM×2KR.240

See Figure 4(b) for an illustration. Given an image f and its i-th patch pi, let Pi denote the241

projection operator that maps the image f to the patch pi and Si the operator that maps f242
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CARTOON-TEXTURE IMAGE DECOMPOSITION 9

to the corresponding patch stack of pi:243

(2.2)
Pi : f → pi ∈ RM ,
Si : f → S̃i ∈ RM×2RK .244

Suppose that u,v are the cartoon layer and the texture layer related by

f = u + v.

Then we have the sets of matched patch stacks {Ui}i ⊂ RM×2RK , {Vi}i ⊂ RM×2RK for the245

two layers, which are defined by246

(2.3) Ui = Si ◦ u, Vi = Si ◦ v.247

See Figure 4 for an illustration of the above patch stack construction scheme.248

(a) Directional patch
matching.

(b) Alternate patch ordering.

(c) Signal along a row for
cartoon part.

(d) Signal along a row for
texture part.

Figure 4. Illustration of construction of patch stack in proposed method.

2.2. Orientation Property of Matched Patch Stacks. The matrix Ui from cartoon and249

the matrix Vi from texture have different characteristics along the stacking axis, i.e. along the250

rows. Consider a matrix Vi that represents a texture patch stack. Then, for k = 1, 2, . . . , 2RK,251

the k-th column of Vi ∈ RM represents a vectorized version of a 2D texture patch vk ∈ Rm×m.252

For each row of Vi, its entries are drawn from the matched patches from R bands with253

different orientations. By the isotropic patch recurrence of texture patches, these entries are254

all similar to the corresponding pixels of the candidate patch pi. Therefore, each row can be255

well approximated by a constant row. The same conclusion holds for the texture patch stack256

under a 2D DCT.257

For the matrix Vi, let DVi denote the matrix whose k-th column denotes the vectorized
form of the output of running a 2D DCT on the patch vk. As each row of DVi can be well
approximated by a constant row, the output of each row of DVj after convolved by a 1D high-
pass filter [1,−1] will be close to 0. Such an phenomena leads to a row-wise regularization
term on Vi that exploits the isotropic orientation property of the texture patch stack:

‖H ◦D ◦ Vi‖1 = ‖DViH>‖1 (row-wise regularization along stacking axis)

where H denotes the matrix form of the circulant matrix with the filter [1,−1].258
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10 R. XU,Y. XU,Y. QUAN, H. JI

Remark 2.1. As the number of patches matched to the candidate patch is fixed, it happens259

that some candidate patches have more similar patches, and some have less similar patches.260

The outliers in patch matching are then often seen. Thus, we use `1-norm as the metric for261

better robustness to outliers.262

Furthermore, recall that a texture patch refers to the one that shows strong oscillations, and
thus we impose that its mean is close to 0, which leads to a column-wise regularization:

‖EVi‖1 (Column-wise regularization in image domain)

where E ∈ RR×M presents the constant matrix with constant = 1. Overall, we propose the263

following regularization for a texture patch stack:264

(2.4) Ψ(Vj) = β1‖EVj‖1︸ ︷︷ ︸
column-wise

+β2‖DVjH>‖1︸ ︷︷ ︸
row-wise

.265

See Figure 5(a) for an illustration.266

Similarly, consider a matrix Ui that represents a cartoon patch stack. Then, for k =267

1, 2, . . . , 2RK, the k-th column of Ui ∈ RM represents a vectorized version of a 2D cartoon268

patch uk ∈ Rm×m. For each row of Ui, its entries are also drawn from the matched patches269

from R bands with different orientations. However, different from the texture patch stack,270

the cartoon patches matched to the candidate cartoon patch from different bands are not271

necessarily similar to the candidate patch. Indeed, only along one or two orientations, there272

exist patches that are similar to the candidate patch. In other words, the entries of each row273

are rather different such that the row shows strong oscillations. Such irregular oscillations274

are further amplified in the high-pass wavelet transform as the low-frequency components are275

suppressed.276

For the matrix Ui, let WUi denote the matrix whose k-th column is the vectorized form
of the output of running a 2D high-pass wavelet transform on the patch uk. As each row of
WUi shows strong oscillations, the output of each row after convolved by a low-pass filter-
ing, e.g . [1, 1, . . . , 1] will be close to 0. Such an observation leads to the following row-wise
regularization form on Ui:

