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Factorized Tensor Dictionary Learning for
Visual Tensor Data Completion
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Abstract—This paper aims at developing a dictionary-learning-
based method for completing the visual tensor data with missing
elements. Traditional dictionary learning approaches suffer from
very high computational costs when processing high-dimensional
tensor data. Some existing approaches for acceleration impose or-
thogonality constraints or rank-one decompositions on dictionary
atoms; however, the expressibility of the resulting dictionary is
rather limited. To address such issues, we propose a convolutional
analysis model for tensor dictionary learning, where the update of
sparse coefficients during dictionary learning is simple and fast.
Furthermore, we propose an orthogonality-constrained convolu-
tional factorization scheme for dictionary construction, in which
each tensor dictionary atom is factorized by the convolution
of two atoms selected from two orthogonal factor dictionaries
respectively. This factorization scheme enables us to efficiently
learn an expressive dictionary with over-completeness and non-
rank-one atoms. Based on our convolutional analysis model and
factorization scheme, an effective yet efficient dictionary learning
method is proposed for visual tensor completion. Extensive
experiments show that, our method not only outperforms existing
dictionary-based approaches with relatively-low time cost, but
also outperforms recent low-rank approaches.

Index Terms—Tensor dictionary learning, Tensor completion,
Convolutional Sparse coding, Factorized dictionary learning

I. INTRODUCTION

TENSORS are a generalization of matrices, which can be
used for modeling multi-dimensional data. In multimedia

and image processing, there is a large amount of visual
data in the form of tensor, such as color images, videos,
multi-spectral images, arrays of image patches, and magnetic
resonance imaging volume data; see e.g. [1–9]. Therefore, the
studies on visual tensor data processing are of great values and
have plenty of applications, e.g. object recognition [10], video
description [2–4], image recovery [6–9], medical imaging [5],
and compression of deep networks [11].

In many scenarios, there are inevitably a large number of
missing elements in the collected visual tensor data. The task
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of recovering these missing elements is referred to as visual
tensor data completion, which is very useful for the subsequent
processing on the data. Visual tensor data often contain rich
and strong local structures, e.g. local space-time patterns of
videos. The discovery and exploitation of such structures is
one key for the visual tensor data completion [12–14].

One popular tool that has proven its effectiveness in discov-
ering and exploiting the local structures of visual data is the
so-called sparse dictionary learning, i.e. dictionary learning to-
gether with sparse coding, which has the applications ranging
from recovery [15–18] to recognition [2, 19]. However, most
existing sparse dictionary learning approaches, when used for
visual tensor completion, suffer from very high computational
costs or low performance. To address these issues, in this
paper, we propose a novel dictionary learning scheme for
tensor data, based on which a sparse coding model is proposed
for visual data completion.

A. Related Work

1) Sparse dictionary learning for tensors: In the last two
decades, a lot of sparse dictionary learning methods (e.g. [14–
17, 20]) have been proposed for the local processing of
2D images, which learn dictionaries from image patches.
During the processing, these patch-based methods ignore the
consistency among the pixels that lie in different patches but
correspond to the same pixel in the image. This may have
a negative effect on the result. The convolutional dictionary
learning methods [17, 21–23] proposed recently avoid the
inconsistency among pixel values across different patches by
using the convolutional coding formula instead of the patch-
based one. One disadvantage of these methods is that, the
convolutional form increases the difficulty of optimization and
brings additional time cost in the numerical solver.

By using tensor patches [12] or high-dimensional convolu-
tions [24], both the patch-based and convolutional dictionary
learning methods can be straightforwardly extended to pro-
cessing tensor data. However, due to their limited computa-
tional scalability, such approaches are very time-consuming
when processing the tensor data of high dimensionality. For
acceleration, some approaches (e.g. [16]) impose the orthogo-
nality constraint on the dictionary. The orthogonality constraint
not only leads to an analytic solution for dictionary update, but
also results in an analysis form of sparse coding that has a very
fast analytic solver for the sparse approximation subproblem.

Nevertheless, the orthogonality constraint disable the over-
completeness of the dictionary, i.e. an orthogonal dictionary
cannot have atoms whose number is larger than the atom size.
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In practice, the overcompleteness of the dictionary is important
to the success of sparse-coding-based methods in many tasks;
see e.g. [14, 15, 25]. There are also the so-called analysis
dictionary learning methods (e.g. [26–28]) which use the
analysis operator as the dictionary for learning. These methods
have fast solvers for the sparse approximation subproblem,
and avoid imposing orthogonality constraints. However, it is
challenging to design effective constraints on the dictionary of
analysis form, so as to avoid trivial solutions of the learned
dictionary while having a fast solver for the dictionary update.

There are some dictionary learning approaches [29–34] that
exploit the tensor form of dictionary atoms for acceleration.
Most of these approaches impose certain factorizations, such
as canonical polyadic decomposition (CPD) and Tucker de-
composition (TD), on the dictionary, by which fast solvers for
the dictionary update subproblem can be obtained. A seminal
work can be traced back to Hazan et al.’s method [29]. They
applied CPD with non-negativity and sparsity constraints.
Duan et al. [30] also used CPD but without non-negativity
constraints for sparse coding. A similar CPD-based approach
was proposed by Dantas et al. [32]. Briefly, the CPD factorizes
a tensor into a summation of weighted rank-one tensors. Based
on CPD, the dictionary is expressed as the outer-product of
1D atoms, and the sparse codes are defined by the coefficients
in the summation. From this view, the separable filter learning
proposed by Rigamonti et al. [31] is a matrix version of the
CPD-based convolutional tensor dictionary learning. Zhang et
al. [33] applied the CPD-based tensor dictionary learning to
processing the tensors of non-local similar patch stacks for
image restoration. Stevens et al. [34] conducted the CPD-based
tensor dictionary learning under a probabilistic framework of
sparse coding.

In comparison to the CPD-based ones, the TD-based ap-
proaches express a tensor into a set of matrices and a small
core tensor. With such a decomposition, the dictionary atoms
are defined by the factor matrices, and the coding results of
the dictionary are encoded in the core tensor; see [35] for a
pioneering work. Hawe et al. [36] expressed the dictionary
as the Kronecker product of two factor dictionaries, which is
the matrix form of Zubair et al.’s method. Roemer et al. [37]
and Qi et al. [38] developed efficient numerical solvers for
the TD-based dictionary learning. Peng et al. [1] combined
structured sparse coding with TD-based dictionary learning for
denoising non-local similar patches of multi-spectral images.
Ju et al. [39] proposed a non-parametric approach for tensor
dictionary learning by combining the TD-based dictionary
learning with a stochastic process. Zubair [40] used TD-based
dictionary learning for exploiting the block-sparse representa-
tions of signals for classification. Fu et al. [41] proposed to
jointly learn multiple tensor dictionaries based on TD. Quan et
al. [2] introduced the orthogonal constraint on each factor
matrices in TD, resulting in a very fast numerical solver.

Both the CPD-based and TD-based approaches for dictio-
nary learning have shown significant improvement on the com-
putational scalability over the traditional ones. Nevertheless,
their resulting dictionary atoms are rank-1 tensors with limited
expressive power. One limitation is that a rank-1 atom cannot
express local structures with different orientations except the

ones with the horizontal/vertical orientation, e.g., an image
patch only containing an edge which is neither horizontal nor
vertical is not rank-1, whereas structures with orientations are
very important for visual data processing, particularly that the
orientations become richer as the order of the tensor increases.
It is noted that there are some tensor dictionary learning
approaches proposed for specific types of data, e.g. positive
definite matrices [42, 43] and third-order super-symmetric
tensor descriptors [44], which are not the focus of this paper.

