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Structure-Texture Image Decomposition Using
Discriminative Patch Recurrence

Ruotao Xu, Yong Xu, Yuhui Quan*

Abstract—Morphology component analysis provides an ef-
fective framework for structure-texture image decomposition,
which characterizes the structure and texture components by
sparsifying them with certain transforms respectively. Due to the
complexity and randomness of texture, it is challenging to design
effective sparsifying transforms for texture components. This
paper aims at exploiting the recurrence of texture patterns, one
important property of texture, to develop a nonlocal transform
for texture component sparsification. Since the plain patch recur-
rence holds for both cartoon contours and texture regions, the
nonlocal sparsifying transform constructed based on such patch
recurrence sparsifies both the structure and texture components
well. As a result, cartoon contours could be wrongly assigned to
the texture component, yielding ambiguity in decomposition. To
address this issue, we introduce a discriminative prior on patch
recurrence, that the spatial arrangement of recurrent patches
in texture regions exhibits isotropic structure which differs from
that of cartoon contours. Based on the prior, a nonlocal transform
is constructed which only sparsifies texture regions well. Incor-
porating the constructed transform into morphology component
analysis, we propose an effective approach for structure-texture
decomposition. Extensive experiments have demonstrated the
superior performance of our approach over existing ones.

Index Terms—Image Decomposition, Structure-Texture Sepa-
ration, Patch Recurrence, Sparse representation

I. INTRODUCTION

An image is usually the superposition of a structure com-
ponent (layer) and a texture component (layer). The struc-
ture component, also called cartoon component, refers to the
piecewise-constant geometrical parts of an image, including
homogeneous regions, contours, and sharp edges. In contrast,
the texture component is about the oscillating patterns of
an image, such as fine structures and local repeating fea-
tures. Structure-texture image decomposition is to separate
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the structure and texture components from an image, which
plays an important role in computer vision, with a wide
range of applications to image restoration [1]–[3], motion
analysis [4], image segmentation [5], image compression [6],
stereo matching [7], image editing [8]–[10], color transfer [8],
pattern recognition [11], biomedical engineering [12], remote
sensing [13]–[15], etc.

The importance of structure-texture decomposition origi-
nates from the fact that the structure and texture components
exhibit significantly distinct characteristics and they often
involve different operations in the processing, analysis and
recognition of images. For instance, the texture component
is preferred in optical flow estimation as it is often free of
shading reflections and shadows [4], while the structure com-
ponent is often extracted for enhancing the stability of depth
estimation [7]. In many image processing tasks (e.g. [1]), the
cartoon regions and texture regions need separate treatments
to guarantee the visual quality of results. Another example is
object recognition, in which contour cues and texture features
are extracted by different approaches (e.g. [16]).

In general, structure-texture decomposition requires solving
the following underdetermined problem:

f = u+ v, (1)

where f is the given image, u the structure layer, and v
the texture layer. Since the unknowns are much more than
the equations, priors on both the structure and texture layers
are needed to solve the problem. In existing approaches, the
sparsity prior of spatial gradients (e.g. [17]–[21]) is often
imposed on structure layers. The sparsity prior is also used
for modeling texture layers [19], [20] which assumes texture
layers can be sparsified under some system (transform or
dictionary). One effective approach to utilizing the sparsity
priors of image components for image decomposition is the
Morphology Component Analysis (MCA) [22], which is about
solving the following model:

min
u,v
‖S1u‖1 + ‖S2v‖1, s.t. u+ v = f , (2)

where S1,S2 are two transforms that sparsify the structure
and texture layers respectively in terms of `1 norm.

A. Motivation and Main Idea

The existing approaches often use a local transform, i.e. a
transform with localized supports, for sparsifying texture com-
ponents, e.g. local discrete cosine transform (DCT). The local
transforms ignore one important property of texture called self-
recurrence, i.e., a texture region contains a number of similar
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elements (patterns). Such a property can be cast into the patch
recurrence in the texture layer. Indeed, patch recurrence is one
prominent natural image prior used in the so-called nonlocal
image recovery approaches (e.g. [23], [24]). Many nonlocal
approaches use a nonlocal transform (i.e. a transform with
non-localized support) that encodes the patch recurrence of a
given image for processing. There are also benefits of using
patch recurrence and nonlocal transforms for modelling texture
layers. For instance, the patches of weakly-periodic or non-
periodic texture can be well sparsified by the collaboration
of their similar counterparts. This inspired us to investigate
the exploitation of patch-recurrence-based nonlocal sparsifying
transforms for modeling texture layers.

However, the plain patch recurrence prior used in existing
image recovery methods may also hold on cartoon regions. For
instance, similar patches can also be found along a straight
contour edge. As a result, the nonlocal transforms used in
existing image recovery methods can sparsify both texture and
structure layers well. In this case, both ‖S1u‖1 and ‖S1v‖1
are small, and ‖S1(u + v)‖1 ≤ ‖S1u‖1 + ‖S1v‖1 is likely
to be small as well. In other words, the recurrent patches
(e.g. edge patches) in the structure layer may be wrongly
assigned to the texture layer. This ambiguity is harmful to
the decomposition accuracy. To effectively exploit the self-
recurrence of texture for decomposition, we introduce a dis-
criminative prior on patch recurrence. The prior comes from
the observation that, the neighboring similar patches around
cartoon contours tend to align along a major direction, while
the ones in texture regions are likely to scatter around. See
Fig. 1 for an illustration, where the neighboring similar patches
in cartoon regions exhibit different spatial configurations from
those in texture regions. Such a discriminative prior allows
exploiting the patch recurrence of texture while avoiding the
ambiguity of recurrent patches between the two components.

Fig. 1. Anisotropic patch recurrence in structure (upper row) and isotropic
patch recurrence in texture (bottom row). The red squares indicate the source
patches while the blue ones indicate the matched patches of the target patches.

Intuitively, the uni-directional distribution of neighboring
similar patches around cartoon contours is attributed to the fact
that the often-seen cartoon contours contain a large portion of
straight edges. The patches along a straight edge have strong
similarity to each other, and the patches on different sides

of the edge are often dissimilar. In contrast, the isotropic
distribution of neighboring similar texture patches is due to the
spatial homogeneity of textures, e.g. cobwebbing in fabrics,
scales on snakes, and furs of lions. For convenience, the
prior that neighboring similar texture patches scatter around, is
referred to as the isotropic patch recurrence for texture compo-
nents, while that similar patches of cartoon contour distribute
along a major direction, is referred to as the anisotropic patch
recurrence prior for structure components. Such a pair of priors
composes of our discriminative patch recurrence prior. The
isotropic patch recurrence can characterize texture components
well and meanwhile distinguish itself from the anisotropic
patch recurrence of structure components.

