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Multi-View 3D Shape Recognition via
Correspondence-Aware Deep Learning

Yong Xu, Chaoda Zheng, Ruotao Xu, Yuhui Quan* and Haibin Ling

Abstract—In recent years, multi-view learning has emerged as
a promising approach for 3D shape recognition, which identifies a
3D shape based on its 2D views taken from different viewpoints.
Usually, the correspondences inside a view or across different
views encode the spatial arrangement of object parts and the
symmetry of the object, which provide useful geometric cues for
recognition. However, such view correspondences have not been
explicitly and fully exploited in existing work. In this paper, we
propose a correspondence-aware representation (CAR) module,
which explicitly finds potential intra-view correspondences and
cross-view correspondences via kNN search in semantic space and
then aggregates the shape features from the correspondences via
learned transforms. Particularly, the spatial relations of corre-
spondences in terms of their viewpoint positions and intra-view
locations are taken into account for learning correspondence-
aware features. Incorporating the CAR module into a ResNet-18
backbone, we propose an effective deep model called CAR-Net
for 3D shape classification and retrieval. Extensive experiments
have demonstrated the effectiveness of the CAR module as well
as the excellent performance of the CAR-Net.

Index Terms—3D Shape Analysis, Multi-View Learning, Cor-
respondence Learning, Object Recognition

I. INTRODUCTION

UNderstanding 3D geometric data (e.g. 3D shape/object
models) has been a fundamental problem since the born

of computer vision. It allows including features derived from
3D shapes into recognition pipelines, with broad application
prospects such as autonomous driving, robotics, augmented
reality, digital entertainment, civil infrastructure monitoring,
medical imaging, among others; see e.g. [1], [2], [3], [4]. In
the past, due to the limited availability of 3D geometric data,
early work mainly focuses on the theoretical representation of
3D shapes (e.g. [5]). With recent development of 3D sensing
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technologies as well as the prevalence of computer graphics
data, there is a growing interest in developing practical tech-
niques for 3D shape recognition.

Classification and retrieval are two popular tasks in 3D
shape recognition. Traditional approaches focus on the design
of handcrafted shape features; see e.g. [5], [6]. Embracing the
advances of deep learning in image recognition [7], many
recent studies (e.g. [8], [9], [10], [11], [12]) address the
problem via training a deep neural network (DNN) from a
labeled dataset. Unlike images which are generally represented
as matrices or tensors, 3D geometric data has various forms
owing to the diversity of 3D sensors and 3D modeling soft-
ware, such as 3D point cloud, volumetric grid, and multi-view
images. These forms have their own properties and advantages.
According to the form of DNN’s input, existing deep learning
approaches for 3D shape classification and retrieval can be
divided into three kinds: point-based approaches, volumetric
approaches, and multi-view approaches.

Point-based approaches (e.g. [13], [10], [14], [15], [16],
[17]) consume point clouds, a popular format of 3D data, using
a DNN. A point cloud is generally a set of point coordinates
with irregular organization and orderless structure. Such dif-
ferences from image data (indexed by row/column) hinder the
direct use of traditional convolutional neural networks (CNNs)
for processing point clouds. Thus, specifically-designed DNN
architectures are needed in point-cloud-based approaches;
see e.g. [13], [18]. Volumetric approaches (e.g. [9], [19], [20],
[8], [21]) accept voxelized 3D data as input, where a 3D shape
is represented as a volumetric binary occupancy grid. Unlike
point clouds, a volumetric grid has a regular ordered structure
in analogy to image’s grid. Therefore, the CNNs that process
images can be adopted to handle voxelized 3D data by simply
extending 2D convolutional layers to the 3D ones. Since the
computational efficiency of 3D convolutional layers does not
scale well in accordance with the resolution of input voxelized
data, one key in volumetric approaches is the acceleration of
related processing in the DNN; see e.g. [22], [23].

Multi-view approaches (e.g. [11], [24], [25], [26], [27], [28],
[29], [30], [31], [32]) capture multiple 2D views from a 3D
object and then use the views to train and test a DNN. Most
existing multi-view approaches adopt the following pipeline:
extracting view-wise features and then aggregating them for
classification. The advantages of multi-view approaches are
plenty. Firstly, the DNNs pre-trained on images can be directly
leveraged for processing 2D views. Secondly, multi-view ap-
proaches have a mechanism similar to human perception, i.e.,
people look around an object to understand it by combining
surfaces’ information from multiple views. In fact, cognitive
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supports have been given by many studies that human visual
perception on 3D shapes relies on various 2D observations
from different view points [33]. Thirdly, geometric represen-
tation artifacts (e.g. no interior, polygon soups, non-manifold
geometry) may be avoided in multi-view approaches [34].
Fourthly, multi-view approaches are directly applicable to the
3D objects captured with backgrounds. Last but not least, view
images can be generated from any other format of 3D objects.

With all aforementioned advantages, multi-view approaches
have achieved very encouraging results; see e.g. [12], [24],
[25], [34], [29]. This motivated us to develop a multi-view
deep learning approach for 3D object classification and re-
trieval, with excellent performance provided.

A. Main Idea

A good model for learning 3D shape representations from
multiple views should be capable of exploiting both intra-view
patterns and cross-view relations to improve the effectiveness
of learned features. Intra-view patterns can be characterized by
the view’s local semantic features and the correspondences of
these semantic features. Such feature correspondences inside a
view are referred to as intra-view correspondences. In compar-
ison, cross-view relations are described by views’ consistency,
which says object parts in one view have their correspondences
in other views and their semantic features are carried along the
way. Such correspondences across different views are referred
to as cross-view correspondences.

A 3D shape often has many similar parts due to symmetry
of the object and repetition of object parts. How these similar
parts distribute provides useful clues for identifying the object.
For instance, an object with four identical wheels distributed
on two rows is likely a car, while the one with only two
wheels along a line is likely a bike. The similar parts can
be presented in different regions of the same view, which are
captured by the intra-view correspondences, and can also be
presented in different views, which are captured the cross-
view correspondences. Therefore, discovering intra/cross-view
correspondences and analyzing their spatial relation can reveal
useful knowledge, e.g., how object parts relate to each other
and how they vary along with viewpoints changes, and im-
prove the discrimination and robustness of learned features.

The spatial relation of a pair of correspondences can be
described by the correspondences’ intra-view positions, as well
as by the viewpoints from which the views are taken. While
intra-view positions are undoubtedly useful, viewpoints are
also important for recognition tasks as they encode the location
information from the 3D camera space. Also, the viewpoints’
relation is correlated to the semantics of object parts. For
instance, similar views from adjacent viewpoints are likely to
contain the correspondences associated with the same or close
similar object parts, while non-overlapping views from two
distant viewpoints are likely to contain the correspondences
associated to similar parts of distinct spatial locations. Fur-
thermore, different viewpoints may lead to different manners
that intra-view correspondences are related by.