2) Visual tensor completion: Many tensor completion
methods focus on the utilization of the global low rank prop-
erty of tensor data, and they build up low-rank approximation
models for the completion. Mathematically, the rank of a
tensor is not uniquely defined. Based on different definitions
on tensor rank, there are different kinds of models for low-
rank tensor completion; see e.g. CPD-based approaches [45–
47], TD-based approaches [48–50], and t-SVD-based ap-
proaches [51–54].

The low-rank tensor completion methods ignore one impor-
tant characteristic of visual tensor data, i.e., inclusion of rich
and strong local patterns. To exploit such a characteristic for
improvement, some approaches were proposed by combining
low-rank approximation models with sparse coding. Liu et
al. [13] induced piece-wise smoothness on the processed ten-
sor using total variation (TV) penalty. Han et al. [55] induced
local smoothness on the recovered tensor by promoting the
sparsity under a discrete cosine transform (DCT) dictionary.
With a similar purpose, Xiong et al.[8] exploited the local
sparsity prior of visual data by transferring the field-of-experts
filters learned from natural images to tensor data. Instead of
using fixed dictionaries, Du et al. [12] employed orthogonal
dictionary learning for exploiting data-adaptive features for
completion. Yang et al. [56] applied the sparse dictionary
learning to the vectors along one dimension of tensor. There
are also a few methods that exploit the self-recurrence of local
structures of visual tensor data. For instance, Xie et al. [57]
matched and stacked similar blocks of the given tensor and
then applied low-rank approximation to the stack for recovery.

With the development of deep learning, there are some
deep approaches proposed recently for tensor completion; see
e.g. [58–60]. However, most of these approaches need a large
amount of data for training and the training is computationally
infeasible when the dimensionality of the tensor data is high.

B. Motivations and Basic Ideas

Let x denote a given signal and {y1, · · · ,yM} denote the
patches sampled from x. Let B denote the dictionary and
Y = [y1, · · · ,yM ]. For the local processing on x, most
conventional sparse dictionary learning approaches consider
the following synthesis model: Y = BC where C is sparse.
Such approaches have two weaknesses: (i) The approaches in-
trinsically assume the independence of y1, · · · ,yM . However,
since two patches may contain the elements that correspond
to the same one in x,the independence assumption is invalid
and may cause performance drop [17]. (ii) The synthesis form
often results in a time-consuming numerical solver on C, as
solving C is an NP-hard problem. These two weaknesses
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become more noticeable when processing tensor data with
high order/dimensionality. First, an element of a higher-order
tensor is likely to repeat more times in the sampled patches,
implying that more dependencies among different patches are
ignored. Second, as the dimensionality of the tensor increases,
the solving C becomes much more time-consuming when
using the pursuit algorithms (e.g. [15]).

To overcome the above weaknesses, in this paper, we
propose a convolutional analysis dictionary learning approach.
Let d1, · · · ,dK denote a series of analysis dictionary atoms
and ∗ denote the convolution. Basically, we consider the sparse
model of the convolutional analysis form as follows:

di∗x = ci, where ci is sparse for all i.

In our model, we use the convolutional form of sparse coding
to avoid the independence assumption in the patch-based form.
Meanwhile, the analysis form is used so that a fast algorithm
for the subproblem regarding sparse approximation can be
developed, even with the convolutional form.

Owing to the analysis form, our dictionary learning model
needs an effective dictionary construction scheme which is
nontrivial and challenging. Without any constraint, it can be
seen that di will degenerate to 0, which is a trivial solution.
Constraining ‖di‖2 = 1 for all i, as [15] does, can avoid
di = 0, whereas it is likely to generate another trivial solution:
di = d∗,∀i, where d∗ is the atom that leads to the sparsest
solution. There are some constraints investigated in existing
literature [26–28] for analysis dictionary learning. However,
such constraints may introduce much additional time cost and
thus are not suitable for processing tensor data.

To address the above challenge, we propose a convolutional
factorization scheme for constructing the tensor dictionary. A
pth-order tensor dictionary atom is factorized as the convolu-
tion of two (or more) pth-order tensors selected from two (or
more) orthogonal tensor dictionaries (called factor dictionar-
ies) respectively. This scheme can prevent the aforementioned
trivial solutions in analysis dictionary learning:
• Each factor dictionary is orthogonal and thus must not

contain 0 as its atom. Furthermore, the convolution of two
non-zero atoms with finite support will generate nonzero
response. Therefore, the resulting composite dictionary
cannot have 0 as its atoms.

• The atoms of an orthogonal factor dictionary are definitely
different from one another. Besides, convolving an atom
from a factor dictionary with two different atoms from an-
other factor dictionary respectively will yield two different
results. Thus, it is impossible that di = d∗,∀i.

In addition, the proposed scheme allows the dictionary to
be overcomplete, as the convolutional composition of two
orthogonal dictionaries is not an orthogonal dictionary and its
number of atoms can be larger than the size of its atoms.

Combining the proposed dictionary factorization scheme
with the convolutional analysis sparse coding, we propose an
efficient sparse coding model for visual tensor completion.
Benefiting from the convolutional factorization on dictionary,
the proposed model is very effective, with state-of-the-art
results achieved in the experiments. Moreover, we present an

efficient solver for the proposed model, where each subprob-
lems has an explicit solution that can be efficiently computed:
• Using the commutativity of convolution, a factor dictionary

can be moved to the front of the convolutional composi-
tion. Then by exploiting the relation between convolution
and patch-based representation, the update of the factor
dictionary can be formulated as a problem of finding an
optimal orthogonal transform (dictionary) in least squares
approximation, which has an analytic SVD-based solution.

• As will be shown, benefiting from the orthogonality of the
factor dictionaries and their convolutional composition, the
transform associated with the composite dictionary has the
tight frame property. Such a property allows the update of
the recovered tensor to have an explicit solution that can
be computed by simple operations including convolutions
and summations.

• Due to the use of analysis dictionary learning, the sparse
coding subproblem can be done by a simple element-wise
thresholding operation.

The efficiency of the proposed approach will be analyzed and
demonstrated by experiments.

C. Contributions

The contributions of this paper are two-fold. Firstly, a new
tensor dictionary learning scheme is proposed. Compared with
the vectorized dictionary learning methods (e.g. [15]), the
proposed one avoids vectorization of tensor patches which is
arguably not suitable for processing tensors [42]. Compared
with convolutional dictionary learning approaches [17, 21–23],
the proposed one has higher computational scalability. As a
byproduct, it involves much fewer parameters when increas-
ing the size of dictionary, which reduces the possibility of
overfitting when learning a large dictionary. Compared to the
existing orthogonal dictionary learning approaches [12, 16],
the proposed one allows learning an overcomplete rather
than orthogonal dictionaries. Compared to existing tensor
dictionary learning approaches [29–34], our convolutional
factorization scheme for dictionary construction avoids their
main weakness, i.e. imposing rank-1 structures onto dictionary
atoms. In addition, the work in this paper also contributes a
practical solution to convolutional analysis dictionary learning.

