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Abstract—One key in image quality assessment (IQA) is the
design of image representations that can capture the changes
of image structures caused by distortions. Recent studies show
that sparse coding has emerged as a promising approach to
analyzing image structures for IQA. However, existing sparse-
coding-based IQA approaches use linear coding models, which
ignore the nonlinearities of manifolds of image patches and
thus cannot analyze complex image structures well. To overcome
such a weakness, in this paper, we introduce nonlinear sparse
coding to IQA. A kernel dictionary construction scheme is
proposed, which combines analytic dictionaries and learnable
dictionaries to guarantee both the stability and effectiveness
of kernel sparse coding in the context of IQA. Built upon
the kernel dictionary construction, an effective full-reference
IQA metric is developed. Benefiting from the considerations on
nonlinearities during sparse coding, the proposed IQA metric
not only characterizes image distortions better, but also achieves
improvement on the consistency with subjective perception, when
compared to the metrics built upon linear sparse coding. Such
benefits are demonstrated with the experimental results on eight
benchmark datasets in terms of common criteria.

Index Terms—Image quality assessment, Sparse representa-
tion, Kernel sparse coding, Dictionary learning

I. INTRODUCTION

IN the field of multimedia, Image Quality Assessment (IQA)
refers to the task of automatically measuring the visual

quality of an image by well-designed computational models,
which plays an important role in visual data processing. In
image compression, IQA can be used to derive constraints
for balancing the image quality and the compression rate [1].
Similarly, it can be used to win the trade-off between the
visual imperceptibility and embedding capacity of an image
watermarking algorithm [2]. IQA can also guide the model
design in image restoration and generation [3], [4], or the
optimization of parameters in image enhancement [5]. In ad-
dition, IQA is helpful in image communication for optimizing
the performance of encoders and decoders [6].
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Based on how much information about the reference image
(i.e. corresponding pristine image) is available during IQA, the
existing IQA approaches (metrics) can be divided into three
types: full-reference (FR), no-reference (NR) and reduced-
reference (RR). In this paper, we focus on FR-IQA. Con-
cretely, the FR-IQA methods (e.g. [7]–[12]) are designed for
the scenarios where the original image that often has very high
quality is given as the reference for estimating the quality of
its distorted version. Such scenarios are often seen in image
processing, such as image compression, image watermarking,
as well as the training stages of learning-based image recovery
methods; see e.g. [1], [4], [5].

The early FR-IQA metrics are based on pixel-wise differ-
ence, e.g. PSNR and MSE. However, these metrics cannot
reveal the small image distortions that human eyes are insen-
sitive to. There are mainly two kinds of strategies in existing
methods for designing FR-IQA metrics with improvement.
The first kind is the model-based strategy which uses well-
established mathematical tools or computational models to
derive a robust metric with certain mathematical properties.
For instance, the VIF metric [11] is built upon the Gaussian
scale mixture (GSM) model in wavelet domain together with
the analysis tools from information theory. The second kind is
simulating some mechanisms of conscious perception in the
Human Visual System (HVS), which is referred to as the HVS-
inspired strategy. One classic metric of this kind is the SSIM
index [8], which extracts the structural information of images
to simulate how human process visual scenes.

A. Motivations of Studying Sparse-Coding-Based IQA

In recent years, sparse coding has emerged as a promising
approach for IQA; see e.g. [13]–[15]. One advantage of
sparse coding is that it enjoys both the benefits of model-
based approaches and HVS-inspired approaches. Not only with
useful mathematical properties, sparse coding also has strong
biological motivations.

From the computational perspectives, sparse coding has
been proven theoretically and mathematically to be a nat-
ural and effective framework for characterizing the low-
dimensional manifold of image data. An image patch, ex-
pressed as an array, can be viewed as a point in a linear space
of very high dimensionality. It is widely accepted that the set of
non-distorted natural image patches are concentrated on some
low-dimensional subspaces in such a high-dimensional linear
space [16], [17]. The geometries of such low-dimensional
subspaces indeed encode possible image structures, and image
distortions may be well characterized by the displacement of
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the distorted image patches within or around such a subspace.
Therefore, sparse coding is undoubtedly useful for IQA. In
addition, using sparse coefficients as features can reduce the
storage or bandwidth usage in some scenarios.

From the biological perspectives, sparse coding benefits
IQA as follows. In the procedure of visual signal perception
in HVS, images are first projected onto the retina, and then
the generated visual signal is transmitted to the primary visual
cortex (also called V1) through the Lateral Geniculate Nucleus
(LGN) for visual abstraction. There are massive experimental
evidences indicating that different neurons of retina and LGN
can be activated in various situations, which can be accounted
by the principles of parsimony and redundancy reduction [18].
Indeed, such two principles can be well exploited by sparse
coding, in the sense that only a few vectors (i.e. atoms in the
dictionary) are activated in sparse representation. Furthermore,
learning an over-complete dictionary with the sparsity prior
can imitate the properties, such as localization, orientation,
band-pass and sparse activation, of the receptive field of simple
cells in V1 [12], [19]. It can also provide good quantitative
predictions (i.e. the non-zero values of sparse coefficients) that
are often considered to be consistent with the measurements
from V1 [20].

Inspired by the advantages and potentials of sparse coding
for IQA, in this paper, we investigate the exploitation of sparse
coding for FR-IQA and make a further step along the line of
related research.