Inspired by the importance and benefits of intra/cross-view
correspondences, we develop a Correspondence-Aware Rep-

resentation (CAR) module for DNN-based 3D shape recog-
nition, whose main idea is illustrated in Fig. 1. Considering
every feature inside a view as a point in some semantic
space, the CAR module finds its K nearest neighbors from
the views as its potential correspondences. Each of the K
correspondence pairs, represented by semantic features as well
as 3D locations regarding viewpoints and intra-view positions,
is encoded identically and independently into a description.
Then the results are aggregated into a correspondence-aware
representation as the module’s output, which can be used in
subsequent parts of an end-to-end DNN. In practice, the CAR
module can be applied to different network layers, in order to
exploit view correspondences at different scales using different
levels of features provided by the DNN.
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Fig. 1: Illustration of main idea of CAR module. The views
generated from a 3D object with some viewpoints are repre-
sented in a semantic feature space. Viewing the local feature
at each position of each view as a point in the semantic space,
all the features are represented as a point set embedded in the
semantic space. The kNN search is used to find the K potential
correspondences for each point in the space. Our CAR module
learns to output a correspondence-aware representation by ex-
ploiting the spatial relation of these potential correspondences
in terms of viewpoints and intra-view positions.

B. Contributions

By combining the proposed CAR module with a ResNet-
18 backbone, we develop an effective model called CAR-
Net for 3D shape classification and retrieval. Benefiting from
the explicit correspondence-aware learning, our CAR-Net can
generate improved shape descriptors from both intra-view
and cross-view correspondences. Evaluated on the Model-
Net40, ModelNet10 and ShapeNetCore55 datasets, the CAR-
Net shows excellent performance, with noticeable performance
gain from correspondence-aware learning. In particular, even
using fewer views, it still outperforms many existing ones.

Learning correspondence-aware representations is a chal-
lenging task, as the intra/cross-view correspondences of 3D
objects have various patterns. For instance, the corresponding
object parts may be far away from or close to each other, may
vary in terms of poses, may deform due to projections, or
even may not exist in other views. Most existing approaches
only take cross-view similarities into account during feature
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aggregation (e.g. [35], [24], [25], [36]), or exploit cross-view
dependencies by using recurrent neural networks (RNNs) on
sequentialized views (e.g. [37], [38], [28], [34], [29]). These
approaches only exploit cross-view correspondences implic-
itly, and ignore intra-view correspondences. Few approaches
exploit both intra-view and cross-view correspondences simul-
taneously. One available work [32] uses global features re-
weighted with a nonlocal fashion to encode the similarities
between all intra-view/cross-view feature pairs. However, this
method does not include 3D positional information of view
features (e.g. viewpoints) which is crucial for shape descrip-
tion. The viewpoint relation is exploited in some existing work
by treating viewpoints as learned latent variables [12] or as the
vertexes of a graph DNN [39]; however, these approaches do
not focus on learning correspondence-aware representations.

In comparison to the above approaches, the proposed one
in this paper has the following advantages:

• capability of explicitly learning and inferring from both
intra-view and cross-view correspondences, and

• awareness of the spatial distribution of viewpoints.
Such advantages bring performance improvement of the pro-
posed approach over existing ones.

C. Organization

The rest this paper is structured as follows. Section II is
devoted to literature review. Section III gives the detailed
description of the proposed CAR-Net. Section IV presents the
experimental evaluation. Section V concludes the paper.

II. RELATED WORK

In this section, a literature review is given on the deep learn-
ing approaches for 3D shape classification and retrieval, in-
cluding point-based approaches, volumetric approaches, multi-
view approaches and other approaches. We will focus more on
the multi-view approaches, as our approach falls into this type.

A. Point-Based Approaches

One seminal work of point-based approaches is Point-
Net [13], which learns individual features via a per-point
multi-layer perceptron (MLP) and combines them into a
global permutation-invariant descriptor via element-wise max
pooling. PointNet cannot make full use of the local structure
of a point for capturing fine-grained shape patterns, as the
features are computed in a per-point manner. Some later
studies introduced hierarchical feature extraction mechanisms
for better characterizing local shapes. PointNet++ [40] applies
PointNet recursively on the nested groups of the input point
cloud. Klokov et al. [14] proposed to build a kd-tree on the
input point set and run hierarchical feature extraction from the
leaves to the root. The kd-tree conducts a non-overlap partition
on the space of input data, and thus the receptive fields of the
resulting DNN are non-overlapping. Li et al. [15] addressed
this issue by replacing the kd-tree with a self-organizing map
and performing kNN search from points to the map’s nodes.

There are also studies on designing local point operations
for encoding complex local shapes. Shen et al. [41] integrated

the point-set kernel learning into the PointNet, which learns a
set of 3D points that jointly respond to a set of neighboring
data points according to their geometric affinity measured by
correlation. Liu et al. [18] proposed a specific convolutional
layer which can learn low-level geometric relations among
points. Liu et al. [17] proposed an RNN-based sequence model
to capture the contextual information inside the local regions
of a point set, with an attention-based aggregation on multi-
scale areas. In [10], [16], [42], the cloud point is modeled as
a graph, on which graph convolutions/CNNs are applied.

B. Volumetric Approaches

The early studies of volumetric approaches, such as [9],
[19], [20], [8], [21], employ CNNs equipped with 3D convolu-
tion layers to process voxelized data. Owing to the complexity
of 3D convolutions, the computational time, memory cost
and model size of these approaches increase very fast as
the resolution of the voxel grid or the depth of the DNN
model increases, resulting in both low efficiency and limited
effectiveness. Recently, some voxel-based approaches have
been proposed with reduced computational burden and im-
proved compactness. Riegler et al. [22] proposed to exploit
the sparsity of the voxel grid for acceleration in processing
high-resolution voxel grids. Kumawat et al. [23] proposed an
efficient alternative to the standard 3D convolutional layer.

C. Multi-View Approaches

One of the very first studies in multi-view approaches is
the MVCNN proposed by Su et al. [11]. It extracts view-
wise features with a shared CNN, which are then aggregated
for classification via a view-level max pooling layer. Though
simple, MVCNN provides a general pipeline adopted by later
multi-view approaches. One key in such a pipeline is the
view feature aggregation module, and some studies have been
focused on improving the feature aggregation by exploiting
similarities among view content. Wang et al. [35] proposed to
run recurrent clustering on view features and aggregate within-
cluster view features by weighted average pooling. Feng et
al. [24] proposed a hierarchical grouping scheme for view-
level pooling, where the pooling is done in each group and
each level so that the intrinsic hierarchical correlations among
views are encoded. Yu et al. [25] proposed the harmonized
bilinear pooling which aggregates view features based on local
patch similarity across views. Zheng et al. [36] proposed to
learn weighted average for view-level pooling based on the
affinity ranking of view features.