Secondly, we propose an effective and efficient approach to
visual tensor completion, which has several advantages over
existing dictionary-based methods. Compared with the ones
using analytic dictionaries (e.g. [55]) or transferred dictionar-
ies (e.g. [8]), the proposed approach employs a data-driven
dictionary which has better adaptivity. Compared with [12]
which iterates orthogonal dictionary learning and low-rank
approximation, ours can learn a dictionary with overcom-
pleteness and better expressive power for the completion.
In addition, it performs better than [12] without using the
low rank prior. Compared with the ones using CPD-based or
TD-based dictionary learning, the proposed approach avoids
imposing the rank-1 assumption on dictionary atoms and thus
can recover more interesting local structures in the data. Last
but not least, there are few model parameters to be tuned
in the proposed approach. The advantages of the proposed
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approach are demonstrated with the experiments on four types
of visual tensor data. The experimental results show that,
the proposed approach not only outperforms existing sparse
coding methods and low-rank approximation methods, but
even outperforms the methods that combine sparse coding and
low-rank approximation.

D. Notations and Organization
Through the paper, unless specified, we use uppercase hol-

low letters for sets, uppercase calligraphic letters for tensors,
uppercase boldfaced letters for matrices, lowercase boldfaced
letters for vectors, and normal letters for scalars. For example,
A ∈ RS1×S2×···×SP denotes a P th-order tensor of size
S1 × S2 × · · · × SP , A ∈ RS1×S2 denotes a matrix of size
S1×S2, and a ∈ RS denotes a column vector with S elements.
Particularly, I,0 denote the identity matrix and the zero matrix
with appropriate sizes respectively. For matrix concatenation,
commas are used for adding elements column-wisely and
semicolons are used for adding elements row-wisely. Given
two equal-size tensors A and B, their inner product 〈A,B〉
is defined as the sum of the products of the corresponding
entries of A and B. The Euclidean norm of A is defined by
‖A‖2 = 〈A,A〉 12 . The `0-norm of A, denoted by ‖A‖0, is
defined as the number of non-zeros in A.

Followings are some operators used throughout the paper.
Let ∗, ◦,⊗ denote the convolution, tensor product and Kro-
necker product respectively. Let PM : RS1×S2×···×SP →
RM

P×(
∏P
p=1 Sp) denote the patch extraction operator which

extracts the patches of size M ×M × · · · ×M︸ ︷︷ ︸
P

using a sliding

window on the given tensor with periodic boundary extension.
Let V : RS1×S2×···×SN → R

∏P
p=1 Sp denote the vectorization

operator on the given tensor. Let S(A) denote the convolution
matrix corresponding to the convolution kernel A with circular
boundary condition, such that S(A)V(B) = V(A ∗ B). In 1D
case, given A = [a1, · · · , an], S(A) can be expressed as a
circulant matrix:

S(A) =


an · · · a1

an · · · a1

. . . . . . . . .
an−1 · · · an

 .
Recall that discrete convolution is indeed about the weighted
summations of neighbors for each element in a tensor. There-
fore, for an arbitrary order of tensor, S(A) can still be
expressed as a matrix whose rows store the convolution kernel
in appropriate positions. Note that S(A)> is also a convolution
matrix whose corresponding kernel is the flipping (mirror
symmetry) of A. Let δi,j denote the Kronecker delta.

The rest of this paper is organized as follows. Section II
presents the proposed scheme for dictionary construction.
Section III presents the proposed dictionary-learning-based
approach for visual tensor completion. Section IV is for the
experimental evaluation. Section V concludes the paper.

II. DICTIONARY CONSTRUCTION SCHEME

Given a tensor X ∈ RS1×S2···×SP , our goal is about
finding a series of analysis dictionary atoms D1, · · · ,DM ∈

RS1×S2,···×SP such that the atoms can sparsify X effectively.
We consider the following convolutional analysis dictionary
learning model:

min
D1,··· ,DM

M∑
m=1

‖Dm ∗ X‖0, (1)

where the `0 norm is employed as the sparsity measurement.
Such a minimization model needs some effective constraints
on D1, · · · ,DM to avoid trivial solutions. In the remainder
of this section, we first present our dictionary construction
scheme that imposes effective constraints on the dictionary.
Then, we show an important property of the dictionary con-
structed by our scheme, which is helpful for understanding
the essence of our method as well as for developing efficient
numerical solvers for our model. Lastly, we revisit the existing
dictionary learning methods and compare them with our
approach.

A. Orthogonality-constrained Convolutional Factorization for
Dictionary Construction

To avoid trivial solutions in (1) and learn effective dictio-
naries, we define a P th-order tensor dictionary atom as the
convolution of two P th-order tensors (called atoms of a factor
dictionary, or factor dictionary atoms). For convenience, we
use a double index on the dictionary atoms and define the
tensor dictionary as

D = {D1,1,D1,2, · · · ,DI,J}. (2)

Then two orthogonal factor dictionaries are defined by

D1 = {Ei ∈ R

P︷ ︸︸ ︷
M × · · · ×M : 〈Ei1 , Ei2〉 = δi1,i2 ,∀ii, i2}Ii=1,

D2 = {Fj ∈ R

P︷ ︸︸ ︷
N × · · · ×N, 〈Fj1 ,Fj2〉 = δj1,j2 ,∀j1, j2}Jj=1,

(3)

where I = MP ,J = NP . Instead of directly learning the
dictionary D, we learn Di,j with the following factorization:

Di,j = Ei ∗ Fj ∀i, j. (4)

Then the size of Di,j is

P︷ ︸︸ ︷
(M +N − 1)× · · · × (M +N − 1).

Note that the orthogonality of factor dictionaries D1,D2 does
not imply the orthogonality of the composite dictionary D. In
fact, we can see that the composite dictionary is overcomplete
by noting its atom size is smaller than the number of atoms.
Based on above, the model of (1) can be rewritten as

min
D1,D2

I,J∑
i,j=1

‖Di,j ∗ X‖0

s.t. Di,j = Ei ∗ Fj , ∀i, j.

(5)

Our dictionary construction scheme can be extended to
the cases of three or more factor dictionaries. For conve-
nience, we indicate the dictionary atom with multiple in-
dices (k1, k2, · · · , kQ) and the atom of factor dictionary
with single index. Let {Dk1,k2,··· ,kQ ∈ RN1×···×NP |kq =
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1, · · · ,
∏P
p=1 nq,p; q = 1, · · · , Q} denote the set of dictionary

atoms. The factorization is given by

Dk1,k2,··· ,kQ = A(1)
k1
∗ A(2)

k2
∗ · · · ∗ A(Q)

kQ
, (6)

where the factor dictionary atoms

A(q)
kq
∈ Rnq,1×nq,2×···nq,P , kq = 1, · · · ,

P∏
p=1

nq,p

satisfy
∑Q
q=1 nq,p −Q = Np and

< A(q)
r ,A(q)

s >= δr,s, ∀r, s. (7)
for q = 1, · · · , Q. In practice, we set Q = 2 which suffices
our need.

B. Interpretation From Tight Frame

For a dictionary D constructed by the proposed factorization
scheme, its associated transform (system) is defined by

SD = [S(D1,1);S(D2,1); · · · ;S(DI,J)]. (8)

Since S(Di,j)V(X ) = V(Di,j ∗ X ), SDV(X ) is equivalent
to calculating Di,j ∗ X for all i, j. By definition, we have∑I,J
i,j=1‖Di,j ∗ X‖0 = ‖SDV(X )‖0. The system SD has one

important property called tight frame property.
A system W ∈ Rm×n (m ≥ n) is a tight frame if and only

if ‖Wx‖2 = c‖x‖2 for any x ∈ Rn, where c is a positive
constant. Any tight frame system has the perfect reconstruction
property W>W = cI . Let Rs denote the transform for
the patch-based representation on a tensor with circular
boundary condition, defined by RsV(A) = V(Ps(A)). Take
the 1D case for instance. Given a = [a1, · · · , aK ]>, R3a =
[aK , a1, a2, a1, a2, a3, · · · , aK−2, aK−1, aK , aK−1, aK , a1]>.
The transform Rs is a very basic operation in image
processing. Meanwhile Rs is a tight frame satisfying
‖RsV(A)‖2 = sp‖V(A)‖2 for any pth-order tensor A, as it
reduplicates each element in the input with sp times.