‖L ◦W ◦ Ui‖1 = ‖WUiL
>‖ (row-wise regularization along stacking axis)

where L is the matrix form of circulant convolution with the kernel [1, 1, . . . , 1]∈ R2KR. Recall
that a cartoon patch is modeled as a piece-wise smooth function. Then, we have the well-
established high-pass wavelet transform based sparsity prior on the cartoon parch:

‖WUi‖1 (column-wise regularization in image domain)

Combining both the high-pass wavelet transform based sparsity prior of cartoon patches in277

the image domain and the oscillation prior of cartoon patch stack along the stacking axis, we278

propose the following regularization for a cartoon patch stack:279

(2.5) Φ(Uj) = α1‖WUj‖1 + α2‖WUjL
>‖1.280
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See Figure 5(b) for an illustration. Based on the discussion above, we propose the following281

variational model for cartoon-texture decomposition over any patch stack S̃j :282

(2.6) min
Uj ,Vj

Φ(Uj) + Ψ(Vj), subject to Uj + Vj = S̃j .283

(a) Texture patch stack. (b) Cartoon patch stack.

Figure 5. Illustration of the regularizations on cartoon/texture patch stacks row-wise and column-wise.

3. Variational Model on Image Pixels and Numerical Scheme. When partitioning an284

image into the set of small image patches {pi}i and grouping them into the set of matched285

stacks {S̃j}j , each image patch pi will be contained in multiple stacks. Most non-local image286

denoisers such as BM3D [13] take a two-stage approach. Each patch stack is first processed287

independently such that there are multiple estimations of each image patch pi. Then, the288

final estimate of pi is defined as a weighted average of multiple estimations. Such a two-stage289

approach is not suitable for cartoon-texture decomposition, as it will cause noticeable artifacts290

in the two layers. See Figure 6(c) for an illustration when taking such a two-stage approach.291

It can be seen that some patterns of the tablecloth remains in the cartoon layer and some292

cartoon edges are presented in the texture layer.293

To avoid the artifacts caused by the two-stage approach discussed above, we map the294

regularization term (2.6) defined on patch stacks to the one directly defined on image pixels295

of two layers such that the values of these image pixels are directly estimated. See Figure 6(b)296

for an illustration when taking such a single-stage approach. It can be seen that there are297

much less artifacts in the two layers, in comparison to that shown in Figure 6(c).298

Moreover, there is another advantage by directly defining the regularization terms on the299

pixels of the two layers. The regularization terms on the pixels involve much less unknowns300

than that on patch stacks. As a result, it consumes much less memory, which is very important301

for a GPU-based implementation. In our GPU-based implementation, the proposed single-302

stage approach requires about 8 minutes for processing an image of size 512 × 512 while the303

two-stage approach takes more than one hour.304

3.1. Variational Model. Recall that for each image patch pi, the operator Pi and Si
defined by (2.2) project the image f to the i-th patch and the associated patch stack. Let
f, u, v denote the column vector form of the image f and two components u,v by sequentially
concatenating all column vectors of f ,u,v respectively. Let Pi denote the matrix form of Pi
that projects the vector f to the vector form of the i-th patch pi, and let Si denote the matrix
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12 R. XU,Y. XU,Y. QUAN, H. JI

(a) Input

Cartoon Texture

(b) Results of proposed solver

Cartoon Texture

(c) Results of BM3D-like solver

Figure 6. Decomposition results of the proposed solver and a BM3D-like solver on “Barbara”. Compared
with the proposed solver, the BM3D-like solver generate obvious artifacts on both cartoon and texture component.

form of Si that projects the vector f to the vector form of the i-th patch stack. Then, we
have

ui = Piu, Ūi = Siu,

vi = Piv, V̄i = Siv.