There are some approaches exploiting dependencies among
views for learning better view features. Johns et al. [26]
proposed to model and learn the relation of view features
from paired views. Xu et al. [27] proposed to enhance the
representation of each view via its adjacent views. A few
studies [37], [38], [28], [34], [29] treat all the views as a view
sequence ordered by some rule and learn the view dependen-
cies from those sequences using RNNs. The main difference
among these approaches lies in the RNN’s architecture. Ma et
al. [37] used the long short-term memory units (LSTM) with
highway connections. Dai et al. [38] used the LSTM with
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Siamese structure. Han et al. [28] used a two-way LSTM.
Xu et al. [34] used a bi-directional LSTM. Jiang et al. [29]
applied multiple LSTMs on multiple looping view sequences.
Instead of using RNNs, Han et al. [30] proposed to process
the view sequence with hierarchical attention. He et al. [31]
proposed to process view sequences using the n-gram model
in natural language processing, which is more efficient than
RNNs. Yang et al. [32] proposed to learn region-to-region
relationships among different views in a nonlocal fashion.

Compared with aforementioned approaches, the proposed
one in this paper exploits the dependencies among views by
explicit correspondence-aware learning. In addition, it takes
the relation between viewpoints into account. The viewpoint
relation is also considered in Kanezak et al. [12], which treats
viewpoints as latent variables learned for pose alignment. In
comparison, the proposed approach utilizes viewpoint relations
by an MLP. A parallel work to ours is conducted by Wei et
al. [39], which models the spatial relations among views with
a graph and exploits such relations by a graph DNN.

It is worth mentioning that multi-view 3D shape recognition
systems often suffer from high computational cost of projec-
tion rendering and feature matching. See [43] for the related
acceleration techniques for multi-view approaches. It is also
worth mentioning that, instead of using views generated by
perspective projection under virtual pin-hole cameras, Sfikas et
al. [44], [45] used panoramic view for the 2D representation
of 3D objects.

D. Other Approaches

There is a group of approaches that take mesh surfaces
as input by generalizing CNNs to non-Euclidean geometries
(e.g. spectral CNNs [46] and anisotropic CNNs [47]) or by
using handcrafted features of 3D objects as input (e.g. [48]).
These approaches are devoted to shape matching, but not to
classification and retrieval tasks. Also note that a few multi-
model approaches use two or more formats of 3D data for
further improvement, e.g. both voxels and views are used
in [49]. Muralikrishnan et al. [50] proposed to learn a unified
representation of 3D shapes across different formats of 3D
shape data including point cloud, voxels and views. In addi-
tion, there are also some approaches built upon other machine
learning techniques, e.g. multi-hyper-graph learning [51].

III. MAIN BODY

A. Framework

The architecture of the proposed CAR-Net for 3D shape
recognition is illustrated in Fig. 2. Given a 3D object, its multi-
ple views in the form of 2D images V1, · · · ,VM ∈ RH0×W0×3

are generated as input, and the CAR-Net, denoted by F ,
outputs a label prediction vector ℓ ∈ RN for N classes:

F : {V1, · · · ,VM} ⊂ RH0×W0×3 → ℓ ∈ RN . (1)

The backbone of CAR-Net is a ResNet-18 [7]. Recall that
the ResNet-18 contains five stages; see Fig. 2. The first stage,
denoted by CONV1, sequentially connects two convolutional
layers and a pooling layer. The rest four stages are denoted by
RES2, · · · , RES5 respectively, each of which is composed of

two residual blocks. We adopt the following modifications on
ResNet-18: (a) The backbone is divided into three parts, and
two proposed CAR modules are inserted into the middle part;
(b) A module for view feature aggregation is added before the
classifier. As a result, the CAR-Net is sequentially composed
of four parts:

F = F1 ◦ F2 ◦ F3 ◦ F4, (2)

which are summarized as follows:

• (F1) View-wise feature representation. The first part
F1 maps each view to some feature space for semantic
representation, which is done by separately passing each
view to the first part of the backbone CNN.

• (F2) Correspondence-aware representation learning.
Given the features of all views from F1, the second
part F2 captures and exploits their view correspondences
based on two sequential CAR modules. This step results
in a correspondence-aware feature tensor for all views.

• (F3) View-wise feature refinement. The enhanced fea-
tures from the CAR modules are further refined by
applying the second part of the backbone view-wisely.

• (F4) Feature aggregation. The refined features of all
views from F3 are aggregated into a single descriptor
and then passed to a classifier.

The details of each part are given in the following subsections.
In particular, the CAR module is our main focus.

For the convenience of presentation, we define the notations
used in the remainder sections as follows. Light letters are used
for scalars (e.g. m,M ), bold lower letters for column vectors
(e.g. x = [x1, · · · , xM ]), bold upper letters for matrices or
tensors (e.g. X = [x1, · · · ,xM ]), hollow upper letters for
sets (e.g. R,X), and calligraphic upper letters for operators
(e.g. F).

B. Multi-View Representation of 3D Object

Multi-view learning approaches for 3D shape recognition
take multiple view images from a 3D object as input. Typically,
3D objects are stored as polygon meshes or point clouds.
Following existing works [11], [12], [35], the multi-view
images of a 3D object are generated by rendering the mesh or
point cloud under the perspective projection of a virtual camera
with varied viewpoints. Before rendering, the 3D object is
uniformly scaled into a unit sphere.

The setup of camera viewpoints can be critical to the per-
formance of a multi-view approach. A viewpoint (i.e. spatial
position of virtual camera) can be represented as a unit vector
in R3. There are two widely-adopted viewpoint setups in
existing literature, as shown in Fig 3, which are

• Circle-12. There are 12 virtual cameras placed evenly
around the object with elevation angle θ = 30◦ from the
ground plane, pointing towards the object’s centroid.

• Dodecahedron-20. There are 20 virtual cameras placed
at the vertices of a dodecahedron enclosing the object.

Both the setups will be used in the experiments. Follow-
ing [12], all the views are of the size 224× 224.



IEEE TRANSCATIONS ON IMAGE PROCESSING, DRAFT 5

R
B

C
onv

C
A

R

R
B

C
A

R

G
A

P

FC
𝑅𝐸𝑆$

𝑅𝑒𝑠'

𝑅𝑒𝑠(

𝑅𝑒𝑠)

View-wise feature representation Correspondence-aware learning View-wise 
feature refinement

Feature
aggregationView	features

𝐶𝑂𝑁𝑉9, 𝑅𝐸𝑆', 𝑅𝐸S( 𝑅𝐸𝑆) Classifier

predicted label

ℱ9 ℱ' ℱ( ℱ$

Fig. 2: Architecture of CAR-Net for 3D shape recognition. The GAP stands for Global Average Pooling.

𝜃

(a) Circle-12 (b) Dodecahedron-20

Fig. 3: Illustration of two camera viewpoint setups.