With the discriminative patch recurrence prior, we construct
an isotropic nonlocal transform based on directional patch
matching. The constructed transform can sparsify texture
components well while not good at generating sparse rep-
resentations on structure components. Incorporating such a
nonlocal transform into MCA, we develop a patch-recurrence-
based approach for structure-texture decomposition. Benefiting
from exploitation of self-recurrence of texture, our approach
shows improvement over the existing ones in both qualitative
and quantitative evaluations.

B. Contributions
The contributions of this paper are three-fold. Firstly, we

introduce the discriminative patch recurrence prior for ex-
ploiting the self-recurrence of texture for structure-texture
decomposition. The traditional patch recurrence prior designed
for image recovery only exploits the repeating property of
image patches, without any consideration on the discrimination
between structure components and texture components. In
contrast, the discriminative prior additionally considers the
spatial distribution of recurrent patches, i.e., how the image
patches repeat over space. Therefore, it can distinguish tex-
ture components from structure components well, and allows
constructing a patch-recurrence-based decomposition model
without confusion on the recurrent patches on the two layers.

Secondly, we employ a directional patch matching scheme,
built upon which an isotropic nonlocal sparsifying transform
is proposed to exploit the discriminative patch recurrence prior
for modeling texture components. Note that the discriminative
patch recurrence prior, though promising, is non-trivial to be
utilized formally in a decomposition model. Our directional
patch matching scheme groups similar patch along different di-
rections separately, by which the isotropy property of matching
results is enforced. Then, the constructed nonlocal transform
can encode the isotropic patch recurrence artfully.

Thirdly, based on the isotropic nonlocal sparsifying trans-
form, a patch-recurrence-based approach to structure-texture
decomposition is proposed with several advantages over exist-
ing ones. Compared to [25]–[27] which utilize the low rank
prior on texture patches for modeling regular patterns, ours
uses the isotropy prior of patch recurrence for better model-
ing non-regular texture. Compared with the patch-recurrence-
based approach [28], the proposed one has additional consider-
ations on the spatial configuration of patch recurrence. By sub-
dividing the patch recurrence into the isotropic and anisotropic
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versions for texture and structure respectively, our approach
improves the discrimination between cartoon contours and
texture patterns. In comparison to the sparse-coding-based
approaches [20], [29] that use local sparsifying systems, ours
can be viewed as employing a nonlocal transform to exploit
similar patches for better sparse representation of textures.

C. Notations and Organization

Throughout this paper, unless specified, bold upper letters
are used for matrices, bold lower letters for column vectors,
light lower letters for scalars, and hollow letters for sets. The
notations 0 and I denote the zero matrix and the identity
matrix with appropriate sizes respectively, and diag(x) denotes
the square diagonal matrix with vector x as its main diagonal.
The `p norm of a vector is denoted by ‖·‖p. Given a sequence
{y(t)}t∈N, y(t0) denotes the t0-th element in the sequence. For
a vector x ∈ RN and a set S ⊂ {1, · · · , N}, x(i) denotes the
i-th element in x, and xS denotes the vector concatenating
all x(i) where i ∈ S. For a matrix X , X(i, j) denotes the
element of X at the i-th row and j-th column. For matrix
concatenation, semicolons are for adding elements row-wisely
and commas are for adding elements column-wisely.

The rest of this paper is organized as follows. Section II
is for literature review. Section III is on the construction of
our nonlocal sparsifying transform for texture components.
Section IV is devoted to developing our method based on the
constructed sparsifying transform. Section V is on experimen-
tal evaluation. Finally Section VI concludes the paper.

II. RELATED WORK

There have been many approaches proposed for structure-
texture image decomposition. Their main differences lie in the
mechanisms of modeling cartoon regions and texture patterns.
Regarding cartoon characterization, a majority of approaches
use the total variation (TV) penalties (e.g. [1], [13], [14],
[17]–[19], [30]–[35]), since TV penalties can efficiently induce
piece-wise constant signals with bounded variations (BV).
In [34], the windowed relative TV is used for improvement.
See also [8] for a generalized TV penalty. Instead of using
TV, some approaches impose sparse representation on cartoon
parts under some systems such as wavelet frames [16], [36],
[37] and curvelet transforms [22], [38], which can effectively
characterize the smoothness of structure components. TV-
based approaches have deep connections to the sparse-coding-
based ones using spline wavelets [39]. Compared to the multi-
scale extension of TV-based approach [36], wavelet systems
naturally allow multi-resolution analysis on cartoon structures.
Recently, inspired from the classical TV minimization, Kim et
al. [40] introduce a deep variational prior for cartoon parts by
employing a pre-trained deep denoising neural network for the
estimation of structure components.

In comparison to structure components, texture components
are much more challenging to characterize due to their high
complexities and large variations. In the past, many studies
modeled texture by the patterns with strong oscillations, and
they focused on exploiting the spaces of oscillatory functions
which are discriminative to the BV space, as well as exploring

the TV-antagonistic norms, i.e. their induced functionals have
opposite behaviors to the TV-induced ones. A seminal work
can be traced back to Meyer’s proposal [30], whose numerical
implementation is first given in [31]. Following this line of
research, many studies have been conducted on addressing
numerical issues; see e.g. [13], [14], [17], [33], [41]–[43].
There are also other studies developing new models such as
linear filtering models [44], [45] and multi-scale model [46], or
focusing on applications [1], [3], [6]. Since noises also exhibit
oscillatory patterns, the aforementioned approaches cannot
well handle noisy images. Furthermore, as pointed out in [25],
these approaches may fail in discovering small-magnitude but
well-patterned textures.

One promising alternative is the sparse-representation-based
approach (e.g. [5], [16], [19], [20], [29], [37], [38]), which
assumes textures can be sparsified under certain systems,
i.e., a texture patch can be represented by few of atoms
in a certain dictionary (synthesis model) or sparsified under
some transform (analysis model). With a proper system, either
analytic (e.g. local Fourier frame [38]) or learned (e.g. [19],
[20]), the texture component can be effectively extracted by
promoting the sparsity of representation coefficients. In [29],
analysis and synthesis models are combined for further im-
provement. Since cartoon features such as edges and contours
may also have sparse representations under proper dictionaries,
the sparse-co-based approaches do not work well when the
sparsifying system for cartoon has high coherence with that for
texture. In other words, one key in the sparse-representation-
based approaches is designing effective sparsifying systems
whose ambiguity between structure and texture is minimized.
Interested readers can refer to [16].