A system is called a convolutional tight frame if it is a tight
frame with the following form:

[S(A1); · · · ;S(AK)].

The following proposition shows that the system SD associ-
ated with the dictionary constructed by our scheme is actually
a convolutional tight frame.

Lemma 2.1: Given a set of orthonormal atoms {Ak ∈

R

P︷ ︸︸ ︷
m×m · · · ×m, k = 1, · · · ,mP : ∀k1, k2, 〈Ak1 ,Ak2〉 =

δk1,k2}. Let SA denote the system constructed by

SA = [S(A1); · · · ;S(AK)], (9)
where K = mP . Then SA is a convolutional tight frame.

Proof Let A = [V(Ā1),V(Ā2), · · · ,V(ĀK)]> where Āi
denotes the flipping of Ai. Due to the orthonormality of
{Ak}k, A is an orthogonal matrix. There exists a permutation
matrix P such that

S = P

A
. . .

A

Rm. (10)

Since P>P = I,A>A = I,R>mRm = mP I , we have
S>S = mP I which completes the proof.

Proposition 2.2: Given two orthogonal dictionaries

{Ei ∈ R

P︷ ︸︸ ︷
M × · · · ×M : 〈Ei1 , Ei2〉 = δi1,i2 ,∀ii, i2}Ii=1,

{Fj ∈ R

P︷ ︸︸ ︷
N × · · · ×N : 〈Fj1 ,Fj2〉 = δj1,j2 ,∀j1, j2}Jj=1,

where I = MP , J = NP . Let D denote the dictionary
constructed by

D = {Di,j : Di,j = Ei ∗ Fj}I,Ji=1,j=1. (11)

Then its associated system

SD = [S(D1,1);S(D2,1); · · · ;S(DI,J)] (12)

is a convolutional tight frame satisfying S>DSD = cI where
c = (MN)P .

Proof Let SE = [S(E1); · · · ;S(EI)] and SF =
[S(F1); · · · ;S(FJ)]. For any i, j, we have

S(Di,j)V(X ) = Di,j ∗ X = Ei ∗ Fj ∗ X
= S(Ei)V(Fj ∗ X ) = S(Ei)S(Fj)V(X ). (13)

Therefore, we can rewrite SD as

SD =


S(E1)S(F1)
S(E2)S(F1)

...
S(EI)S(FJ)

 =


SES(F1)
SES(F2)

...
SES(FJ)

 = (I ⊗ SE)SF .

(14)
From Lemma. 2.1, we have S>E SE = MP I and S>FSF =
NP I . Then it is straightforward to show that S>DSD =
(MN)P I , which completes the proof.

From Proposition 2.2, learning a dictionary under our fac-
torization scheme can be viewed as learning a multi-level
convolutional tight system for sparsifying the input tensor data.
Convolutional tight frame systems have many good properties
in local image processing; see e.g. [61]. One benefit from the
tight frame property of SD is that we can avoid computing
(S>DSD)−1 as it is proportional to I . This is useful for
developing related numerical solvers; see Sec. III-B.

C. Revisit of Existing Dictionary Construction Schemes

The proposed dictionary construction scheme has its merits
over the existing ones. For comparison, recall the notations
used by (1). Let x = V(X ),dm = V(Dm) ∈ R1×(

∏P
p=1 Sp)

denote the vectorization of input data X and dictionary atom
Dm respectively. Let D = [d1, · · · ,dM ]. In the following,
we summarize the dictionary construction schemes of existing
approaches, as well as their pros and cons:
• Plain [14, 15]: Represent X , {Dm}m by x,D and call ex-

isting matrix-oriented dictionary learning algorithms. Their
computational costs are huge in processing big tensors.

• Orthogonality [16]: Similar to above but add D>D = I .
On one hand, such an orthogonality constraint can lead
to explicit solutions in both sparse approximation and
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dictionary update, with computational efficiency noticeably
improved. On the other hand, the orthogonality constraint
limits the expressive power of model, as the dictionary
cannot be overcomplete.

• CPD-Separability [30, 32–34]: Dm := d
(m)
1 ◦ d(m)

2 ◦ · · · ◦
d

(m)
P for all m. Each dictionary atom is factorized into one-

dimensional atoms, allowing the dictionary learning to be
conducted separately along each dimension of the tensor.
Then, the dictionary learning processing can be signifi-
cantly accelerated. However, the factorization also imposes
the independence among the dimensions of the tensor,
limiting the expressive power of the learned dictionary.
For instance, the learned dictionary atoms are all rank-1
tensors without orientations. See Fig. 1 for an illustration.

• TD-Separability [1, 35, 37–41]: D := D1⊗D2⊗· · ·⊗DP .
Similar to the CPD case, such a factorization also imposes
the rank-1 property on each dictionary atom, which dis-
ables the learning of oriented atoms. See also Fig. 1.

• Separability + Orthogonality [2]: D := D1 ◦ D2 · · · ◦
DP and D>p Dp = I for all p. This scheme enjoys both
advantages of the two structures for further acceleration;
however, it also inherits the disadvantages of the both.

In summary, the existing approaches have limitations in either
computational efficiency or expressive power.

In comparison, the proposed model uses the convolutional
composition of Ei and Fj which avoids imposing the rank-1
property onto the atoms, and thus it overcomes the main weak-
ness in most existing tensor dictionary learning approaches.
The orthogonal constraints on both {Ei}i and {Fj}j , as can
be seen in the next section, result in the explicit solution
with efficient computation to each subproblem in dictionary
learning. See Fig. 1 for an example of the learned dictionary by
the proposed method and its comparison to other approaches.

Note that the cardinal of D is I × J = (MN)P , which is
larger than (M+N−1)P , the size of Di,j , for M , N ≥ 3. This
implies that our approach allows learning overcomplete dictio-
naries, which distinguishes itself from the existing orthogonal
dictionary learning approaches. Also note that, the number of
unknowns in our approach is M2P + N2P . In comparison,
using a dictionary of the same size in conventional dictionary
learning involves (M + N − 1)P (MN)P unknowns, which
is much larger than ours and may encounter the curse of
dimensionality when M,N,P are large. In other words, our
approach introduces much fewer parameters when increasing
the size of the dictionary, with lower possibility of overfitting
when scaling to big tensors.

III. VISUAL TENSOR COMPLETION MODEL

This section presents a dictionary-learning-based approach
for visual tensor completion, which is built upon the dictionary
construction scheme proposed in Section II.

A. Model

Let X ,Y ∈ RS1×···×SP denote the truth tensor and its
observation with missing elements. Let Ω denote the index set
of the known elements in Y and Ω̄ denote the index set of the
missing elements. The goal of tensor completion is to recover

(a) CPD-based dictio-
nary learning [30]

(b) TD-based dictio-
nary learning [2]

(c) Proposed dictionary
learning model (1)

Fig. 1. Dictionaries learned on the color image ’Lena’ by different methods.
The top 81 atoms with highest responses are shown. It can be seen that our
learned dictionary atoms have much richer orientations than the other methods.