C. View Feature Representation and Refinement

Recall that our CAR-Net contains two backbone parts used
in F1 and F3 respectively. Given M views V1, · · · ,VM ∈
RH0×W0×3 as input, the backbone part in F1 is applied to
each view individually and identically:

F1 : Vm ∈ RH0×W 0×3 → Z1
m ∈ RH1×W1×C1 , (3)

for m = 1, · · · ,M , where Z1
m denotes the output C1-channel

feature tensor on Vm. All Z1
ms are input to F2 and transformed

to a set of correspondence-aware feature tensors:

F2 : {Z1
m}Mm=1 ⊂ RH1×W1×C1 → {Z2

m}Mm=1 ⊂ RH2×W2×C2 .
(4)

Similar to F1, the backbone part in F3 operates on its input
feature tensors view-wisely:

F3 : Z2
m ∈ RH2×W2×C2 → Z3

m ∈ RH3×W3×C3 , (5)

for all m, where Z3
m corresponds to the feature tensor of the

mth view.
For simplicity, instead of using two ResNets individually,

we use the single model of ResNet-18 [7] for the two backbone
parts. The first three stages including CONV1, RES2, RES3

are used for F1, and the last stage RES5 is used for F3; see
Fig. 2. The RES4 is used for F2 in which a CAR module
is inserted after each of the two residual blocks. The reason
we select RES4 for attaching the CAR modules is, the feature
tensors in RES4 are of moderate size for acceptable efficiency
during correspondence-aware learning, and meanwhile they
provide sufficient semantic/original information for finding
high-quality potential correspondences.

D. Correspondence-Aware Representation Module

The key component of CAR-Net is the CAR module, which
aims at enhancing the convolutional view-wise features from

F1, via simultaneously exploiting intra-view and cross-view
correspondences. The CAR module accepts the feature tensors
X1, · · · ,XM from the residual block as input, and it outputs
the correspondence-aware features which are of the same size
as the input:

CAR Module: {X1, · · · ,XM} ⊂ RH×W×C

→ {Y1, · · · ,YM} ⊂ RH×W×C .
(6)

The pipeline of the CAR module is illustrated in Fig 4. The
module treats the feature tensors from all views as a set of
MHW features and it contains two steps: (a) correspondence
searching which finds top K potential correspondences for
every feature, and (b) correspondence encoding which utilizes
potential correspondences to generate correspondence-aware
feature representations.

Correspondence searching. For the simplicity of presen-
tation, we rearrange the input feature tensors X1, · · · ,XM

into a matrix X as follows:

{X1, · · · ,XM} ⊂ RH×W×C → X ∈ RMHW×C . (7)

Each row of X corresponds to a C-dimensional local feature
of some view at a certain spatial location, or say, it is a feature
of a local patch in some view image, which can be viewed as
a point in a C-dimensional feature space. In the first step, the
kNN grouping is called to find the K nearest neighbors for
each local feature (i.e. each row of X) in the C-dimensional
feature space:

kNN : X ∈ RMHW×C → I ∈ {1, 2, · · · ,MHW}MHW×K ,
(8)

where I is the matrix of KNN’s indices such that I(j, :)
stores the indices of the K nearest neighbors of X(j, :)
in a decreasing order in terms of similarity. Concretely, the
search is done by comparing X(j, :) with other rows in terms
of ℓ2 distance, for all j. We totally find K = K1 + K2

nearest neighbors including K1 (K1 = 2 by default) intra-
view nearest neighbors and K2 cross-view nearest neighbors.
Then, the collected nearest neighbors of X(j, :) are selected as
its potential inter/intra-view correspondences. Recall that the
C-dimensional feature space is generated from the backbone,
which encodes certain degree of visual semantics. As a result,
the discovered potential correspondences are likely to corre-
spond to the same or similar parts of an object; see Fig. 5 for an
illustration of collected potential cross-view correspondences.

Correspondence encoding. The second step of our CAR
module is to encode the key information of collected potential
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Fig. 5: Examples of potential correspondences found by our CAR module. Each row gives the 12 views of a 3D object. The
starting point of arrows represents the source, and the ending points represent its four potential cross-view correspondences.
The visualization results show that our model can find reasonable intra/cross-view correspondences to support its prediction.

correspondences into the feature representation. We first gen-
erate a correspondence-aware feature by applying a so-called
correspondence encoding (CE) layer. The CE layer accepts the
feature matrix X and the correspondence indices matrix I as
input, and outputs a feature matrix Y :

CE : (X, I) → Y ∈ RMHW×C , (9)

See Fig. 6 for the the workflow of the CE layer. Then X is
combined with Y as the module’s output:

X → X + Y . (10)

Recall that X and I have the same number of rows, and
their rows store the views’ features and the associated feature
correspondence indices respectively. The CE layer processes
each view feature in X as follows. For convenience, we define

f j := (X(j, :))⊤ ∈ RC . (11)

In other words, f j is the jth feature in X , which is a local
feature in some view. Let vj ∈ R3 denote the unit viewpoint
vector of virtual camera associated with the view of f j , i.e.,
it indicates the camera position in the 3D space. Further, let
hj , wj denote the normalized spatial indices (i.e. normalized
to [0, 1] from [1, H] and [1,W ]) of f j in the view. Then, the
entire information associated with f j is described as a tuple:

local feature: (f j ,vj , hj , wj), ∀j. (12)

By looking up the KNN’s indices stored in I(j, :), we have
the top K (potential) correspondences of f j , whose indices

are denoted by j1, · · · , jK . Each correspondence is also rep-
resented as a quadruplet

correspondence: (f jk ,vjk , hjk , wjk), k = 1, · · · ,K. (13)

Given f j as the source, a correspondence-aware feature
is generated from each of its potential correspondences as
follows. For each of its K correspondences, the following
descriptor dj

k is defined:

dj
k := (f j ,vjk−vj , ∥vjk−vj∥22, hjk−hj , wjk−wj) ∈ RC+6.

(14)
It can be seen that such a descriptor contains the source
semantic feature f j , as well as the difference between f j and
its kth correspondence in terms of viewpoints and intra-view
positions. Each description vector is passed to a shared MLP:

MLP : dj
k ∈ RC+6 → qj

k ∈ [0, 1]C . (15)

The underlying idea behind is that the spatial configurations
of intra/cross-view correspondences provide very useful clues
for identifying 3D shapes. The spatial configurations can
be characterized by the displacement of viewpoints and the
difference of intra-view spatial indices between the feature
and its correspondence. Thus, inputting dj

k to the MLP can
encode the spatial configurations of correspondences for fea-
ture enhancement. In our MLP, the output qj

k has the same
size as f jk , and it is combined with f jk to generate an
enhanced feature yjk with correspondence awareness for the
kth correspondence as follows:

yjk = f jk ⊙ qj
k, (16)
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Fig. 6: Workflow of CE layer. Each MLP consists of three FC layers with RELU activation and BN at its end. The FC layer
is equipped with ReLU activation and BN. The numbers under the MLPs denote the output size of each layer of the MLP.

for all k, where ⊙ denotes element-wise product. It can be seen
that yjk encodes both the local semantic features f j ,f jk and
the spatial distribution relation of this correspondence pair.