Another line of research on texture modeling is built upon
the low-rankness prior of texture patches. An early inspiring
attempt is given by Schaeffer and Osher [25]. They assumed
the texture patches are almost linearly dependent after certain
alignment and applied the low-rank regularization with nuclear
norm to aligned texture patches. In [27], the logdet function
is used to replace the nuclear norm in [25] for a better
approximation to the rank. Though capable of processing reg-
ular textures with global homogeneity, these methods cannot
work well on the textures with distortion or with spatially-
varying patterns. As a result, such methods may produce
undesirable artifacts in the results. To address this issue, Ono
and Miyata [26] adapted the low rank prior from the whole
image to a local window, and the low-rank regularization is
applied to the patches of texture component within a local
block. Moreover, multiple shear operators are employed for
better alignment. Nevertheless, this approach may suffer from
the under-sampling problem, i.e., the local block may not
contain sufficient similar patterned patches for stable low-
rank approximation, especially for the patch locating near the
boundary of a texture region. Besides, the shear operations
may involve additional computational cost.

Instead of sampling patches within a local block, Ma et
al. [28] proposed to group similar patches and apply low-
rank regularization to each patch group for extracting textures.
The structure component is extracted by enforcing structured
sparsity on each group. It is noted that, though with low-rank
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approximation, this method employs a different prior from the
low rank prior in [25]–[27]: it can be viewed as the nonlocal
patch recurrence prior which has been successfully applied
to many image restoration tasks [23]. The nonlocal patch
recurrence is also exploited by Sur et al. [47]. They extracted
the texture component using a statistical model built upon the
power spectrum of similar texture patches. However, the direct
use of the nonlocal patch recurrence prior in structure-texture
decomposition can cause ambiguity, as the prior is applicable
to both the structure component and texture component. In
this paper, we aim at further exploiting the nonlocal patch
recurrence for structure-texture decomposition.

There is a close-related topic called structure-preserving fil-
tering [48]–[51]. These methods construct guidance from im-
ages and use it to smooth the images. Compared to structure-
texture decomposition, such methods do not explicitly model
the characteristics of texture or cartoon. In addition, these
methods are often designed to allow user interaction for
parameter tune-up on different images.

III. NONLOCAL SPARSIFYING TRANSFORM FOR TEXTURE

In this section, we construct a nonlocal sparsifying trans-
form for texture layers based on the isotropic patch recurrence
in texture components, which is built upon a directional patch
matching scheme.

A. Directional Patch Matching

Existing nonlocal approaches for image recovery exploit
patch recurrence by running patch matching that collects
the top-K similar patches of each source patch within a
neighborhood. Unlike these methods, we use a directional
patch matching to find top-K similar patches along different
directions respectively, by which the isotropic distribution of
similar patches can be exploited.

We first define the banded regions for directional matching.
Given a source patch p centered at c, its neighborhood Np is
defined as an S×S window Mp centered at c. The neighbor-
hood Np is partitioned into D+ 1 regions, which includes (i)
D bi-directional bands {N(d)

p }Dd=1 with the width of B pixels
along different directions and (ii) one central region N(0)

p . The
partition scheme is done as follows. In Np, we find D banded
regions {M(d)

p ⊂ Np}Dd=1 which go through Mp with center at
c and are aligned at 0◦, 180

◦

D , · · · , (D−1) 180◦

D respectively. Let
M(0)
p =

⋂D
d=1 M

(d)
p denote the overlap of M(1)

p , · · · ,M(D)
p .

The bands {N(d)
p }Dd=1 are defined as follows:

N(d)
p = M(d)

p ∩M(0)

p , d = 1, · · · , D, (3)

where M̄(0)
p is the complement of M(0)

p . The patches whose
center pixels fall into the banded regions N(d)

p , d = 1, · · · , D
are considered as the candidates for searching. Note that while
the excluded central region M(0)

p is likely to correspond to the
most similar patches to p in Mp, we empirically found that
an adequate number of sufficiently-similar patches can still be
found in outside this central region.

In principle, a proper width B should make the banded re-
gions {N(d)

p }d sufficiently large while keeping the overlapped

region M(0)
p small. In implementation, we set D = 4, B = 8

so that the banded regions occupy more than 50% of the whole
search region Np and at the same time the overlapped region
occupies less than 10%. See Fig. 2(a) for the partition used in
our implementation with D = 4, B = 8.

The directional patch matching for p conducts the searching
process on each banded region separately. For an image with
N pixels, define pi as the patch centered at the i-th pixel for
i = 1, · · · , N . Symmetric image boundary extension is applied
for ensuring that N patches are sampled. For each patch pi,
we search its top-K similar patches based on N(1)

pi , · · · ,N
(D)
pi

respectively. The indices of the similar patches are collected
as S(d)i for all d, i. In other words, S(d)i stores the indices of
the similar patches of the i-th patch along the d-th direction.
The similarity of two patches p, q is measured by

ω(p, q) = e−‖p−q‖
2
2/h, (4)

where h is a scalar set to 0.3 in practice.
See Fig. 2(b)-(c) for an illustration of the directional patch

matching results on a texture regions and a cartoon contour
respectively. In both case, the matched patches are scattered
with the same number in different directions. The matched
patches along all directions are very similar to the source
patch in the texture region. In contrast, similar patches are
found along one direction around the cartoon contour. The
anisotropic distribution of similar contour patches is explained
as follows. Consider an edge lying in the direction of some
predefined band, its similar patches can only be found in one
band but fail in the others. For an edge lying in the region
of between two predefined bands, its similar patches cannot
be found in any band. In addition, for a highly-bended curve,
few similar patches can be found in all the bands. In short,
for edges in different shapes and conditions, dissimilar patches
can be found in most directions.

(a) (b) (c)

Fig. 2. Directional patch matching with D = 4 and B = 8. (a) Schematic
diagram of the partition strategy. (b)-(c) Matching result of a source patch on
a cartoon contour and a texture region respectively. The red boxes indicate
the source patches and the boxes in other colors indicate the matched patches
along different directions.