Based on two regularization terms (2.4) and (2.5) on texture and cartoon patch stacks, we305

propose the following variational model for cartoon-texture decomposition:306

(3.1) min
u,v

φ(u) + ψ(v) s.t. u+ v = f,307

with308

(3.2)

{
φ(u) = α1

∑
i λ

c
i‖WPiu‖1 + α2

∑
i λ

c
i‖(L⊗W )Siu‖1,

ψ(v) = β1
∑

i λ
t
i‖EPiv‖1 + β2

∑
i λ

t
i‖(H ⊗D)Siv‖1,

309

where {λci , λti}i are parameters that balance two regularization terms on cartoon and texture,310

which vary for different patches. In the next, we will discuss how to set these parameters.311

The regularization parameters

λc = [λc1, λ
c
2, · · · , λcN ] and λt = [λt1, λ

t
2, · · · , λtN ]

play an important role in the model. Intuitively, λci should be large at texture regions and312

small at contour regions. Oppositely, λti should be small at texture regions and large at313

contour regions. Based on the orientation property of patch recurrence for cartoon/texture,314

we propose the following scheme to determine the regularization parameters:315

(3.3) λci = 1− e−η1ρci , λti = 1− e−η2ρti ,316

where η1 and η2 are two parameters to be manually determined. The range of λci , λ
t
i is in317

(0, 1). In (3.3), ρci is the quantity that measures the degree of isotropy, which is defined by318

(3.4) ρci =

R∑
r=1

∑
j∈S(r)i

||Pif − Pjf ||22,319
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and ρti is the quantity that measures the degree of anisotropy, which is defined by320

(3.5) ρti =

∑
j∈S(d)i

||Pif − Pjf ||22∑R
k=1

∑
j∈S(k)i

||Pif − Pjf ||22
with d = argmin

1≤r≤R

∑
j∈S(r)i

||Pif − Pjf ||22.321

It can be seen that λci/λ
t
i is large/small if the corresponding regions exhibit strong isotropic322

patch recurrence which implies more/less confidence on texture/cartoon, and vice versa. See323

Figure 7 for an illustration of λt.324

(a) Image “Barbara” (b) Image “House” (c) Image “Friends”

Figure 7. Illustration of the regularization parameter vector λt on three images. Darker color denotes
smaller values.

3.2. Numerical Scheme. The optimization problem (3.1) is an `1-norm-relating problem,
and there exist many well-established efficient numerical solvers for such a type of problems,
e.g. the ADMM method [5] and the split Bregman iterative method [23]. Define a variable

x =

(
u
v

)
,

and define A = [I, I]. Note that the two regularization terms defined in (3.2) are the weighted
sums of `1-norms of the linear measurements on u and on v. Then, we rewrite φ(u) +ψ(v) as

‖diag(λ)Γx‖1,

where λ = [λc1, λ
t
1, · · · , λcN , λtN ] and Γ is the matrix that maps x to those linear measurements:325

(3.6) Γ : x =

(
u
v

)
−→

[(
α1WPiu α2EPiv
β1(L⊗W )Siu β2(H ⊗D)Siv

)]
i

>
.326

Then, the problem (3.1) can be re-expressed as327

(3.7) min
x
‖diag(λ)Γx‖1, s.t. Ax = f.328

The ADMM method is called for solving (3.7). For the completeness, the detailed description329

of the method is given below.330
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By introducing an auxiliary variable y, we rewrite (3.7) as follows:331

(3.8) min
x
‖diag(λ)y‖1, s.t. y = Γx, Ax = f,332

The problem (3.8) can be solved via the following alternating iteration scheme: for k =333

0, 1, . . . ,334

(3.9)
(x(k+1), y(k+1)) = argminx,y ‖diag(λ)y‖1 + γ1

2 ‖Ax− f + e(k)‖22 + γ2
2 ‖Γx− y + b(k)‖22,

b(k+1) = b(k) + δ(Γx(k+1) − y(k+1)),

e(k+1) = e(k) + δ(Ax(k+1) − f),

335

where γ1, γ2 ∈ R+, δ ∈ (0, 1]. The first sub-problem in (3.9) is also solved by an alternating336

iterative scheme, which leads to the following iterative scheme:337

(3.10)



x(k+1) = argmin
x

γ1‖Ax− f + e(k)‖22 + γ2‖Γx− y(k) + b(k)‖22,

y(k+1) = argmin
y
‖diag(λ)y‖1 +

γ2
2
‖Γx(k+1) − y + b(k)‖22,

b(k+1) = b(k) + δ(Γx(k+1) − y(k+1)),

e(k+1) = e(k) + δ(Ax(k+1) − f).