YΩ̄ from YΩ, or equivalently, recover X from Y . Considering
the local characteristic of a visual tensor, we propose a sparse-
dictionary-learning-based completion model as follows:

min
X ,D

I,J∑
i,j=1

‖Di,j ∗ X‖0

s.t. XΩ = YΩ, Di,j = Ei ∗ Fj , ∀i, j,
〈Ei1 , Ei2〉 = δi1,i2 , 〈Fj1 ,Fj2〉 = δj1,j2 ,∀ii, i2, j1, j2.

(15)
The above tensor completion model is built upon the convo-
lutional analysis dictionary learning model of (1). Note that
when Y has no missing elements (i.e. Ω̄ = ∅), the above model
becomes the dictionary learning model defined in (1).

By using the convolution under a learned dictionary for local
processing, the model of (15) can exploit the local structures
effectively for the completion. Furthermore, benefiting from
the proposed factorization scheme on the dictionary, the model
can learn an overcomplete dictionary with oriented atoms from
the damaged input Y for the recovery of missing elements. In
addition, the model can be efficiently solved, which is shown
in the next. It is worth mentioning that the proposed model
has few parameters to be tuned. The parameters needed to be
set are only the sizes of factor dictionaries {Ei}Ii=1, {Fj}Jj=1.

B. Numerical Algorithm

For solving the problem (15), we rewrite it into

min
X ,{Di,j}

I,J∑
i,j=1

‖Ci,j‖0

s.t. Ci,j = Di,j ∗ X , XΩ = YΩ, Di,j = Ei ∗ Fj ,∀i, j,
〈Ei1 , Ei2〉 = δi1,i2 , 〈Fj1 ,Fj2〉 = δj1,j2 , ∀i1, i2, j1, j2.

(16)
Define L(X , {Ci,j}, {Di,j}) =

∑I,J
i,j=1‖Ci,j‖0+ρ‖Ci,j−Di,j ∗

X‖22. Then the problem (16) is solved by

X (t+1) = arg min
X

L(X , {C(t)
i,j }, {D

(t)
i,j })

{C(k+1)
i,j } = arg min

{Ci,j}
L(X (t+1), {Ci,j}, {D(t)

i,j })

{D(t+1)
i,j } = arg min

{Dij}
L(X (t+1), {C(t+1)

i,j }, {Di,j})

ρ(t+1) = γρ(t)

,

(17)
subject to the constraints in (16), for t = 0, 1, · · · and γ >
1 (set to 1.05 in our implementation). The solution to each
subproblem of (17) is given in the following.
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Update of recovered tensor. The subproblem regarding X
in (17) is as follows:

min
X

I,J∑
i,j=1

‖D(t)
i,j ∗ X − C

(t)
i,j ‖

2
2, (18)

subject to XΩ = YΩ. Regarding this problem, its solution is
revealed by the following proposition.

Proposition 3.1: Let Di,j denote the dictionary defined
in (15), and D̄i,j denote the flipping of Di,j . The problem

min
X

I,J∑
i,j=1

‖Di,j ∗ X − Ci,j‖22, (19)

has the unique solution given by

X =
1

MPNP

I,J∑
i,j=1

D̄i,j ∗ Ci,j , (20)

Proof Let SD = [S(D1,1); · · · ;S(DI,J)]. Then, we have

I,J∑
i,j=1

‖Di,j ∗ X − Ci,j‖22 = ‖SDV(X )−C‖22, (21)

where C = [V(C1,1),V(C2,1), · · · ,V(CI,J)]. Setting the
derivative of ‖SDV(X )−C‖2 over V(X ) to zero yields

V(X ) = (S>DS)−1S>DC =
1

MPNP
S>DC, (22)

where we use S>DSD = 1
MPNP

I from Proposition 2.2. Then,
by definition we have

X = V−1(S>DC) =
1

MPNP

I,J∑
i,j

D̄i,j ∗ Ci,j . (23)

The proof is completed.

Based on Proposition 3.1, we solve the problem of (18) by
calculating X (t+1) =

∑
i,j D̄

(t)
i,j ∗ C

(t)
i,j /(M

PNP ), where D̄(t)

is the flipping of D(t). Then we project the solution to the
constraint XΩ = YΩ by updating X (t+1)

Ω = YΩ.
Update of sparse code tensors. The problem regarding Ci,j

in (17) is as follows:

min
Ci,j

‖Ci,j‖0 + ρ‖D(t)
i,j ∗ X

(t+1) − Ci,j‖22 (24)

for all i, j. This problem has the closed-form solution given
by Proposition 3.2.

Proposition 3.2: The solution of (24) is given by

Ci,j = T√ 1
ρ

(D(t)
i,j ∗ X

(t+1)), (25)

where Tλ(·) is the element-wise hard thresholding operation
defined by

(Tλ(A))(i1, i2, · · · , iP ) = Tλ(A(i1, i2, · · · , iP )), (26)
Tλ(x) = x if |x| ≥ λ and 0 otherwise. (27)

for a P th-order tensor A and a scalar x.

Proof For simplicity, we use linear indexing on the tensor,
i.e. A(k) denotes the k-th element of the tensor A. Let I : R→

{0, 1} denote the function outputting 1 if the input condition
is true and 0 otherwise. Define Zi,j = D(t)

i,j ∗ X (t+1). The
problem (24) can be rewritten as

min
Ci,j

∑
k

(I(Ci,j(k) 6= 0) + ρ(Zi,j(k)− Ci,j(k))
2
). (28)

In above, each term in the summation over k is independent of
one another. Thus, the problem of (28) is equivalent to solving
a series of subproblems simultaneously. That is, for each k,

min
Ci,j(k)

I(Ci,j(k) 6= 0) + ρ(Zi,j(k)− Ci,j(k))
2
. (29)

For each k, the problem is a single-variable minimization. It
can be solved by simple comparison and calculation, and the
solution is given by

Ci,j(k) =

{
Zi,j(k), |Zi,j(k)| > 1/

√
ρ

0, otherwise , (30)

for all k, which is equivalent to (25). The proof is done.

Update of Dictionaries. The update of the dictionary atoms
Di,j is as follows:

min
Di,j

I,J∑
i,j=1

‖Di,j ∗ X (t+1) − C(t+1)
i,j ‖2F

s.t. Di,j = Ei ∗ Fj , 〈Ei1 , Ei2〉 = δi1,i2 ,

〈Fj1 ,Fj2〉 = δj1,j2 ,∀i, j, i1, i2, j1, j2.

(31)

It can be seen that the update of Di,j involves the update of
the factor atoms Ei and Fj . We sequentially update Ei,Fj and
then calculate Di,j = Ei∗Fj . The update of Ei is about solving

min
{Ei}i

I∑
i=1

‖Ei ∗ F (t)
j ∗ X

(t+1) − C(t+1)
i,j ‖22

s.t. 〈Ei1 , Ei2〉 = δi1,i2 , ∀ii, i2.
(32)

Then, using the commutativity of convolution: E(t+1)
i ∗ Fj =

Fj ∗ E(t+1)
i , the update of Fj is done by solving

min
{Fj}j

J∑
j=1

‖Fj ∗ E(t+1)
i ∗ X (t+1) − C(t+1)

i,j ‖22

s.t. 〈Fj1 ,Fj2〉 = δj1,j2 , ∀ji, j2.