B. Isotropic Nonlocal Sparsifying Transform
Given an image x ∈ RN , the directional patch matching

constructs D index sets: S(d)i , d = 1, · · · , D, i = 1, · · · , N .
Let L̃(d) ∈ RN×N denote the directional nonlocal transform
of x for the d-th direction, which is defined by

L̃(d)(i, j) =


1, i = j;

− ω(pi,pj)∑
k∈S(d)

i

ω(pi,pk)
, j ∈ S(d)i ;

0, otherwise,

(5)
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The transform L̃(d) can be rewritten as L̃(d) = I − E(d)

where E(d)(i, j) = ω(pi,pj)/
∑
k∈S(d)i

ω(pi,pk) if j ∈ S(d)i
and 0 otherwise. With this form, it is straightforward to show

(L̃(d)x)(i) = x(i)−
∑
j∈S(d)i

ω(pi,pj)∑
k∈S(d)i

ω(pi,pk)
x(j). (6)

It can be seen that L̃(d) is a nonlocal difference operator
which relates each xi to the weighted sum of its nonlocal
similar ones lying at the d-th direction. We can also view
E(d) as a directional version of the well-known nonlocal mean
(NLM) [52], which calculates the NLM in the d-th banded
region. Recall that the NLM is constructed based on the similar
patches in an isotropic neighborhood. In contrast, only similar
patches lying in the a banded region are used for constructing
E(d). In the case of perfect patch recurrence along the d-th
direction, i.e. pj = pi for all j ∈ S(d)i and all i, we have
ω(pi,pj) = 1 and x(i) = x(j) for all j ∈ S(d)i . Then, it
is easy to show that (L̃(d)x)(i) = 0 for all i, implying that
L̃(d) can sparsify x perfectly. When the patch recurrence of
texture along the d-th direction is strong but imperfect, it is
reasonable to assume (L̃(d)x)(i) ≈ 0 for most i, and thus L̃(d)

can still sparsify x well. In conclusion, the directional nonlocal
transform L̃(d) can well sparsify an image with strong patch
recurrence along the d-th direction.

The nonlocal sparsifying transform we construct has the
following form:

L = [L̃(1); · · · ; L̃(D)] ∈ RND×N . (7)

In other words, L stacks all directional nonlocal transforms.
Thus, L is referred to as an isotropic nonlocal sparsifying
transform. Since Lx = [L̃(1)x; · · · ; L̃(D)x], applying L is
about calculating the nonlocal difference over the input image
along different directions separately. If the isotropic patch
recurrence of a region is strong, all L̃(d)s can sparsify the
region and thus L inheriting the sparsifying capability from
L̃(d)s will generate sparse results. When the patch recurrence
is anisotropic, some of L̃(d)s cannot sparsify the region well,
and the results by L have to be dense .

It is interesting to compare our isotropic nonlocal sparsify-
ing transform with the one built upon plain patch recurrence
without considering the isotropy property. Let Pi denote the
index set of patch pi constructed by finding the top-K similar
patches within Mpi , i.e. the neighborhood of pi. Consider the
plain nonlocal transform defined by

L̂(i, j) =


1, i = j;

− ω(pi,pj)∑
k∈Pi

ω(pi,pk)
, j ∈ Pi;

0, otherwise.
(8)

Think of a cartoon patch p on a straight edge whose similar
patches lie along the direction of the edge. The index sets Pis
contains the locations of such similar patches. Thus, L̂ can
generate sparse results from p by using the similar patches
along the edge. In contrast, L cannot generate sufficiently-
sparse results, as all L̃(1), · · · , L̃(D) except the one corre-
sponding to the edge direction, explicitly enforce using the
patches along different directions which are dissimilar to p.

TABLE I
NOTATION/PARAMETER LIST FOR THE PROPOSED METHOD

Notations Definition Suggested Value
M The number of wavelet fitlers 9 (8 high + 1 low)
Q The number of local DCT fitlers 25
N The number of pixels of image f -
S The size of the whole searching regions 51
D The number of directional banded regions 4
B The width of directional banded regions 8
γ The penalty weight from Bregman iteration 0.5
δ The step size from Bregman iteration 1
η The scaling factor using in (13) 0.05

(Key Parameters) Noiseless Noisy
β1 The weight for the regularization of cartoon 2.5 0.10
β2 The weight for the regularization of texture 15 0.35

When p is a patch in a texture region with similar patches
scattering in the neighborhood, both Pi and S(d)i for all d
contain the locations of similar patches. Thus, both L and
L̂ can lead to sparse results. See Fig. 3 for a demonstration
of the sparsification effects of L̃(d) and L̂. In summary, the
plain transform L̂ generates sparse results on both texture and
cartoon patches and thus it is not discriminative enough to
distinguish structure components from texture components. In
contrast, the isotropic nonlocal transform L is discriminative
and only generates sparse results on texture components.

(a) Input f (b) |L̃(1)f | (c) |L̃(2)f |

(d) |L̃(3)f | (e) |L̃(4)f | (f) |L̂f |

Fig. 3. Illustration of sparsification effects of L̃(d) and L̂(d). The notation
| · | denotes element-wise magnitude. It can be seen that both L̃(d)(d =
1, · · · , D) and L̂ sparsify the textural regions well. However, they show
different behaviors on the cartoon edges. The plain nonlocal sparsifying
transform L̂ kills all the edges, while the isotropic nonlocal sparsifying
transform L̃(d) only eliminates the edge along the d-th direction.

IV. METHOD

A. Model

Based on the isotropic nonlocal sparsifying transform con-
structed in the previous section, we propose a structure-
texture decomposition method in the section. For convenience,
the parameters of our method are summarized in Table I.
Let ∗ denote the 2D convolution operator and ~· denote the
vectorization operator. Given a 2D convolutional kernel K,
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we define the associated convolution matrix by SK ∈ RN×N ,
which satisfies

SK
−→
X =

−−−−→
K ∗X, (9)

for a given 2D image X ∈ RH×W where HW = N .
Given a gray-scale image f ∈ RN in the vectorized form,

our goal is to extract its structure component u ∈ RN and
texture component v ∈ RN . Towards this end, we solve the
following MCA problem:

min
u,v
‖diag(λ1)Wu‖1 + ‖diag(λ2)Jv‖1,

s.t. u+ v = f , (10)

where λ1 ∈ RMN ,λ2 ∈ RDQN are two weighting vectors,
and W ,J are defined by

W = [SG1 ; · · · ;SGM ] ∈ RMN×N ,

J = [LSH1
; · · · ;LSHQ

] ∈ RDQN×N ,
(11)

where {Gm}Mm=1 denotes a 2D wavelet filter bank and
{Hq}Qq=1 denotes a set of 2D DCT filters. In implementation,
we use the single-level linear spline wavelet filter bank [53],
which contains M = 9 two-dimensional filters {Gm}9m=1 =
{gk1g>k2 : 1 ≤ k1, k2 ≤ 3} constructed by following 1D filers:

g1 =
1

4
(1, 2, 1)>; g2 =

√
2

4
(1, 0,−1)>; g3 =

1

4
(−1, 2,−1)>.