338

In the iterative scheme above, the first sub-problem when updating x has an analytic solution339

given by340

(3.11) x(k+1) = (γ1A
>A+ γ2Γ

>Γ)−1(γ1A
>(f − e(k)) + γ2Γ

>(y(k) − b(k))),341

which is computed via the conjugate gradient (CG) method in the implementation. The342

second sub-problem when updating y also has an analytic solution:343

(3.12) y(k+1) = T λ
γ2

(Γx(k+1) + b(k)),344

where Tβ(·) is the element-wise operator that applies the soft-thresholding operation on each345

element of the input:346

(3.13) (Tβ(x))` = sgn(x`) max(|x`| − β`, 0).347

See Algorithm 3.1 for the outline of the proposed cartoon-texture decomposition method.348

4. Experimental Evaluation. The implementation details of the proposed method used
in the experiments are listed as follows. The wavelet transform used in the method is the 2D
single-level undecimal linear spline wavelet framelet transform [14] whose filter bank is the set
of tensor product of the following 3 filters:

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

The DCT used in the implementation is of size 5× 5. Recall that only wavelet transform and349

DCT in high-pass channels are used in the proposed method. The maximal number of iteration350
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Algorithm 3.1 Cartoon-Texture Decomposition
Input: Image f
Output: Cartoon component u, Texture component v,
Main procedure:

1. Partition images into patch set {pi}.
2. Run the routine of patching matching and assembly patch stacks {S̃i}i by (2.1).
3. Construct the matrix A = [I, I].
4. Construct the matrix Γ by (3.6).
5. Calculate the parameter vector λ by (3.3).
6. Set x(0) := [f ; 0],y(0) := Γx(0), b(0) = e(0) := 0;
7. For k = 0, · · · , k0 − 1:

x(k+1) := (γ1A
>A+ γ2Γ>Γ)−1(A>(f − e(k)) + γ2Γ>(y(k) − b(k))),

y(k+1) := Tλ/γ2(Γx(k+1) + b(k)),
b(k+1) := b(k) + δ(Γx(k+1) − y(k+1)),
e(k+1) := e(k) + δ(Ax(k+1) − f).

8. u := [I,0] x(k0), and v := [0, I] x(k0).

is set to k0 = 30. For patch matching, the size of patch is set to 5 × 5, the neighborhood351

size for patch matching is set to 51 × 51, the number of bands is set to 4, the number of352

matched patches along each band is K = 16, and the similarity between patches is measured353

by `2-distance. For the regularization parameters, we set η1 = 20 and η2 = 0.0004. For the354

numerical solver, the parameter γ1 is set to 1, γ2 is set to 0.05 and the update step δ is set to355

1. For the model parameters in (1.2), we have different settings for different configurations of356

the problems. For cartoon-texture decomposition over a full image, the parameters are set as357

α1 = 0.25, α2 = 0.20, β1 = 0.12, β2 = 0.03. For cartoon-texture decomposition over an image358

with missing pixel values, the parameters are set as α1 = 0.40, α2 = 0.20, β1 = 0.12, β2 = 0.03.359

Our method is implemented in Matlab with GPU acceleration. For easier visual inspection,360

ṽ = 0.5 + 3v is shown as the texture component in all the figures of this section.361

A more comprehensive evaluation on the proposed cartoon-texture decomposition method362

is conducted with different perspectives, which includes the experiments on synthetic images363

for quantitative evaluation, the experiments on real images for visual evaluation, and the364

experiments on the images with missing pixel values for robustness evaluation.365

The methods for comparison are selected so that they can cover different types of the366

approaches for cartoon-texture decomposition, including367

• Ng et al. [33], one of the most recent PDE-based methods, where the TV norm and its368

dual are used to characterize cartoon and texture respectively. We use the algorithm369

2 in [33] for comparison.370

• Ono et al. [34], which utilizes the low-rank property of texture patches;371

• Ma et al. [30], which forms the groups of similar image patches and conducts low-rank372

decomposition on each matched patch group;373

• Papyan et al. [37], which uses convolutional sparse dictionary learning to discover the374

underlying patterns of cartoon and texture.375

• Gu et al. [24], which integrates the analysis operator and synthesis operator in convo-376

This manuscript is for review purposes only.