Afterwards, the enhanced features {yjk}Kk=1 are aggregated
into a single correspondence-aware feature yj as follows:

aggregation : {yjk}Kk=1 ⊂ RC → yj = FC(max
k

(yj
k)) ∈ RC ,

(17)
for any j, where max(·) denotes element-wise max pooling,
and FC(·) denotes a fully-connected (FC) layer with ReLU
activation followed by BN. The max pooling takes the most
interesting information (strongest responses) over all corre-
spondences for maximal utilization of the enhanced represen-
tations, and it also brings the invariance to correspondences’
order. The FC layer acts as a transform aligning maxk(y

j
k)

to the semantic space of f j (i.e. bridging the semantic gap
between maxk(y

j
k) and f j), as its result will be added to

f j in the last step of the CAR module defined in (10). All
aggregated features yj , j = 1, · · · ,MHW , are stacked into a
matrix Y where Y (j, :) = (yj)⊤, which is transformed back
to a feature tensor and then used as the output of the CE layer.

It is worth mentioning that, for the correspondence de-
scriptor dj

k, we do not directly use (vjk ,vj , hjk , hj , wjk , wj)
but their paired difference instead. This enforces the MLP to
explicitly explore the difference between a pair of correspon-
dences for prediction. In addition, it helps to reduce the MLP’s
size. Moreover, we do not include the semantic feature f jk

into dj
k for the MLP’s input, as f jk provides little additional

information over f j owing to the similarity between f jk and
f j . This also helps to reduce the MLP’s size. Empirically, we
find that introducing f jk brings very minor improvement but
an increase of model size. See Section IV-E4 for more analysis
on the correspondence descriptor.

Remark 1. (CAR module vs. Nonlocal module) The mecha-
nism behind our CAR module has certain similarity to that
of nonlocal modules (e.g. [52], [32]), and we compare them
as follows. A nonlocal module generally takes the similarity
between all feature pairs into account, while our CAR module
explicitly selects top-K correspondences. On the one hand,

nonlocal modules may exploit additional information ignored
by our module. One the other hand, the explicit selection
of top-K correspondences in our module avoids introduc-
ing/overfitting useless features from unrelated pairs that might
be harmful for recognition/learning. In addition, our CAR
module encodes the viewpoint relation in the representation,
which is not utilized in existing nonlocal modules.

E. View Feature Aggregation and Loss Function

In the final aggregation stage F4, the refined features of all
views from F3 are aggregated by a global average pooling
layer which averages the entries within each view along the
height and the width dimensions. Afterwards, an FC layer with
softmax activation is applied for predicting the class label.

Given a set of training data {(Xq, lq)}Qq=1, where Xq is a 3D
object associated with the one-hot class label lq ∈ {0, 1}N for
N classes. We first generate the view sequence V q

1 , · · · ,V
q
M

on each 3D object Xq . Let ℓq = F({V q
1 , · · · ,V

q
M}) denote

the soft label predicted by CAR-Net. Then the loss function
for training CAR-Net is defined by the cross-entropy:

L := −
Q∑

q=1

N∑
n=1

lq(n) log(ℓq(n)). (18)

IV. EXPERIMENTS

A. Implementation Details

Our CAR-Net is implemented with MXNET. In training,
the backbone (i.e. ResNet-18) of CAR-Net is initialized using
the model pre-trained on ImageNet. A dropout layer with
dropping ratio 0.5 is inserted before the final FC layer to
reduce overfitting. The model weights in the CAR modules
are randomly initialized with the MSRA approach [55]. The
scale parameter of the FC’s BN in the CE layer is set to zero
to ensure each CAR module is an identity mapping before
training, so as to minimize the influence to the pre-trained
backbone model at the beginning of training. The Momentum
optimizer with a momentum 0.9 and a weight decay of 5e-4 is
used for minimizing the training loss. The initial learning rate
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TABLE I: Performance comparison on ModelNet datasets. The n× behind each multi-view method indicates the number of
views. The methods are grouped according to the type of their input. Best results are boldfaced.

Input Method
ModelNet40 ModelNet10

Classification
Accuracy (%)

Retrieval
mAP (%)

Classification
Accuracy (%)

Retrieval
mAP (%)

Voxels
VRN-Ensemble [20] 95.54 - 97.14 -

VRN (w/o Ensemble) [20] 91.33 - 93.61 -
LP-3DCNN [23] 92.10 - 94.40 -

Point cloud + Views PVNet [53] 93.20 89.50 - -

Point Cloud

RS-CNN [18] 93.60 - - -
SO-Net [15] 93.40 - 95.70 -

LDGCNN [16] 92.90 - - -
Point2Sequence [17] 92.60 - 95.30 -

PointNet++ [40] 91.90 - - -
PointNet [13] 89.20 - - -

Views

RotationNet [12], 20× 97.37 - 98.46 -
RotationNet [12], 12× 91.00 - 94.00 -

MVCNN-New [54], 12× 95.00 - - -
View N-gram [31], 12× - 89.30 - 92.80

Adjacent Views [27], 36× - 87.05 - -
Relation Network [32], 12× 94.30 86.70 95.30 -

MHBN [25], 6× 94.70 - 95.00 -
MLVCNN [29], 36× 94.16 92.84 - -
Wang et al. [35], 12× 93.80 - - -

3D2SeqViews [30], 12× 93.40 90.76 94.71 92.12
GVCNN [24], 12× 93.10 85.70 - -
Ma et al. [37],12× 91.05 84.34 95.29 93.19
MVCNN [11], 80× 90.10 79.50 - -

CAR-Net [Ours], 12× 95.22 91.27 95.82 91.53
CAR-Net [Ours], 20× 97.73 95.04 99.01 97.12

is set to 0.01 for the backbone CNN parts and 0.1 for the CAR
modules, which is divided by 10 every 20 epochs. By default,
the CAR-Net is equipped with two CAR modules at RES4

and K = 8. For the variants of CAR-Net used in subsequent
experiments, if not specified, we train and test them using the
same protocol as CAR-Net.

B. Evaluation on ModelNet Datasets
The ModelNet40 and ModelNet10 benchmark datasets are

adopted for our experiments. These two datasets are widely
used for the performance evaluation of 3D shape recognition,
which are two subsets of the ModelNet [8], a large repository
of clean 3D CAD models. The ModelNet40 dataset contains
12311 objects from 40 categories, where the training/test split
is 9843/2468. The ModelNet10 dataset contains 4899 objects
from 10 categories, where the training/test split is 3991/908.

To demonstrate the effectiveness of the proposed CAR-Net,
we compare it with 18 representative 3D shape recognition
methods on the classification and retrieval tasks. The methods
for comparison consist of nine multi-view methods [12], [54],
[25], [29], [35], [30], [24], [37], [11], two voxel-based meth-
ods [20], [23], six point-based methods [18], [15], [16], [17],
[13], [40] and one multi-modal method [53]. For classification,
the performance is measured in terms of classification accu-
racy measured by instance accuracy (i.e. number of correctly-
classified samples over total number of samples). For retrieval,
following existing work, we extract shape descriptors from
the input of the last layer of the model. Then taking each test
sample as a query, we compute a ranking list on the remainder
test samples, with the descend order of similarity measured by

the ℓ2 distance between two shape descriptors. The ranking
lists of all the test samples are then used to calculate the mean
average precision (mAP).