See the supplementary materials for more details on the 2D
wavelet filers. Regarding the DCT filters, we set the filter size
to 5× 5 which corresponds to Q = 25 2D-DCT filters.

There are two terms in the model (10). The first term is for
the characterization of structure component using a wavelet
filter bank. It is motivated by the advantages of generalized TV
and wavelet-based methods in modelling piece-wise smooth
signals. The filter bank corresponds to different operators with
different orders along different orientations for sparsifying
structure components. Since textures often contain dense small
edges whose wavelet representation is unlikely to be sparse,
the weighted `1 norm on Wu can distinguish cartoon from
texture well. In addition, the associated transform W has the
tight frame property [53]: W>W = I , by which the calcu-
lation of W>W can be avoided and the related computation
can be accelerated. Note that since the low-pass filter does
not sparsify images generally, it is omitted by setting the
corresponding parts in λ1 to zeros. We empirically found that
using multi-level wavelet brings little improvement and even
yield worse results. The reason is probably that more patterns
are introduced into the wavelet filters as the level of wavelet
increases, which decreases the accuracy the wavelet systems
for modeling structure components. In fact, existing TV-based
methods can also viewed as single-scale methods.

The second term is for texture characterization. The spar-
sification transform J for texture first applies local DCT to
sparsifying the image and then applies the nonlocal transform
L of (7) to sparsifying the DCT coefficients. In traditional
approaches, local DCT is often employed for sparsifying
the texture component. However, local DCT is not good
at characterizing complex textures, e.g. weakly/non-periodic

patterns. In our model, the transform L exploits the self-
recurrence of texture for better sparsifying texture components.
Even though the local DCT coefficients are not sparse, they
can be sparsified under L. It is also noted that while L is not
directly applied to sparsifying the texture component v, but
to the local DCT coefficients instead for generating a better
sparse representation.

When there is noticeable image noise, the model (10) can be
adapted to an unconstrained form for improving the robustness
to noise. Assuming additive Gaussian white noise (AWGN)
exists, the model becomes

min
u,v
‖diag(λ1)Wu‖1+‖diag(λ2)Jv‖1

+ ‖f − (u+ v)‖22. (12)

B. Calculation of Weighting Parameters

The regularization parameters λ1,λ2 are important to the
performance of the proposed model. We exploit the isotropy
of patch recurrence to define λ1,λ2 for further improvement.
First, given an input image of N pixels, we define two spatial
maps λ̄1, λ̄2 ∈ RN as follows:

λ̄1(k) = 1 + e−
φ(k)
η , λ̄2(k) = 1− e−

φ(k)
η ∈ (0, 1] (13)

where η is a scaling factor set to 0.05, and φ(k) measures the
“anisotropicness” of patch recurrence around the k-th pixel
based on our nonlocal transform, which is defined as follows:

φ(k) =
1

DQ

D∑
d=1

Q∑
i=1

|(L̃(d)SHif)(k)|2. (14)

According to the discriminative patch recurrence prior, a
patch pk in a textured region with strong isotropy property of
patch recurrence will have small value of φ and large value
of e−φ(k)/η , as it can be well expressed by its similar patches
along the each direction, which makes L̃(d)SHif(k) close to
zero for all d, i. In contrast, a patch pk lying on a cartoon
contour will have relatively-large value of φ and small value
of e−φ(k)/η . See Fig. 4 for an illustration of e−

φ(·)
η . Since

λ̄1, λ̄2 have small values on the cartoon contours and texture
regions respectively, they are used as the weights for the
regularizations of structure and texture components. Then, we
define the weighting vectors λ1, λ2 in model (10) as follows:

λ1 = [

M︷ ︸︸ ︷
β1λ̄1; · · · ;β1λ̄1], λ2 = [

DQ︷ ︸︸ ︷
β2λ̄2; · · · ;β2λ̄2] (15)

where β1, β2 are the weights of the regularization terms,
In other words, λ1,λ2 only change spatially and they have
repeating values across different channels of W and J . Recall
that since the coefficients of low-pass filtering on cartoon part
are generally not sparse, the corresponding values in λ1 are
set to 0 in implementation.
Remark [Revisiting discrimination of proposed model].
The discrimination of our model comes from various sources,
including the isotropy of L, the adaption of λ1,λ2, and the
difference between filters, which play different roles. (i) The
proposed transform L exploits discriminative patch recurrence
to sparsify texture layers but not structure layers, which is
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Fig. 4. Illustration of the exponential response e−φ(·)/η on the images
’Cabin’ (left), ’Barbara’ (middle) and ’Windmill’ (right). It can be seen that
the values are high on textured regions and low on cartoon contours.

the main source of discrimination. (ii) The weighting parame-
ters λ1,λ2 also exploit the discriminative patch recurrence
by adjusting the penalty over regions for better preserving
weak edges/patterns in structure/texture components, which is
another main source of discrimination. (iii) The wavelet and
DCT filters are used to exploit different local sparsity patterns
of structure and texture components respectively, bringing
additional discrimination.

C. Numerical Algorithm

Following the MCA framework, we define an augmented
system D = [W 0; 0 J ] and then rewrite the minimization
problem (10) and (12) into

min
x
‖diag(λ)Dx‖1, s.t. Ax = f , (16)

min
x
‖Ax− f‖22 + ‖diag(λ)Dx‖1, (17)

where x = [u>,v>]>, A = [I, I], λ = [λ>1 ,λ
>
2 ]>. The

problem can be efficiently solved by the ADMM (also known
as split Bregman [54]). The overall algorithm is summarized in
Algorithm 1, and each of its step is detailed in the following.