16 R. XU,Y. XU,Y. QUAN, H. JI

lutional sparse coding to better model cartoon and texture.377

• Sur et al. [44], one of the latest non-local methods that regularizes the group of matched378

patches by some power-spectrum-based statistical measurements.379

4.1. Quantitative Evaluation on Synthetic Images. We first conduct the experiments on380

120 synthetic images, which are synthesized as follows. For cartoon component, we generated381

some piece-wise constant images in the following steps: (i) randomly/manually select several382

seed points; (ii) divide image pixels into several non-overlapping groups, which is done via383

the spatially-nearest-neighbor clustering using the seed points as centers, with the pth-order384

Minkowski distance; (iii) assign a unique pixel value to each group of pixels. See Figure 8(a)385

for some samples of synthesized cartoon layers. Note that the region boundaries are line386

segments when p = 2 and become curves when p > 2. In addition, we also include some387

cartoon images downloaded from the internet, including icons, logos and cartoon characters.388

See Figure 8(b) for some samples.389

(a) Synthesized cartoon layers (b) Cartoon images downloaded from the internet

Figure 8. Examples of ground-truth cartoon layers.

For texture layer, they are collected from several datasets of natural texture images avail-390

able online, including Brodatz [46], Kylberg [28], KTH-TIPS [19] and DTD [12]. See Figure 9391

for some samples.392

Two schemes are adopted to synthesize test images for cartoon-texture decomposition393

using ground-truth cartoon layer and texture layer: (1) weighted average of two layers; (2)394

using a randomly-generated cartoon region mask, assign different texture layers to different395

cartoon regions. See Figure 10 for some examples of the synthesized images.396

The quantitative evaluation is based on two metrics: peak signal-to-noise ratio (PSNR)397

and Structural Similarity Index (SSIM). See Table 1 for the list of the comparison of tested398

methods in terms of average PSNR/SSIM on test dataset. It can be seen that the proposed399

method is the best performer among all methods in terms of both PSNR and SSIM.400
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Figure 9. Examples of ground-truth texture components.

Figure 10. Examples of synthesized images.

The advantage of the proposed method over other methods is also shown in terms of visual401

quality. See Figure 11 for the visualization of some results. For the cartoon layer, it can be402
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Table 1
Average PSNR (dB) and SSIM values of the decomposition results on synthetic images by different methods.

Criterion Ng [33] Ono [34] Sur [44] Ma [30] Gu [24] Papyan [37] Ours

PSNR(Cartoon) 31.42 26.98 28.43 26.67 26.94 29.72 33.37
PSNR(Texture) 28.70 26.98 28.43 26.70 25.86 29.74 33.26
SSIM(Cartoon) 0.948 0.596 0.696 0.570 0.753 0.777 0.964
SSIM(Texture) 0.900 0.735 0.839 0.754 0.796 0.894 0.965

(a) GT (b) Ng et al. [33] (c) Ono et al. [34] (d) Ma et al. [30]

(e) Papyan et al. [37] (f) Gu et al. [24] (g) Sur et al. [44] (h) Ours

Figure 11. The cartoon layer (top) and the texture layer (bottom) of the decomposition results on ’Diamond’
(i.e. the 1st synthetic images). (a) Ground truth. (b)-(g) the results of different methods.
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seen that the existing methods either produce blurred edges such as Ng et al. [33], or wrongly403

contain texture patterns such as Ono et al. [34], Ma et al. [30], Papyan et al. [37] and Sur et404

al. [44]. In contrast, the result from the proposed method keeps sharp edge and does not405

contain texture patterns. For texture layer, the existing methods either produce incorrect406

texture patterns such as the Ono et al. [34], or wrongly contain line segmentation from the407

cartoon layer such as Ng et al. [33], Ma et al. [30], Gu et al. [25], Papyan et al. [37] and Sur et408

al. [44]. Again, the result of the proposed method produces the most accurate texture layer.409