(33)

Note that the problems of (32) and (33) share the same form:

min
{Ak}k

K∑
k=1

‖Ak ∗Y −Bk‖22, s.t. 〈Ak1 ,Ak2〉 = δk1,k2 ,∀k1, k2,

(34)
which has the unique solution given by Proposition 3.3.

Proposition 3.3: Let A = [V(Ā1),V(Ā2), · · · ,V(ĀK)]>

where Āk ∈ RS×···×S denotes the flipping of Ak ∈ RS×···×S ,
Y = Ps(Y) and B = [V(B1),V(B2), · · · ,V(BK)]>. The
solution of (34) is given by A = UV > where U ,V
denote the orthogonal matrices defined by the following SVD:
UΣV > = BY >.

Proof Based on the definition as well as calculation process
of convolution, the problem of (34) can be rewritten into

min
A
‖AY −B‖2F, s.t. A>A = I. (35)
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The problem of (35) is about finding an optimal orthogonal
transform in least squares approximation, which has the unique
solution given by [16]:

A = UV >. (36)

The proof is completed.

C. Complexity Analysis

Let S =
∏P
p=1 Sp denote the number of elements in the

processed tensor Y and Z = (M+N−1)P denote the number
of elements in each dictionary atom Di,j . Suppose the number
of nonzero entries for each position, i.e. nonzero entries in each
row of C, is a constant µ. Also recall that the number of atoms
in the dictionary is N = IJ , the computational complexity
of the proposed tensor completion method is analyzed as
follows. The update of X mainly involves the convolution
operations, which need µZS dominant operations. The update
of {Ci,j}i,j involves the convolution and element-wise hard
thresholding operations, where the total number of dominant
operations is IJZS + IJS. The update of factor dictio-
nary {Ei}i involves convolution, matrix product and SVD,
requiring J2S + µIS + I3 dominant operations. Similarly,
the total number of dominant operations in calculating {Fj}j
is I2S + µJS + J3. Assuming that µ � IJ � S, the
proposed method has an iteration complexity of O(IJZS).
For comparison, we consider the complexity of applying K-
SVD (accelerated version) [62] and L0DL [14] for tensor
completion, where the dictionary learning and tensor recovery
steps are alternated in the outer loop. For good results, several
inner iterations of dictionary update are needed in one outer
iteration for these two methods. Suppose the number of such
inner iterations is ko. The complexity of K-SVD and L0DL in
tensor completion isO(koIJZS+koµ

2IJS) andO(koIJZS)
respectively.

IV. EXPERIMENTS

A. Protocols and Implementation Details

The proposed method is evaluated using four types of data,
including color images, videos, multi-spectral images, and
magnetic resonance imaging (MRI) data. The peak signal-to-
noise ratio (PSNR) is used for measuring the quality of the
recovered tensor. Given the recovered tensor Y and its ground
truth X , the PSNR is computed by

PSNR(Y,X ) = 10 ∗ log10(NV 2
max)/‖Y − X‖2F ,

where Vmax is the maximum possible value in the ground-
truth tensor X , and N is to the number of elements in X .

The implementation details of our method are as follows.
Each factor dictionary is initialized by the multi-dimensional
DCT. The algorithm stops when the number of iterations
reaches 500, or ‖X (t+1) − X (t)‖F /‖YΩ‖F ≤ 10−4. The
parameters of our method are set as follows. The parameters
of our model only include the atom sizes of Ei and Fj ,1 which
are set according to the size of input data. In particular, we set

1Owing to the orthogonality constraints, once the atom sizes are set, the
size of each factor dictionary as well as the composite dictionary is fixed.

each atom to have equal spatial dimensions and allow the other
dimensions to be different from the spatial dimensions. Our
numerical algorithm involves two parameters: γ and initial ρ,
which are set to 1.05 and 0.01 respectively.

For comparison, we select seven approaches which have the
published results or available codes, including
• Three representative low-rank approaches: HaLRTC [48]

(multi-rank), SPCTC [63] (CPD-rank), and t-SVD [51]
(tubal rank).

• Two conventional vectorized dictionary learning methods:
K-SVD [18] and L0DL [14]. The patch sizes are set the
same as the proposed method for fair comparison.

• Two very recent hybrid approaches (low-rank approxi-
mation + sparse coding): KBRTC [57] (smoothed tensor
nuclear norm + core tensor sparsity), and WTNNDL [12]
(weighted tensor nuclear norm + orthogonal dictionary
learning).

To better demonstrate the effectiveness of the proposed model,
we constructed two baseline methods for comparison:
• Orthogonal dictionary learning. To show the performance

gain from the double orthogonal dictionaries over a single
one, our model is modified so that it only learns an
orthogonal dictionary, and the subproblem of dictionary
learning is solved by the orthogonal dictionary learning
algorithm of [16]. The patch size is set the same as ours.
Such a baseline is denoted by ODLTC.

• Separable orthogonal tensor dictionary learning. To show
the benefits from our dictionary factorization over the
existing factorization schemes, the dictionary in our model
is replaced with the separable orthogonal dictionary [2].
The dictionary learning subproblem is then solved by the
algorithm of [2]. The patch size is set the same as ours.
The resulting baseline method is denoted by SODLTC.

2 4 6 8 10 12 14
Patch size

30

36

42

48

54

60

66

P
S

N
R

(d
b)

Dropping rate = 60%
Dropping rate = 50%
Dropping rate = 40%
Dropping rate = 30%
Dropping rate = 20%
Dropping rate = 10%

(a) Proposed method
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(b) ODLTC

Fig. 2. PSNR values (dB) of the proposed method and ODLTC using different
atom sizes on image ’Lena’ with different dropping rates.

B. Influence of Atom Sizes of Factor Dictionaries

The sizes of the factor dictionaries {Ei}i, {Fj}j are the only
model parameters to be set. We investigate the influence of
such sizes on the completion of color images. Firstly, the sizes
of atoms Ei,Fj are set to L×L×1 and L×L×3 respectively
for all i, j, with L varying from 2 to 7. Accordingly, the size of
the composite dictionary atom Di,j is 3, 5, 7, 9, 11, 13 respec-
tively. In Fig. 2 we plot the PSNR values on the completion of
image ’Lena’ with different pixel missing (dropping) rates, by



IEEE TRANSCATIONS ON MULTIMEDIA 9

Atom size = [3 3 3] Atom size = [5 5 3] Atom size = [7 7 3] Atom size = [9 9 3] Atom size = [11 11 3] Atom size = [13 13 3]
(a) Proposed method

Atom size = [3 3 3] Atom size = [5 5 3] Atom size = [7 7 3] Atom size = [9 9 3] Atom size = [11 11 3] Atom size = [13 13 3]
(b) ODLTC

Fig. 3. Dictionaries learned by the proposed method and ODLTC with different atom sizes on image ’Lena’ with pixel dropping rate of 70%. Due to space
limitation, we only show top-K atoms that have highest responses on the image.

applying our method using different atom sizes. Overall, the
performance of our method increases when the size of atoms
grows up, and the performance saturates when the atom size
is sufficiently large.

For comparison, we also show the results of ODLTC
in Fig. 2 under the same setting. The overall performance
of ODLTC also increases with the increase of atom size.
However, the improvement is not as big as ours. One reason
is probably that as the number of atoms increases, ODLTC
may learn some undesired patterns due to the orthogonality
constraint on the dictionary. To demonstrate this, in Fig. 3
we show the dictionaries learned by our method and ODLTC,
with different dictionary sizes. It can been seen that as the dic-
tionary (atom) size increases, ODLTC may learn some noisy
patterns. In comparison, the atoms learned by our method
become smoother and contain larger-scale structures when the
atom size increases, without noisy patterns generated.