Regarding the unconstrained problem (17), we first rewrite
it as the constrained problem

min
x
‖Ax− f‖22 + ‖diag(λ)d‖1, s.t. d = Dx, (18)

which is the “splitting” step to separate x from the `1 penalty.
Next, the Bregman iteration is used to solve (18) as follows:

(x(k+1),d(k+1)) = argmin
x,d

‖Ax− f‖22+

‖diag(λ)d‖1 + γ
2 ‖Dx− d+ e(k)‖22

e(k+1) = e(k) + δ(Dx(k+1) − d(k+1))

(19)

for k = 0, 1, · · · , where γ > 0 and 0 < δ ≤ 1 are two
parameters arising from the Bregman iteration. By decompos-
ing the first two problem in (19) into another two, we further
rewrite (19) as follows:
x(k+1) = argmin

x
‖Ax− f‖22 +

γ

2
‖Dx− d(k) + e(k)‖22

d(k+1) = argmin
d

‖diag(λ)d‖1 +
γ

2
‖Dx(k+1) − d+ e(k)‖22

e(k+1) = e(k) + δ(Dx(k+1) − d(k+1))

(20)

In (20), the subproblem regarding x is a least-squares regres-
sion which is about solving the linear system:

(A>A+γD>D)x(k+1) = A>f+γD>(d(k)−e(k)). (21)

This system is solved by the conjugate gradient method. The
subproblem regarding d is separable to each dimension of d
and thus has the analytic solution given by

d(k+1) = Tλ
γ

(Dx(k+1) + e(k)), (22)

where Tλ(·) is the soft-thresholding operation defined by

(Tλ(x))(k) = sign(x(k)) max(|x(k)| − λk, 0). (23)

Combining (20), (21) and (22), the problem (17) is solved by
the following iteration:
x(k+1) = (A>A+ γD>D)−1(A>f + γD>(d(k) − e(k)))
d(k+1) = Tλ/γ(Dx(k+1) + e(k))
e(k+1) = e(k) + δ(Dx(k+1) − d(k+1))

.

Regarding the noiseless model (16) which has an additional
constraint compared to (17), we can solve it with a similar
scheme which applies an additional Bregman iteration to
handle the fidelity constraint.

Algorithm 1 Structure-Texture Image Decomposition
Input: Image f
Output: Structure component u, Texture component v
Main procedure:

1) Find the similar patches with directional grouping scheme
and construct L according to (5) and (7);

2) Calculate λ1 and λ2 according to (15);
3) Construct the system D = [W 0; 0 J ] accordingly;
4) d(0) := Dx(0), e(0) := 0;
5) For k = 0, · · · ,K − 1,

a)


x(k+1) = (A>A+ γD>D)−1

(A>f + γD>(d(k) − e(k)))
d(k+1) = Tλ/γ(Dx(k+1) + e(k))
e(k+1) = e(k) + δ(Dx(k+1) − d(k+1))

6) u = [I,0] x(K) and v = [0, I] x(K).

V. EXPERIMENTS

A. Protocols and Settings

The performance of the proposed approach for structure-
texture image decomposition is evaluated with both the noise-
less and noisy settings. In the noiseless setting, input images
are clean with an ignorable amount of noise, and we solve the
problem (10). In comparison, the noisy setting involves noisy
images for testing the performance of (12), which also can be
viewed as the application to image denoising. When ground-
truth images available, we use PSNR and SSIM to measure
the visual quality of the decomposition results.

Several representative or state-of-the-art methods are se-
lected for comparison, including
• ADMGB (Alternating Direction Method with Gaussian

Back Substitution) [3]: using the TV norm and dual TV
norm for structure and texture respectively;

• RTV (Relative Total Variation) [34]: a filtering based
method using inherent variation and relative TV measures;

• BNN (Block-wise Nuclear Norm) [26]: imposing low-rank
property on texture blocks;
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• RGF (Rolling Guidance Filter) [48]: a filtering-based
method using an iterative guidance;

• GID3D (Group-based Image Decomposition 3D) [28]:
using low-rank decomposition on grouped similar patches;

• SCSC (Slice-based Convolutional Sparse Coding) [20]:
sparse dictionary learning on structure/texture layer;

• JCAS (Joint Convolutional Analysis and Synthesis) [29]:
joint analysis and synthesis sparse models;

• NLDD (Non-local Dual Domain Decomposition) [47]: a
very recent nonlocal method with theoretical analysis.

To test whether the discriminative prior of patch recurrence is
useful, we construct a baseline denoted by ’Baseline’, which is
the same as our method except that it uses the plain nonlocal
sparsifying transform L̂ defined in (5) instead of the new one.
We keep {Gm}Mm=1,{Hq}Qq=1 of Baseline the same as our
method and also use the same parameters for patch matching.
For the model parameters β1, β2, we search their best values
within the ranges used for tuning up our method.

In implementation, we use local DCT filters of size 5 × 5
(i.e. Q = 25). The maximal number of iteration is set to K =
50. In the construction of L, the size of search window is
set to S = 51 with 16 matched patches in each direction
the number of bands is set to D = 4 and the width of each
band is set to B = 8. The size of patches used in matching
is 5 × 5. For the ADMM iteration, the parameter γ is set to
0.5 and the update step δ is set to 1. The model parameters
are set as β1 = 2.5, β2 = 0.1 for pure image decomposition
and β1 = 15, β2 = 0.35 for noisy image decomposition. A
pre-denoising same as [28] is applied before matching for fair
comparison. Implemented in Matlab with GPU acceleration,
our method takes around 26 seconds to process a 256 × 256
image on an Intel i7-6700K CPU and an RTX 2080Ti GPU.

B. Decomposition on Synthetic Images
We first test the proposed method on 100 synthetic images,

whose details are given in our supplementary materials. With
the truth of each component, we calculate the PSNR/SSIM on
the structure and texture components respectively. The average
PSNR/SSIM values are listed in Table II. Our method performs
the best in terms of both PSNR and SSIM.

See Fig. 5 for some decomposition results. The benefit of
using our discriminative patch recurrence prior is demonstrated
by our superior results over Baseline. In the close-ups of
structure components, the edges of the cross are broken and
blurred by Baseline, while well preserved in our result. In the
close-ups of texture components, the contour edges of the cross
appear clearly in the texture component of Baseline, while
correctly rejected by our method. In the comparison with other
methods, ours also shows noticeable improvement. Regarding
the structure component, BNN, GID3D, NLDD and SCSC
mistakenly preserve some texture patterns in their cartoon
parts. Regarding the texture components, all the compared
methods expect BNN and ours produce visible counter edges.

Influence of parameters β1, β2. Varying β1, β2 within a
moderate range, we test their influence to the decomposition
results. It is observed that increasing β1 or decreasing β2
will move the elements from texture components to struc-
ture components, and vice versa. We also observe that the

decomposition is stable to the small changes of β1, β2. See
the supplementary materials for more details.

Influence of patch size in patch matching. We set the
patch size in patch matching to some common values respec-
tively and then test the performance of the proposed method.
The quantitative results are given in Table III. See also the
supplementary materials for the visual comparison on some
recovered results using different patch sizes. Overall, the patch
size has only a little influence to the performance.