4.2. Experiments on Real Images. The methods are also evaluated on 5 real images410

that are used in existing literatures (e.g. [34, 30, 37]). These 5 images contain different411

types of textures, including both natural textures with strong randomness and man-made412

textures with regular patterns. There is no standard evaluation strategy for cartoon-texture413

decomposition. Thus, the evaluation only can be done by visual inspection. We consider it414

an accurate cartoon-texture decomposition if (1) object contours only appear in the cartoon415

layer; (2) image features with highly random or highly oscillating pattern only appear in the416

texture layer; and (3) no noticeable artifacts appear in both layers. See Figure 12-15 for the417

visual inspection of the results from different methods.418

(a) Input Image

(b) Ng et al. [33] (c) Ono et al. [34] (d) Ma et al. [30]

(e) Papyan et al. [37] (f) Gu et al. [24] (g) Sur et al. [44] (h) Ours

Figure 12. The input image (a) and the decomposition results of different methods on test image ’House’
(b-h). The cartoon layers are at the top, and the texture layers are at the bottom.

For image “House”, it can be seen that the proposed method did well at keeping contour419

edges in the cartoon layer. For instance, the eave is completely kept only in the cartoon layer.420

In contrast, other methods, except Ono et al. [34], wrongly assigned a strong edge along the421

eave to the texture layer, which results in the blurring or even removing of the eave in the422
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(a) Input Image

(b) Ng et al. [33] (c) Ono et al. [34] (d) Ma et al. [30]

(e) Papyan et al. [37] (f) Gu et al. [24] (g) Sur et al. [44] (h) Ours

Figure 13. The input image (a) and the decomposition results of different methods on test image ’Barbara’
(b-h). The cartoon layers are at the top, and the texture layers are at the bottom.

(a) Input Image

(b) Ng et al. [33] (c) Ono et al. [34] (d) Ma et al. [30]

(e) Papyan et al. [37] (f) Gu et al. [24] (g) Sur et al. [44] (h) Ours

Figure 14. The input image (a) and the decomposition results of different methods on test image ’Friends’
(b-h). The cartoon layers are at the top, and the texture layers are at the bottom.
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(a) Input Image

(b) Ng et al. [33] (c) Ono et al. [34] (d) Ma et al. [30]

(e) Papyan et al. [37] (f) Gu et al. [24] (g) Sur et al. [44] (h) Ours

Figure 15. The input image (a) and the decomposition results of different methods on test image ’Jackstraw’
(b-h). The cartoon layers are at the top, and the texture layers are at the bottom.

(a) Input Image

(b) Ng et al. [33] (c) Ono et al. [34] (d) Ma et al. [30]

(e) Papyan et al. [37] (f) Gu et al. [24] (g) Sur et al. [44] (h) Ours

Figure 16. The input image (a) and the decomposition results of different methods on test image ’Snake’
(b-h). The cartoon layers are at the top, and the texture layers are at the bottom.
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cartoon layer. In particular, two patch-recurrence-based methods including Ma et al. [30] and423

Sur et al. [44] produced noticeable blurring on the eave. For image “Barbara”, the proposed424

method is capable of keeping image features with periodic patterns only in the texture layer.425

In addition, only Ng et al. [33] and the proposed method completely removed the textures from426

the cartoon layer. In comparison to Ng et al. [33] which obviously blurred the cartoon layer,427

ours produced sharper edges. For the other three images “Friends”, “Jackstraw” and “Snake”,428

it can be seen that except the proposed method, all other methods either wrongly assigned429

straw textures to the cartoon layer or wrongly assigned object contours to the texture layer.430

Overall, our method is the most accurate one that separates object contours and textures.431

The proposed method can be extended to processing color images by simply processing432

each color channel separately. See Figure 17 for the visualization of the results of the proposed433

method on the color version of two images, “Barbara” and “Friends”. It can be seen that the434

results generated by such a simple process does not produce noticeable color artifacts.435

(a) Barbara (b) Friends

Figure 17. The decomposition results of the proposed method on color images.