C. Evaluation on Color Images

For color image completion, six classic images shown in
Fig. 4 are used for the evaluation. The size of each im-
age is 255 × 255 × 3. The missing elements are generated
by randomly dropping the image pixels with the ratio of
10%, 20%, 30%, 40%, 50%, 60% respectively. The atom sizes
of the two factor dictionaries are set to 5×5×1 and 3×3×3, re-
spectively. The PSNR values of the recovered results are listed
in Table I. It can be seen that the proposed method performs
the best for all dropping rates. Particularly, compared with the
baseline methods including ODLTC and SODLTC, as well as
the dictionary-learning-based methods including K-SVD and
L0DL, the proposed method shows noticeable improvement.
Such improvement has demonstrated the dictionary structure
we use is effective for tensor completion. It is also worth
mentioning that compared with the hybrid methods including
KBRTC and WTNNDL, ours still shows improvements even
without the low rank prior.

Airplane Facade House Lena Peppers Sailboat

Fig. 4. Color images used for evaluation.

TABLE I
AVERAGE PSNR VALUES (DB) OF RECOVERED RESULTS ON COLOR

IMAGES WITH DIFFERENT DROOPING RATES.

Dropping Rate 10% 20% 30% 40% 50% 60%

HaLRTC 44.48 41.35 36.61 33.87 31.33 28.90
SPCTC 38.81 35.60 33.73 32.26 31.07 29.88
t-SVD 45.34 42.20 37.10 34.25 31.66 29.18
K-SVD 44.37 40.87 38.68 36.89 35.33 33.76
L0DL 44.32 40.89 38.67 36.90 35.32 33.76

KBRTC 48.58 45.30 39.65 36.68 33.54 30.83
WTNNDL 48.83 46.43 41.70 39.06 36.60 34.16

ODLTC 44.51 40.62 38.56 36.69 34.72 33.13
SODLTC 42.82 38.03 36.87 35.09 33.48 31.75

Ours 50.67 48.48 44.37 41.85 39.42 36.72

D. Evaluation on Videos

Following [12], we use four videos for the test on video
completion, including Biking, BabyCrawling, JugglingBall
and Lunges, which are from the UCF-101 action dataset2.
The size of each video is 240 × 320 × 80. See Fig. 5 for
some sampled frames of the videos. The incomplete test data
are produced by randomly dropping the pixels in each video
with ratios 20%, 30%, · · · , 90% respectively. The atom sizes
of the two factor dictionaries are set to 10 × 10 × 1 and
7 × 7 × 4 respectively. We use all the previous methods
(including existing approaches and our constructed baselines)
mentioned in Section IV-A for comparison. The results in
terms of average PSNR are summarized and compared in

2http://crcv.ucf.edu/data/UCF101.php
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Table II. It can be seen that the proposed method outperforms
others under the dropping ratios from 20% to 90%.

In Fig. 6, we show the recovered results of the 54-th frame
in ’BabyCrawling’ for visual comparison. It can be seen that
the low-rank methods including HaLRT, SPCTC and t-SVD
produced blurred results with obvious artifacts. The dictionary-
learning-based methods including K-SVD and L0DL fail to
recover the region of the clothes which has complex patterns,
and they also blur the ear of the baby in the close-up. The
results of KBRTC and WTNNDL are more acceptable, but
with a spot of artifacts. In comparison, our recovery result is
visually better.

Biking

BabyCrawling

JugglingBall

Lunges

Fig. 5. Sample key frames of four test videos.

TABLE II
AVERAGE PSNR VALUES (DB) OF RECOVERED RESULTS IN VIDEO

COMPLETION WITH DIFFERENT DROPPING RATES.

Method 20% 30% 40% 50% 60% 70% 80% 90%

HaLRTC 42.20 38.46 35.14 32.04 28.97 25.90 22.75 19.08
SPCTC 34.71 32.83 31.43 30.30 29.26 28.25 27.08 25.21
t-SVD 42.38 38.58 35.37 32.51 29.87 27.32 24.77 21.94
KSVD 31.18 28.70 26.88 25.40 24.11 22.94 21.66 20.14
L0DL 31.59 29.00 27.11 25.62 24.24 23.01 21.67 20.13

KBRTC 50.36 47.34 44.66 42.15 39.54 36.71 33.38 27.69
WTNNDL 49.17 46.25 43.65 41.26 38.78 36.14 33.06 29.07

ODLTC 31.20 28.98 27.22 25.70 24.23 22.73 21.03 17.66
SODLTC 30.67 28.46 26.78 25.34 23.94 22.57 21.17 19.17

Ours 50.62 47.75 45.17 42.68 40.14 37.32 34.02 29.41

E. Evaluation on Multi-Spectral Images

The evaluation on multi-spectral images is done on The
Columbia MSI dataset3. The dataset contains 32 real-world
scenes of a variety of real-world materials and objects, each

3http://www1.cs.columbia.edu/CAVE/databases/multispectral/

with the spatial resolution of 512 × 512 and the spectral
resolution of 31. Following [57], each image was resized to
256 × 256 for all spectral bands in our experiments. We set
the atom sizes of the two factor dictionaries to 8× 8× 6 and
4 × 4 × 5 respectively. The recovery results are compared to
those of the compared methods used in Section IV-D. The
dropping rate is varied from 70%, 75%, 80%, 85%, 90%.

The recovery results of different methods in terms of
average PSNR are listed in Table III. It can be seen that
the proposed method achieved the highest PSNR values for
the dropping rates of 70%, 75%, 80%, 85% and perform the
second best at the dropping rate of 90%. One reason that
our method performed worse than KBRTC at the dropping
rate of 90% is probably that there are too many elements
missing under such a high dropping rate, making the dictionary
learning less effective. In comparison, KBRTC is a hybrid
approach which not only uses sparsity prior but also resorts to
low rank prior, leading to better result in this setting. For visual
comparison, we show results of the band centered at 630nm in
Jelly-Beans with the dropping rate of 90%. It can be observed
that the proposed method is superior in the recovery of both
the fine-grained textures and coarse-grained structures.

TABLE III
AVERAGED PSNR VALUES (DB) OF RECOVERED RESULTS ON

MULTI-SPECTRAL IMAGES WITH DIFFERENT DROPPING RATES.

Method 70% 75% 80% 85% 90%

HaLRTC 38.90 37.21 35.30 33.06 30.17
SPCTC 40.67 40.05 39.35 38.42 37.03
t-SVD 43.19 41.57 39.71 37.46 34.58
KSVD 23.02 22.24 21.53 20.92 20.36
L0DL 23.37 22.52 21.68 20.99 20.39

KBRTC 51.24 49.81 48.07 45.85 42.72
WTNNDL 45.38 46.03 42.39 42.58 38.34

ODLTC 26.18 26.05 24.29 23.34 22.04
SODLTC 26.47 25.69 24.71 23.33 21.86

Ours 51.60 50.08 48.30 45.85 42.32

F. Evaluation on MRI Volume Data

Following [12], we use the CThead dataset for the evalu-
ation on MRI data recovery. The CThead dataset is a subset
of the dataset of the University of North Carolina Volume
Rendering Test DataSet4. The size of each volume in the
dataset is 252 × 252 × 99. Some samples of this dataset are
shown in Fig. 8. We set the atom sizes of the two factor
dictionaries as 8 × 8 × 3 and 5 × 5 × 5 respectively. The
recovery results are compared with all the methods mentioned
in Section IV-D, and the average PSNR results w.r.t. the
dropping ratio from 20% to 90% are listed in Table IV. It
can be seen that the proposed method has noticeable PSNR
gain (around 1dB) over the second best method.