TABLE II
AVERAGE PSNR (DB) AND SSIM VALUES OF THE DECOMPOSITION

RESULTS ON SYNTHETIC IMAGES BY DIFFERENT METHODS.

Criterion
Structure Texture

PSNR SSIM PSNR SSIM

ADMGB 27.29 0.940 27.68 0.874
RTV 30.78 0.969 30.78 0.937
BNN 30.25 0.737 30.26 0.805
RGF 30.82 0.940 30.81 0.931
GID3D 27.77 0.697 27.81 0.769
JCAS 29.09 0.885 28.31 0.841
SCSC 27.56 0.846 27.57 0.879
NLDD 29.31 0.799 29.32 0.836
Baseline 24.41 0.909 24.41 0.890
Ours 33.48 0.977 33.32 0.938

C. Decomposition on Natural Images

1) Gray-scale images: We further test the proposed method
on the five natural images shown in Fig. 6(a), where ’House’
and ’Barbara’ are quoted from [20], [26], [28]. These images
contain different types of textures (e.g. handmade vs. natural
and regular vs. random), which can test different aspects of
a method. Since PSNR and SSIM are unavailable without
ground truths, we compare the decomposition results by visual
inspection with three main criteria. Firstly, contour edges
should only appear in the structure component. Secondly, well-
patterned features should only appear in the texture compo-
nent. Thirdly, no artifacts are present in both the components.

Due to space limitation, we only show the results of five
most recent methods, and the results of the other methods are
given in supplementary materials. The results on ’Barbara’
given in the first row shows that the proposed method can
extract well-patterned features in the texture layer while re-
jecting them in the structure layer. To show the advantages of
our method over others, we zoom in the table cloth and the
face of Barbara. In the structure components of both table
cloth, only ADMGB, JCAS, Baseline and our method can
completely remove the textures. Compared to JCAS which

TABLE III
AVERAGE PSNR (DB) AND SSIM VALUES OF THE DECOMPOSITION

RESULTS ON SYNTHETIC IMAGES WITH DIFFERENT PATCH SIZES

Criterion 3 5 7 9 11 13

Structure
PSNR 33.37 33.48 33.31 33.23 33.19 32.82
SSIM 0.972 0.977 0.974 0.970 0.967 32.44

Texture
PSNR 33.20 33.32 33.10 32.95 32.85 0.954
SSIM 0.937 0.938 0.933 0.929 0.927 0.915
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(a) Input and grouth truths

(b) ADMGB (c) RTV (d) RGF (e) BNN (f) GID3D

(g) SCSC (h) JCAS (i) NLDD (j) Baseline (k) Ours

Fig. 5. The structure component (top) and the texture component (bottom) of the decomposition results on ’Cross’ (i.e. the 1st synthetic images). (a) Input
and ground-truths of structure and texture components. (b)-(k) decomposition results of different methods.

House Barbara Guinea Windmill

(a) Test images for gray-scale image decomposition.

Flower Poker Tortoise Love

(b) Test images for color image decomposition.

Fig. 6. Some test images used in our experiments.

fails to extract the cloth textures, our method correctly handles
the textured patterns. Compared with ADMGB and Baseline
that blur the structure component, our method preserves more
details in cartoon.

Fig. 7 also gives the results on ’House’, which shows
the capability of our method in preserving contour edges in
structure layers and rejecting them in texture layers. This
can be more clearly demonstrated in the close-ups of the
eave that contains sharp cartoon edges. In our results, the

eave is completely kept in the structure layer. In contrast, the
other compared methods except BNN assign a strong edge
along the eave to the texture layer, resulting in blur or even
removal of the eave in cartoon. In particular, the three patch-
recurrence-based methods (i.e. GID3D, NLDD and Baseline)
obviously blur the eave, without exploiting the discriminative
patch recurrence prior.

Similar phenomena can be found in the results of ’Guinea’
and ’Windhill’, where the proposed method handles both the
structure and texture layers well.

2) Color images: We also extend the proposed method to
color images, by processing each color channel separately. We
use four images quoted from [34] for test, which are shown in
in Fig. 6(b). In Fig. 8, we compare the results of the proposed
method with RTV, RGF and NLDD, as they provided codes
for color image decomposition. For other methods that only
provide codes for gray-scale images, we also extend them
in the same way as ours, but their results are shown in our
supplementary materials. As the ground truths are unavailable,
the results are also compared by visual inspection with the
same criteria as that we use on gray-scale images.

The results of ’Flower’ are showed in the first row of
Fig.8(b). It can be observed that RTV and Baseline fail to
preserve the edge of the petal in the structure component while
RGF and NLDD do better but still blur the edge. On the other
hand, NLDD has a problem in getting rid of the small texture
from the structure layer while RTV and RGF do better but
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BNN GID3D SCSC JCAS NLDD Baseline Ours

Fig. 7. The structure component (top) and the texture component (bottom) of the decomposition results on different images.

still leave some spots from texture in the structure layer. In
comparison, the proposed method does not suffer from either
of the above problems. Similar phenomena can also be found
in the other test cases, where the proposed method preserves
the edge in the structure component well and correctly extracts
the texture in the meanwhile.

To conclude, all the visual results on natural images have
demonstrated the superior performance of our method over the
existing ones, as well as the effectiveness of the discriminative
patch recurrence prior in structure-texture decomposition.

D. Decomposition on Noisy Images

To evaluate the robustness of our method in noisy settings,
we use four noisy images for test, which are shown in Fig. 9.
Among the test images, ‘Barbara-1’, ‘Barbara-2’ and ‘Roof’
are quoted from [26], [28]. Following [28], the original images
are degraded by adding the AWGN with noise level σ = 0.1
and then used as inputs. As a result, each input image contains
three components: cartoon, texture and noise. We decompose
an input image into these three components by solving (12).
For comparison, BNN and GID3D are selected, as they have
available results and codes. The evaluation is done in terms of
visual inspection, as well as PSNR and SSIM.

The decomposition results are shown in Fig. 11. Our method
performs well even in the presence of noises, with better visual
quality than other methods. Notice the results of BNN and
GID3D. The textures of the chair in Fig. 11(a) and the tiles
on the cabin in Fig. 11(d), are present in the cartoon instead
of the texture components. In contrast, our method extracts
the texture components correctly in these cases. Fig. 11 also
shows the denoised images, which are calculated by removing
the noise component from the input. Compared with BNN and
GID3D, our method preserves more details with less artifacts.