Both the Circle-12 and Dodecahedron-20 camera setups
mentioned in Section III-B are used for the test. See Table I
for the results. The results of the compared methods are all
quoted from their original papers, if possible. We use ’-’ to
denote the unavailability of results.

Classification results. As shown in Table I, with 20 views
under the Dodecahedron-20 setup, our model outperforms all
the other compared methods in the classification task, mostly
by a large margin. Even when fed with only 12 views under
the Circle-12 setup, our model achieves competitive results
on both datasets, surpassing all the competitors except VRN-
Ensemble and RotationNet with 20 views. As discussed in its
original work [20], VRN-Ensemble mainly benefits from the
ensemble of predictions from different models. The ensemble
scheme is also applicable to other methods including ours.
When VRN is not combined with the ensemble scheme, its
performance is not as good as ours with 12 views. As for
RotationNet, we can see that its performance is more sensitive
than ours to the camera setup. When the number of views is
reduced from 20 to 12, the accuracy of RotationNet has a
decrease of 6.37%/4.46% on ModelNet40/10. In comparison,
the performance decrease of our CAR-Net is much less. Also
note that, the Relation Network [32] is a nonlocal DNN, and
its performance is inferior to our CAR-Net.

It is worth mentioning that MHBN achieves comparable
results to ours with only 6 views. However, using more views
(e.g. 12 views) in MHBN yields worse performance [25]. This
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TABLE II: Performance comparison on ShapeNetCore55 dataset in terms of four metrics: precision, recall, F-Score, mAP
(mean average prediction), and NDCG (normalized discounted cumulative gain). Two schemes are used respectively to obtain
average results: Micro (weighted average regarding category size) and Macro (unweighted average). Best results are boldfaced.

Method Micro (Weighted by category sizes) Macro (unweighted)

Precision Recall F1-Score mAP NDCG Precision Recall F1-Score mAP NDCG

Kanezaki RotationNet [56] 0.810 0.801 0.798 0.772 0.865 0.602 0.639 0.590 0.583 0.656
Zhou Improved GIFT [56] 0.786 0.773 0.767 0.722 0.827 0.592 0.654 0.581 0.575 0.657

Tatsuma ReVGG [56] 0.765 0.803 0.772 0.749 0.828 0.518 0.601 0.519 0.496 0.559
Furuya DLAN [56] 0.818 0.689 0.712 0.663 0.762 0.618 0.533 0.505 0.477 0.563

Thermos MVFusionNet [56] 0.743 0.677 0.692 0.622 0.732 0.523 0.494 0.484 0.418 0.502
Deng CM-VGG5-6DB [56] 0.418 0.717 0.479 0.540 0.654 0.122 0.667 0.166 0.339 0.404

Li ZFDR [56] 0.535 0.256 0.282 0.199 0.330 0.219 0.409 0.197 0.255 0.377
Mk DeepVoxNet [56] 0.793 0.211 0.253 0.192 0.277 0.598 0.283 0.258 0.232 0.337

SHREC16-Su MVCNN [56] 0.770 0.770 0.764 0.735 0.815 0.571 0.625 0.575 0.566 0.640
SHREC16-Bai GIFT [56] 0.706 0.695 0.689 0.640 0.765 0.444 0.531 0.454 0.447 0.548

Ma et al. [37] 0.526 0.899 0.602 0.810 0.868 0.151 0.812 0.206 0.604 0.632
3D2SeqViews [30] 0.613 0.804 0.616 0.852 0.909 0.199 0.857 0.252 0.725 0.862

CAR-Net [Ours] 0.815 0.805 0.803 0.772 0.865 0.627 0.691 0.632 0.624 0.694

suggests that increasing the number of views does not always
bring performance improvement. It is also worth mentioning
that, while the multi-view methods are overall superior to
the voxel-based and points-based methods in the classification
task, different types of methods may provide complementary
discrimination. In practice, different types of methods could
be fused for further improvement, as PV-Net [53] showed.

Retrieval results. In the retrieval task, our model with 20
views as input achieves exciting results, where it consistently
outperforms all other competitors by a large margin. When
only comparing the methods consuming 12 views, we can see
that CAR-Net surpasses other methods on ModelNet40. On
ModelNet10, it does not perform as well as 3D2SeqViews [30]
and Ma et al. [37]. It can also be seen that, the MLVCNN [29]
using 36 input views only performs better than our model with
12 views. However, our model using 20 views performs much
better than MLVCNN [29].

C. Evaluation on ShapeNetCore55 Dataset

The ShapeNetCore55 dataset is another popular benchmark
dataset for 3D object recognition. It contains 51162 objects
classified into 55 categories and 203 subcategories. Compared
to ModelNet40/10, the ShapeNetCore55 dataset covers a wider
range of objects with more complex shapes, and it is the
official dataset of the retrieval competition SHREC2017 [56].

Following the standard protocol, the retrieval task is con-
ducted on ShapeNetCore55. We adopt the same network setup
as the previous subsection and use 20 input views under the
Dodecahedron-20 setup to generate the results. The model is
trained on the 55 categories and 203 subcategories respec-
tively. During retrieval, the model trained on 55 categories is
used to find out the samples with the same predicted label as
the query object. Then the output feature of the model trained
on 203 subcategories is used to re-rank these samples in terms
of ℓ2 distance. Four metrics including precision, recall, F-
Score, mAP and NDCG (normalized discounted cumulative
gain) are used for measuring the retrieval performance. The
first three are computed based on binary in-category relevance
versus out-of-category relevance, while the last metric uses a

graded relevance that additionally considers the matching of
the sub-categories. For each of the four metrics, its values over
categories are averaged using two schemes respectively: (a)
MICRO scheme that uses weighted average regarding category
size; and (b) MACRO scheme that uses unweighted average.
See [56] for more details on the metrics.

In Table II, our method is compared with Ma et al. [37]
and 3D2SeqViews [30] as well as all the participants in [56].
The results of the former two are from their original pa-
pers [37], [30]. For the participants in [56], we use their
official competition results from the website of [56]. In this
challenging dataset, our CAR-Net also outperforms all the
competitors, which once again demonstrates the effectiveness
of our method. Surprisingly, CAR-Net shows noticeable su-
periority over RotationNet, the top performer in SHREC2017.
When compared to Ma et al. [37] and 3D2SeqViews [30],
our method also yields better results overall. These two com-
pared methods show unbalanced performances under different
metrics (e.g. high macro recalls and extremely low macro
precision). In contrast, our results are more stable across
different metrics, with relatively high values achieved. In Fig. 7
we show the precision-recall (PR) curves of the compared
methods with available results. It can be seen that our method
achieves the best PR curve in both the micro and macro cases.