Some visual inspections are done in Fig. 9. The baselines
ODLTC and SODLTC failed to represent the data well when
the dropping rate is high, while our method still produces good
results. Compared with the other state-of-the-art methods, ours
produced clearer results with less artifacts.

4http://graphics.stanford.edu/data/voldata
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(a) Orignal image (b) Corrupted image (c) HaLRTC (d) SPCTC (e) t-SVD (f) K-SVD

(g) L0DL (h) KBRTC (i) WTNNDL (j) ODLTC (k) SODLTC (l) Ours

Fig. 6. Visual results in video completion. (a) Original frame in BabyCrawling. (b) Corrupted frame. (c)-(j) The recovered results by different methods.

(a) Orignal image (b) Corrupted image (c) HaLRTC (d) SPCTC (e) t-SVD (f) K-SVD

(g) L0DL (h) KBRTC (i) WTNNDL (j) ODLTC (k) SODLTC (l) Ours

Fig. 7. Visual results in multi-spectral image completion. (a) Original band in Jelly-Beans. (b) Corrupted image. (c)-(j) The recovered results by different
methods.

Fig. 8. Sample slices from MRI data.

TABLE IV
PSNR VALUES (DB) OF RECOVERED RESULTS ON MRI VOLUME DATA

WITH DIFFERENT DROPPING RATES.

Dropping Rate 20% 30% 40% 50% 60% 70% 80% 90%

HaLRTC 42.92 39.7 36.76 34.19 31.67 29.14 26.39 22.89
SPCTC 39.29 37.36 35.9 34.66 33.51 32.33 31.03 29.04
t-SVD 43.8 40.88 38.24 35.93 33.75 31.54 29.22 26.54
KSVD 35.49 35.05 32.34 28.26 25.65 23.28 21.64 20.46
L0DL 34.93 34.73 33.02 29.19 26.04 23.49 21.66 20.48

KBRTC 48.39 45.72 43.46 41.61 39.67 37.59 35.02 30.40
WTNNDL 47.99 45.43 43.26 41.46 39.61 37.45 35.04 31.78

ODLTC 30.91 28.82 27.08 25.87 24.47 23.28 21.55 13.77
SODLTC 30.81 28.62 27.34 26.12 24.63 23.26 21.52 13.77

Ours 49.02 46.79 44.49 42.82 41.02 38.91 36.36 32.83

G. Time Cost

To evaluate the computational efficiency of our method,
we compare the average running time of ours and other
methods on the four datasets. The results are reported in
Table V. It can be seen that our approach runs much faster
than the conventional dictionary-learning-based methods K-
SVD and L0DL. Such an advantage comes from the proposed
dictionary learning model. Compared with SODLTC which is
the baseline method using separable dictionary learning, the
efficiency of the proposed method is comparable. In compar-
ison to SODLTC, our approach can learn an overcomplete
instead of orthogonal dictionary. Compared to the low-rank
methods, ours is slower. However, the low-rank approaches
cannot exploit the local characteristics of visual tensor data.
While the hybrid approach, KBRTC, is faster than ours, it
uses a fixed dictionary which is not adaptive to data. Another
hybrid approach, WTNNDL, is also faster than ours. But
note that the dictionary of WTNNDL is smaller than ours.
In addition, WTNNDL uses orthogonal dictionary learning
which disables the completeness of dictionary. Thus, the
performance of WTNNDL is worse than ours, as shown in
previous experimental results.
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(a) Orignal image (b) Corrupted image (c) HaLRTC (d) SPCTC (e) t-SVD (f) K-SVD

(g) L0DL (h) KBRTC (i) WTNNDL (j) ODLTC (k) SODLTC (l) Ours

Fig. 9. Visual results in MRI volume data completion. (a) The orignal image of the 68-th slice in CTHead. (b) The corrupted image. (c)-(j) The recovered
image obtained by the competing methods and the proposed method.

TABLE V
AVERAGE RUNNING TIME (SECONDS) OF COMPARED METHODS ON

DIFFERENT DATASETS.

Type Color Image Video MSI MRI

HaLRTC 0.64 0.88 0.19 5.26
SPCTC 18.01 2144.92 356.19 2530.26
t-SVD 19.46 56.88 11.04 346.34
KSVD 256.83 29293.45 3890.01 24596.90
L0DL 260.97 32525.13 4796.02 26922.00

KBRTC 58.28 1264.51 505.09 1366.49
WTNNDL 24.49 275.86 238.79 339.77

ODLTC 31.66 243.32 33.28 212.48
SODLTC 913.04 11130.92 297.75 2945.71

Ours 25.96 8727.84 1497.16 5660.66

H. Convergence Behavior Analysis

It is difficult to analyze the theoretical convergence of
the proposed algorithm. Instead, we study the convergence
behavior of the proposed algorithm in color image completion,
in terms of

• normalized decrement ‖X (t+1) − X (t)‖F /‖YΩ‖F (used
in the stopping criterion) over iterations;

• decay of objective function value
∑I,J
i,j=1‖Di,j∗X‖0 over

iterations.

The results are shown in Fig. 10. It can be seen that, for
all test color images, both the normalized decrement between
two successive results and the objective function value decay
very fast over iterations, without oscillations observed. The
objective function value converges to some relatively-small
values for different images, as different images have different
sparsity degrees under a learned dictionary. The normalized
decrement between two successive results converges be zero
eventually after sufficient iterations, for all test images. Such
a feature is attractive for practical use and provides a good
stopping criterion.
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Fig. 10. Convergence behavior analysis of the proposed algorithm.

V. CONCLUSION

There is an increasing amount of visual data emerging in the
form of tensor. Learning dictionaries from such visual tensor
data has become a critical module in many tasks. Conventional
dictionary learning approaches have very high computational
cost when run on a high-order/dimensional tensor. Imposing
the orthogonal constraint on the dictionary may accelerate the
computation; however, the learned dictionary cannot be over-
complete. Many existing tensor dictionary learning approaches
reduce the computational cost by using CPD or TD on the
dictionary. Nevertheless, they cannot generate atoms with rich
orientations, as the decompositions they use impose the rank-1
constraint on each atom. In short, existing dictionary learning
approaches have the efficiency or effectiveness issues when
dealing with tensor data, and thus they are not the good choices
for the task of visual tensor completion.

In this paper, we proposed a novel tensor dictionary learning
scheme for visual tensor data. It employs a convolutional
analysis model for dictionary learning, with an orthogonality-
constrained convolutional factorization on the dictionary.
Compared with conventional dictionary learning approaches,
the proposed one has lower computational cost. Compared
to the existing tensor dictionary learning approaches, the
proposed one has the advantages of learning an overcomplete
dictionary with atoms of different orientations.

Built upon the proposed tensor dictionary learning scheme,
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we proposed a visual tensor completion approach which enjoys
both effectiveness and efficiency. The experiments on four
types of visual data have demonstrated the advantages of the
proposed approach. It not only outperformed existing sparse
approaches and low-rank approaches, but also performed better
than the ones that utilize both sparsity prior and low rank prior.
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