Note that our method may assign a few unexpected large
structures to the texture components, e.g. Fig. 11(a). See also
supplementary materials for the results using different patch
sizes for matching. This is probably due to the improper
patch size used in the directional patch matching on the
corresponding regions. When using a fixed patch size across
the image, the patch size should be set to strike the balance
between stability and effectiveness. On one hand, a small
patch size may make the patch matching sensitive to noise and
decrease the stability of matching. On the other hand, a large
patch size may include many different patterns to the patches,
lowering both accuracy and effectiveness of patch matching.
One possible scheme for improvement is using adaptive patch
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RTV RGF NLDD Baseline Ours

Fig. 8. The structure component (top) and the texture component (bottom) of the decomposition results on different images.

(a) Barbara-1 (b) Barbara-2 (c) Roof (d) Cabin

Fig. 9. Test images for noisy decomposition.

(a) Barbara (b) Cabin (c) Guinea (d) Windmill

Fig. 10. Test images for inpainting.

matching which sets spatially-varying patch sizes according to
some properties (e.g. distribution of gradients) of local regions.

Following [52], we also evaluate the results in terms of
the randomness in the noise component. The less structures
appear in the noise component (implying higher degree of
randomness), the lower coherence exists between noise com-
ponents and other components, and the better the denoising
performance is. It can be seen that, compared with those
of other methods, our produced noise components are more
random with lower correlation to the input images. The PSNR
and SSIM values of the denoised images are listed in Table IV,

where our method achieves the highest ones on all the images
expect ’Roof’. Additionally, we also vary the noise level for
the test. The results are shown in the supplementary materials,
where our method produces reasonable results for images
degraded by the AWGN of different levels.

In order to quantitatively measure the decomposition perfor-
mance, we conduct the noisy decomposition on the synthetic
images used in the previous subsection where the AWGN with
noise level σ = 0.1 is added. See Table V for the comparison
with GID3D. Our method outperformed GID3D in terms of
PSNR and SSIM on both structure and texture layers.

E. Decomposition with Missing Pixels

Following [26], we further extend our method to handling
the decomposition with missing pixels (i.e. image inpainting).
The extension is simply done by modifying the constraint u+
v = f to uI + vI = fI, where I contains the indexes of
the known pixels in f . Accordingly, the numerical solution is
straightforward by setting A = [PI,PI] in place of A = [I, I]
where PI is the projection matrix such that (PIx)(i) = x(i)
if i ∈ I and 0 otherwise.

The test images are shown in Fig. 10, which are generated
using ‘Barbara’, ‘Jackstraw’, ‘House’ and ‘Snake’ with 40%
pixels damaged. Our method is compared with BNN which has
available results and code. The results are evaluated both visu-
ally and quantitatively. See Fig. 12 for the visual results, where
BNN fails to remove the textures in the restored structure
layer, making its texture layer rather ’weak’. In comparison,
our method produces much clearer structure and texture layers.
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a) Results on ’Barbara-1’ b) Results on ’Barbara-2’

c) Results on ’Roof’ d) Results on ’Cabin’

Fig. 11. Decomposition results on noisy images. For each image, the rows from top to bottom correspond to BNN, GID3D and the proposed method. The
columns from left to right to the structure components, texture components, denoised images, and noise components.
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(a) Results on ’Guinea’
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(d) Results on ’Windmill’

Fig. 12. Results on images with 40% pixels missing. For each image, the rows from top to down correspond to BNN and the proposed method. The columns
from left to right correspond to and the recovered image, the structure andthe texture components.
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TABLE IV
PSNR (DB) AND SSIM VALUES OF DENOISED IMAGES

Method Barabara-1 Barabara-2 Roof Cabin Average
BNN 26.72/0.765 25.43/0.778 23.32/0.740 24.06/0.699 24.88/0.746
GID3D 27.99/0.820 26.51/0.824 23.92/0.779 25.91/0.782 26.08/0.802
Ours 28.30/0.825 27.44/0.847 23.80/0.780 25.98/0.786 26.38/0.810

TABLE V
COMPARISON OF GID3D AND OUR METHOD ON NOISY DECOMPOSITION

ON SYNTHETIC IMAGES WITH NOISE LEVEL σ = 0.1

Method PSNR SSIM
Structure Texture Structure Texture

GID3D 27.00 26.18 0.800 0.550
Ours 29.59 28.28 0.959 0.647

TABLE VI
PSNR (DB) AND SSIM VALUES OF INPAINTED IMAGES

Method Measure Barbara House Guinea Windmill Average

BNN
PSNR 32.87 28.99 26.24 32.40 30.13
SSIM 0.959 0.922 0.937 0.943 0.940

Ours
PSNR 35.50 30.82 26.99 33.31 31.66
SSIM 0.971 0.943 0.944 0.952 0.953

The PSNR and SSIM values are listed in Table VI. Our method
outperforms BNN by a large margin on the test images.

VI. SUMMARY AND FUTURE WORK

In this paper, we introduced the discriminative patch re-
currence prior to structure-texture image decomposition. The
prior can be viewed as a refinement of the traditional patch
recurrence prior, which states that, though the patch recurrence
property exists in both the structure and texture components,
the directions of recurrences, or say the spatial distributions
of similar patches, are much different between the two com-
ponents. Similar patches on cartoon contours are usually
distributed along one direction, while similar patches in texture
regions tend to scatter in multiple directions. Such a prior
enables distinguishing textures from cartoons by considering
the spatial configuration of recurrent patches.

According to the discriminative patch recurrence prior, we
constructed an isotropic nonlocal sparsifying transform for
texture components, built upon which an effective approach
is developed for structure-texture decomposition. The per-
formance of the proposed approach was evaluated in both
noiseless and noisy settings, as well as in inpainting. The
experimental results showed the superior performance of the
proposed approach to the state-of-the-art ones, which demon-
strated the power of the proposed approach as well as the
effectiveness of the discriminative patch recurrence prior.

In future, we would like to further exploit the discriminative
patch recurrence in four directions. Firstly, though multi-level
wavelet did not bring improvement to our method, multi-
scale information is undoubtedly useful for structure-texture
decomposition. Thus, we will investigate how to utilize multi-
scale or scale-adaptive patch matching and the behaviors of
discriminative patch recurrence over scales for further im-
provement. Secondly, we have shown the possible applications

of the discriminative prior to image denoising and inpainting.
To continue, we will investigate the adaption of the proposed
method to general image inverse problem. Thirdly, our method
processes color images by treating the color channels indepen-
dently. Such a strategy cannot fully exploit the additional cues
existing in color channels. Thus, we will study how to work
better on decomposing color images.
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