We would like to note that, following the SHREC’17
Track [56], a varied number of returned entries (at most 1000)
is allowed per ranked list. As a result, the choice of the number
of returned entries for calculating the performance metrics is
up to the competitor (method). In other words, the results
in Table II actually may correspond to different numbers of
returned entries. To balance the precision and recall, for each
query object, we only construct the ranked list on objects with
the same predicted class as the query, which is the same as
RotationNet [12] (see the official report in [56]). In the results,
Ma et al. [37] and 3D2SeqViews [30] achieved quite high
recall but very low precision (especially on Macro metrics).
This is probably because they choose to return more entries
for each query.
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Fig. 7: Precision-recall curves on ShapeNetCore55 dataset.

D. Ablation Studies

The following ablation studies are conducted. (a) To show
the benefits of the CAR module, we removed all CAR modules
in CAR-Net, and then retrain and test the resulting model
on ModelNet40/10 using the same protocol as before. (b) To
verify the benefit from using viewpoint relation information
in the CAR modules, we keep the CAR modules but remove
vjk − vj , ∥vjk − vj∥22 from the correspondence descriptor dj

k

defined in (14) for all k, j. The size of each MLP in the
CAR module is adapted accordingly. (c) Similarly, we remove
hjk − jj , wjk − hj from dj

k to evaluate the performance of
CAR-Net without using the spatial relative indices for the
correspondence descriptor. (d) We replace the max pooling in
the CAR module with mean pooling and sum pooling respec-
tively, where the sum pooling acts as a weighted sum using the
qj
k as element-wise weight. (e) To compare the effectiveness

of CAR module with nonlocal module in exploiting view
correspondence, we replace each CAR module in our CAR-
Net by the nonlocal module proposed in [52]. The nonlocal
module [52] for video processing is adopted to multi-view
processing by considering each view as a video frame. Same
as the CAR module, it accepts multi-view features as input and
outputs enhanced multi-view features, but without explicitly
finding correspondences and utilizing viewpoint relations.

Table III lists the results of the ablation studies on the
ModelNet datasets, from which we have the following obser-
vations. (a) Without using CAR modules for exploiting view
correspondences, noticeable performance decrease is observed.
This demonstrates that view correspondences are useful for 3D
shape recognition and our CAR modules are capable of uti-

lizing such correspondences. (b) Without exploiting viewpoint
relations in the CAR modules, the performance of CAR-Net
has certain decrease. This indicates that viewpoint relations in
multi-view methods do help improving the recognition on 3D
shapes. (c) The spatial relative indices also contribute to the
performance improvement. (d) The performance of using sum
or mean pooling in the CAR module is inferior to that using
max pooling. This indicates that useful clues provided by the
CAR module are mainly contributed by the most interesting
correspondence (i.e. the one with strongest response captured
by max pooling). (e) Compared to our CAR module, the
nonlocal module brings smaller improvement over the baseline
and yields noticeably worse results.

TABLE III: Results of ablation study in terms of classification
accuracy (%). Twelve input views are used.

Model ModelNet40 ModelNet10

CAR-Net 95.22 95.82
CAR-Net (w/o CAR modules) 93.68 94.38

CAR-Net (w/o viewpoint relation) 94.33 95.37
CAR-Net (w/o spatial relative indices) 94.96 95.39

CAR-Net (sum pooling) 94.32 95.48
CAR-Net (mean pooling) 94.49 95.37

Backbone + Nonlocal modules 93.87 95.04

E. More Analysis

Additional experiments are conducted for more analysis.
1) Position of CAR modules: Recall that we attach the CAR

module after each residual block in RES4 of ResNet-18, as
the feature tensors at those blocks have moderate sizes for
fast correspondence matching and contain sufficient semantic
information for accurate matching. It is interesting to see how
the performance is influenced when putting the CAR modules
to other stages including RES3 and RES5 of ResNet-18.
For convenience, we use ’Model(RESp)’ to denote the model
using the CAR modules at RESp.

The results on ModelNet40/10 are shown in Table IV,
in terms of both classification accuracy and relative training
time cost. We can see that Model(RES5) has slightly lower
accuracy than Model(RES4). This is probably due to that the
resolution of feature maps in RES5 is much smaller than that
in RES4, which contains less information for discrimination.
On the other hand, the smaller sizes of feature maps in
RES5 leads to faster speed, as less pairs are compared in
the kNN grouping. As for Model(RES3), its performance
is much worse than Model(RES4) and Model(RES5). The
reason is probably that the RES3 is too shallow with less
feature channels than RES4 such that the features on it contain
insufficient semantics for accurate correspondence matching.
What’s worse, due to the higher resolutions of feature maps of
RES3, the time cost of Model(RES3) is much higher than the
other two. In Fig. 8, we show the distance maps computed for
kNN search on a source region. It can be seen that the distance
maps at RES3 are not discriminative and may be confusing,
while those at RES5 are discriminative but with much lower
resolutions. In comparison, RES4 wins the trade-off.
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Fig. 8: Distance maps at different stages of the ResNet-18 backbone. The first row provides the views of a 3D car model,
where the blue box in the 4th view denotes the source region whose center location is denoted by (r0, c0). The last three rows
provide the similarity maps at RES3, RES4, RES5 respectively. Each element at (r, c) in the similarity map of the mth view
denotes the similarity between the point at (r, c) in the mth view and the point at (r0, c0) in the 4th view, measured by the
ℓ2 distance in the feature space defined by RES3/RES4/RES5. Darker color denotes higher similarity.

TABLE IV: Performance comparison in terms of classification
accuracy (%) on using CAR modules in different stages of
ResNet-18. Twelve input views are used.

Model ModelNet40 ModelNet10 Relative Time Cost

Model(RES3) 94.61 95.59 4.49×
Model(RES4) 95.22 95.82 1.00×
Model(RES5) 95.02 95.70 0.81×

2) Number of CAR modules: We test the performance of
CAR-Net using different numbers of CAR modules, including
(a) Case-1: using only one CAR module at RES4; (b) Case-2:
original setting where two CAR modules are used at RES4;
(c) Case-4: using two CAR modules at RES4 and RES5

respectively; (d) Case-6: using two CAR modules at RES3,
RES4 and RES5. The results on ModeNet40/10 are listed in
Table V. It can be seen that using CAR modules at multiple
stages of ResNet-18 does not bring improvement but leads to
some performance degradation. The reason is probably that the
feature refinement by the CAR modules is weakened in such
cases. In addition, using only one CAR module also leads to
slight performance decrease.

TABLE V: Performance comparison in terms of classification
accuracy (%) on different configurations of CAR modules.