In summary, visual inspection of the results from different methods showed that the pro-436

posed one outperformed the existing ones in terms of decomposition accuracy, which indicates437

the effectiveness of orientation characteristic of patch recurrence in natural images for distin-438

guishing cartoon and texture.439

4.3. Decomposition of Images with Missing Pixel Values. In this experiment, the pro-
posed method is used for cartoon-texture decomposition of images with missing pixel values.
Such a decomposition can see its application in image inpainting, as it is shown in [34] that
running different inpainting schemes on cartoon part and texture part will lead to better re-
sults in in-painting. The proposed method can be extended for solving such a problem by
replacing the constraint u+ v = f in (3.1) by

Ξ(u+ v) = Ξf,

where Ξ is a diagonal matrix whose diagonal entry is 1 if its corresponding pixel value is
available and 0 otherwise. The resulting algorithm only needs a minor modification on Algo-
rithm 3.1, i.e. simply replacing A = [I, I] by A = [Ξ,Ξ]. After running the cartoon-texture
decomposition, we can have an estimation on the image f :

f̃ = Ξf + (1− Ξ)(u+ v).
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Table 2
PSNR (dB) and SSIM values of inpainted images

(a) 40% pixel values are missing

Method Measure Barbara House Jackstraw Snake

Ono [34]:
PSNR 32.87 28.99 28.56 28.93
SSIM 0.959 0.922 0.860 0.905

Ours
PSNR 34.86 30.10 28.95 29.70
SSIM 0.968 0.937 0.870 0.918

(b) 50% pixel values are missing

Method Measure Barbara House Jackstraw Snake

Ono [34]:
PSNR 30.58 27.39 27.23 27.54
SSIM 0.934 0.886 0.805 0.870

Ours
PSNR 32.16 28.30 27.64 28.13
SSIM 0.948 0.903 0.817 0.880

Degraded image Restored image of [34] Cartoon component of [34] Texture component of [34]

Mask Restored image Cartoon component Texture component

(a) Results on “Snake”

Degraded image Restored image of [34] Cartoon component of [34] Texture component of [34]

Mask Restored image Cartoon component Texture component

(b) Results on “Barbara”

Figure 18. Our decomposition results on “Snake” and “Barbara” with 40% pixels missing.
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Degraded image Restored image of [34] Cartoon component of [34] Texture component of [34]

Mask Restored image Cartoon component Texture component

(a) Results on “House”

Degraded image Restored image of [34] Cartoon component of [34] Texture component of [34]

Mask Restored image Cartoon component Texture component

(b) Results on “Jackstraw”

Figure 19. Results on “House” and “Jackstraw” with 50% pixels missing.

(a) Degraded image (b) Restored image (c) Cartoon component (d) Texture component

Figure 20. Results on ’Barbara’ with pixels in a generated mask missing.
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Such an extended version of the proposed method is tested on four test real images shown440

in the last subsection with missing rate of 40% and 50%, and is compared to Ono et al. [34].441

See Table 2 for the comparison of inpainting performance in terms of PSNR/SSIM. It can442

be seen that the proposed method outperformed Ono et al.[34] by a large margin on the test443

images. See Figure 18 for visual illustration of two results on “Snake” and “Barbara” with444

missing rate of 40%. It can be seen that Ono et al. [34] wrongly assigned nearly all textures445

on the snake and the tie of Barbara to the cartoon layer, which makes the resulting texture446

layer rather weak. In comparison, our method produces a much clearer cartoon layer and a447

texture layer, which leads to better inpainted results. In Figure 19, we show two results on448

“House” and “Jackstraw” with missing rate of 50%. Similar phenomenon can be observed.449

In addition, we also tested the performance of the proposed method in the case that450

the missing pixels are regular patterns such as text and scratches. The degraded image and451

the corresponding results are shown in Figure 20. Since such masks may bring undesired452

patterns with isotropic or anisotropic recurrence, we initialize the input image with a linear453

interpolation before running the proposed algorithm. From Figure 20, it can be seen that the454

propose method can restore the image well and generate an accurate decomposition.455

4.4. Sensitivity to Parameter Settings. In this experiments, we tested how the perfor-456

mance of the proposed method is sensitive to the setting of the parameters involved in the457

algorithm. The evaluation is done by modifying the parameters, α1, α2, β1, β2, η1, η2 in the458

range of 20%-180% of their default values. See Figure 21 for the plot of the SSIM values of the459

corresponding results on a synthesized image. It can be seen that the decomposition results460

are stable when the parameters vary in [0.6, 1.4] of their default values. In comparison, the461

sensitivity of the performance of the proposed method is relatively higher for the parameters462

α1, β2, η2 than for other parameters.463
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(a) SSIM of the cartoon component
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(b) SSIM of the texture component

Figure 21. SSIM values of the cartoon and texture layers generated using the parameters α1, α2, β1, β2,
η1 and η2 varying from 20% to 180% of their default values.

To visualize the impact caused by different parameter settings, some results obtained464

using different parameter settings are shown in Figure 22-24. Figure 22 shows the results on465

“Friends” with varying α1 and β1. It can be seen that the patterns on the horse are clear466

in the cartoon component when α1 = 0.05, and disappears gradually as α1 increases. When467
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α1=0.05 α1=0.15 α1=0.25 α1=0.35 α1=0.45

β1=0.024 β1=0.072 β1=0.120 β1=0.168 β1=0.216

Figure 22. The decomposition results of the proposed method on ’Friends’ with varying α1 and β1.

α1 = 0.45, the patterns are entirely removed, and even the white edge gets a little blurred. As468

for the texture components, the Teddy becomes clear as α1 increases. On the contrary, when469

β1 grows from 0.024 to 0.216, more and more patterns/details are carried from the texture470

components to the cartoon components.471

The results about α2 and β2 are shown in Figure 23. As α2 increases, more and more472

details are removed from the cartoon components while some week textures becomes stronger473

in the texture components. On the other hand, when β2 grows from 0.006 to 0.054, it can474

also be observed that some undesired texture in the cartoon components become more and475

more clear while some structures from the texture components gradually get removed.476

As for η1 and η2, the proposed method performs more stable when the parameters varies.477

The results are shown in Figure 24, where the edge of the roof keeps clear in the cartoon478

components and is almost invisible in the texture components. However, slight differences can479

still be observed. In Figure 24, the figure on the roof is not clear in the texture component480

and remains in the cartoon component when η1 = 4, but it becomes clear in the texture481

component and removed from the cartoon component when η1 = 36. Similar phenomena can482
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α2=0.04 α2=0.12 α2=0.20 α2=0.28 α2=0.36

β2=0.006 β2=0.018 β2=0.030 β2=0.042 β2=0.054

Figure 23. The decomposition results of the proposed method on ’Barbara’ with varying α2 and β2.

also be seen in Figure 24 for varying η2.483

4.5. Computational Cost. To evaluate the efficiency of the proposed method, we compare484

its running time with other compared methods when processing images of size 256× 256 and485

512×512 on the same computational environment: Intel i7-6700 CPU and RTX TITAN GPU.486

The results are listed in Table 3. From Table 3, it can be seen that the PDE-based approach of487

Ng et al. [33] is the fastest and much faster than the patch-matching-based methods including488

Ma et al. [30] and ours. The time cost of our approach is around 1.5 times as that of Ma et489

al. [30] which is still acceptable. Compared to Papyan et al. [37], our approach is much faster.490

Table 3
The running time (seconds) of the proposed and compared methods on different size of images.

Size Ng [33] Ono [34] Ma [30] Papyan [37] Gu [24] Sur [44] Ours

256x256 2.0 12.0 84.0 393.9 63.2 5.4 126.7
512x512 9.1 90.2 293.0 1333.7 308.5 17.7 453.7
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η1=4 η1=12 η1=20 η1=28 η1=36

η2 = 1 × 10−4 η2 = 3 × 10−4 η2 = 5 × 10−4 η2 = 7 × 10−4 η2 = 9 × 10−4

Figure 24. The decomposition results of the proposed method on ’House’ with varying η1 and η2.

5. Conclusion. In this paper, we showed that the patch recurrence for cartoon and tex-491

ture have different orientation properties: anisotropy (cartoon) vs. isotropy (texture). Based492

on such a new observation, we proposed a new patch recurrence prior for distinguishing the493

cartoon layer and texture layer, and developed an approach to exploit such a prior for cartoon-494

texture decomposition. The experiments showed the advantage of the proposed method over495

existing state-of-the-art methods, in terms of both quantitative measurement and visual qual-496

ity. In future, we would like to investigate the application of the proposed prior in other image497

processing problems.498
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