Choice Configuration ModelNet40 ModelNet10

Case-1 RES4(1 CAR) 95.10 95.26
Case-2 RES4(2 CAR) 95.22 95.82
Case-4 RES4,5(2 CAR) 95.10 95.26
Case-6 RES3,4,5(2 CAR) 94.12 94.93

3) Setting of K in correspondence-aware learning: One
key hyper-parameter in our CAR module is K, the number of
potential correspondences to collect. Recall that K = K1+K2

where K1,K2 are the number of inter-view/intra-view corre-
spondences respectively. We first test the performance of CAR-
Net using varied K2, with the default value K1 = 2. See Fig. 9
for the results on ModelNet40/10. The highest performance

on ModelNet40 and ModelNet10 is achieved with K2 = 2
and K2 = 8 respectively. Overall, there is no significant
performance drop/boost as K2 varies in a moderate range.
It can also be seen that the performance first increases and
then decreases as K2 becomes larger. This is because using a
too large K2 may potentially introduce many additional wrong
correspondences, while using a too small one may not make
full use of cross-view correspondences for improvement.

Next, we study how K1 influences the performance, which
is done by keeping K2 = 8 and varying K1 from 1 to 6. See
Fig. 10 for the results on the ModelNet datasets. Overall, the
performance with tends to decrease with K1 being increased
from 2 to 6. This suggests that only a small number of
intra-view correspondences are sufficient for correspondence
learning, while using too many of them may contaminate
useful information. In addition, using K1 = 1 is insufficient
to make use of intra-view correspondences and leads to worse
result than K1 = 2.
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Fig. 9: Classification accuracy (%) of CAR-Net on ModelNet
datasets with varied K2.

4) Viewpoint relation description: Recall that we use
dj
k = (f j ,vjk − vj , ∥vjk − vj∥22, hjk − hj , wjk − wj)

in (14) as the input descriptor of a shared MLP for learning
viewpoint/correspondence-aware features. For more analysis
on the descriptor, we construct and test the following vari-
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Fig. 10: Classification accuracy (%) of CAR-Net on ModelNet
datasets with varied K1.

ants respectively: d̄j
k = (f j ,vjk ,vj , hjk , hj , wjk , wj), d̂j

k =
(f j ,vjk − vj , hjk − hj , wjk − wj), d̃j

k = (f jk ,f j ,vjk −
vj , ∥vjk − vj∥22, hjk − hj , wjk − wj). See Table VI for the
results on the ModelNet datasets, from which we can have
the following observations. (a) d̄j

k that uses absolute positions
leads to worse results than dj

k that uses relative positions.
This is because explicitly using relative positions emphasizes
how viewpoints/correspondences relate instead of where they
appear, which makes the model focus on learning relations
and prevents it overfitting absolute positions. That is also why
we use relative positions in our descriptor. (b) The additional
term ∥vjk −vj∥22 in d̂j

k over dj
k brings slight improvement on

ModelNet40. We use it for further improvement. (c) The addi-
tional term f jk in d̃j

k over dj
k gives very minor improvement,

which is mainly due to that f jk is very similar to f j such
that it brings little useful information for the correspondence
learning. Thus, our descriptor does not include f jk .

TABLE VI: Performance comparison in terms of classification
accuracy (%) using different correspondence descriptors.

Dataset dj
k d̄j

k d̂j
k d̃j

k

ModelNet40 95.02 94.81 94.94 95.03
ModelNet10 95.70 95.37 95.70 95.70

TABLE VII: Results of CAR-Net on ModelNet40 and its
subsets. Twelve input views are used.

Subset # Training samples # Test samples Accuracy (%)

Subset 1 1736 600 96.17
Subset 2 1656 440 98.18
Subset 3 2460 520 99.03
Subset 4 3991 908 95.82

Average 2460 617 97.16
ModelNet40 9843 2468 95.22

5) Influence of number of classes / shape types: We split
ModelNet40 into four non-overlapping subsets, each of which
contains 10 classes. Then we train and evaluate our 10-class
CAR-Net on these four subsets separately using the same
protocol as that on ModelNet10. The number of training/test
samples of the 10-class splits as well as the results are listed
in Table VII. The average classification accuracy over the
four 10-class subsets is much higher than that on the whole

ModelNet40, which is due to that the difficulty becomes
higher with the number of classes increased. In addition,
noticeable difference is observed among the 10-class subsets,
as the challenges from different subsets varies as they contain
different types of shapes.

6) Robustness to noise: To see whether the CAR module
improves the network’s robustness to the noise in test data,
we add perturbations sampled from i.i.d. Gaussian distribution
N (0, 0.22) to the vertex coordinates of 3D objects in the test
split of ModelNet10/40 and then evaluate the performance. For
comparison, we re-implement MVCNN [11] by replacing its
CNN backbone (VGG-M) with our ResNet backbone, which
is denoted by MVCNN-ResNet. We also remove the CAR
module from our CAR-Net to form a baseline (denoted by
Baseline) for comparison. See Table VIII for the comparison.
In terms of of the performance decrease caused by the presence
of noise, CAR-Net is better than the other two methods, except
that on ModelNet10 it is comparable to MVCNN-ResNet.
Such results show that the CAR module brings certain positive
contribution to the robustness to noise.

TABLE VIII: Results in noise robustness in terms of classifi-
cation accuracy (%). Twelve views are used.

ModelNet10 CAR-Net MVCNN-ResNet Baseline

Clean 95.82 94.49 94.38
Noisy 94.27 (1.55 ↓) 92.95 (1.54 ↓) 90.30 (4.08 ↓)

ModelNet40 CAR-Net MVCNN-ResNet Baseline

Clean 95.22 94.08 93.68
Noisy 87.88 (7.34 ↓) 85.41 (8.67 ↓) 85.57 (8.11 ↓)

7) Computational cost: See Table IX for the results on
model size as well as on the average running time in process-
ing one 3D object on ModelNet40. The previous MVCNN-
ResNet and Baseline are used for comparison. It can be seen
that the additional computational resources caused by our CAR
module is not too much and acceptable.

TABLE IX: Comparison on model size and average time for
processing a 3D object on ModelNet40. Tested on Tesla V100.

Model Model Size Running Time Relative Time Cost

MVCNN-ResNet 44.8 MB 0.12 seconds 1×
Baseline 44.8 MB 0.12 seconds 1×
CAR-Net 45.7 MB 0.20 seconds 1.65×

V. CONCLUSION

In this paper, we proposed a multi-view deep learning ap-
proach for 3D shape recognition. The key part of our approach
is a correspondence-aware learning module with viewpoint
awareness. This module reveals the cross-view/intra-view po-
tential correspondences for each feature, and then learns an
enhanced feature representation from the correspondence pairs
with the corresponding viewpoint relation descriptor. In the
experiments, our approach showed excellent performance with
impressive results achieved on standard benchmark datasets.

While we used ResNet as the backbone in CAR-Net in this
work, our CAR module can be combined with other backbone
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CNNs. Also, the CAR module can be directly incorporated
into the intermediate convolutional layers of most existing
multi-view-based CNNs for 3D shape recognition and for other
multi-view tasks. We leave such extensions as our future work.
In addition, we will investigate new architectures for better
exploiting and integrating view correspondences and viewpoint
relations for 3D shape recognition, e.g., using graph CNNs to
model/learn viewpoint correspondences with graph structures.
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