B. Basic Ideas of Using Kernel Sparse Coding for IQA
The existing sparse-coding-based IQA methods (e.g. [13]–

[15]) apply conventional sparse coding to both the reference
and distorted images, and then estimate the visual quality of
the distorted image by comparing the resulting sparse codes.
The sparse coding models used in these methods are linear,
which assume image patches lie in some low-dimensional
linear subspaces with Euclidean geometry. This assumption is
not effective for IQA, as many studies have shown that real-life
images usually exhibit high nonlinearities [21], [22] and the
patches of such images tend to lie on some low-dimensional
nonlinear manifolds instead of linear subspaces embedded in
the high-dimensional linear space [23]. As a result, the metrics
defined on the results of linear sparse coding cannot reveal the
distance between the reference image (patches) and distorted
image (patches) along the non-Euclidean geometric structures
of the nonlinear manifold. In other words, the existing sparse-
coding-based approaches cannot exploit the complex structures
of images well.

To overcome the weakness of linear sparse coding models,
in this work, we introduce nonlinear sparse coding to IQA.
Motivated by the recent advances of kernel sparse coding
beyond conventional sparse coding in analyzing non-linear
data [22], [24], we develop some effective kernel sparse coding
models on image patches, together with a kernel dictionary
construction scheme designed for the IQA task. Based on the
coding coefficients and reconstruction errors from our models,
we propose an effective sparse-coding-based IQA method
which can exploit the intrinsic geometric structures of image
data effectively.

Due to the irreversibility of kernel mapping, existing kernel
sparse coding methods are mainly for pattern recognition
instead of image processing. As a result, these methods do not
consider using analytic dictionaries. However, many studies
(e.g. [25], [26]) have shown that analytic dictionaries, such
as Gabor and wavelet, are very useful for IQA. To improve
the effectiveness of kernel sparse coding for IQA, our scheme
uses an analytic dictionary and a learned dictionary for kernel
sparse coding respectively and combine their results, by which
the advantages from both dictionaries can be enjoyed.

In addition, most existing kernel dictionary learning ap-
proaches define the kernel dictionary by the linear combination
of the training samples in the kernel-associated implicit space.
When the data of dictionary learning is insufficient to span a
meaningful space for the test data, which is likely to occur
in IQA, the stability and effectiveness of kernel sparse coding
will decrease [27]. Our scheme addresses this issue by fixing
some atoms in the learned dictionary to be the analytic ones
during learning, so as to ensure the minimum span of the
learned dictionary. Such analytic atoms can also be regarded
as the clean ones that can reduce the sensitivity of the kernel
mapping to the noises in training data.

C. Contributions

The contributions of this work are summarized as follows:
• We introduce kernel sparse representation with a nonlinear

coding model for IQA. Compared to the linear coding
models used in the existing methods [12]–[15], [28]–
[30], the nonlinear one is more effective in revealing the
nonlinear structures of images, leading to the improved
representations of image patches and a better IQA metric.

• We propose to use both coding coefficients and recon-
struction errors in sparse coding for constructing the IQA
metric. Compared to the existing methods [13], [14] which
only utilize coding coefficients, ours can exploit additional
information from sparse coding.

• A kernel dictionary construction scheme is developed,
which includes a learning-free dictionary with analytic
form and a learnable dictionary with partially-fixed analytic
atoms. Such a scheme differs from the ones used in existing
kernel sparse coding approaches, and it can improve the
effectiveness of kernel sparse coding in IQA.

• The proposed kernel dictionary construction scheme results
in several non-trivial optimization problems, for which we
develop effective and efficient numerical solvers.

D. Notations

Throughout the paper, unless specified, bold upper letters
are used for matrices, bold lower letters for column vectors,
light letters for scalars, and calligraphic letters for sets. The
t0-th element of a sequence {y(t)}t∈N is denoted by y(t0).
The i-th element of a column vector x is denoted by x(i).
Given Ω ⊂ {1, · · · ,M} and X = [x1, · · · , xM ], XΩ or X(Ω)
denotes the sub-matrix of X formed by deleting the columns
of X whose indexes are not in Ω. The `0 pseudo-norm and
`2 norm of a vector x are denoted by ‖x‖0 and ‖x‖ (or ‖x‖2)
respectively. The Frobenius norm of a matrix X is denoted by
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‖X‖F. Besides, let I and 0 denote the identity matrix and the
zero matrix with appropriate sizes respectively.

II. RELATED WORK AND PRELIMINARIES

A. Full-Reference Image Quality Assessment

1) Pixel-difference-based approaches: Early FR-IQA met-
rics measure the image quality based on the pixel-by-pixel
difference between the distorted and reference images. The
representative approaches include PSNR, MSE, etc. These
approaches are simple and widely used in image processing.
Nevertheless, they totally ignore the correlations among ad-
jacent pixels and how HVS processes images, with limited
accuracy across various types of distortions.

2) Model-based approaches: There are many FR-IQA met-
rics built upon mathematical models. Lai et al. [31] proposed
to encode the correlations among adjacent pixels by apply-
ing Haar wavelet transform to images. Sheikh et al. [11]
proposed to model an image by the GSM model of wavelet
coefficients and measure the difference between models based
on information theory. Instead of in the wavelet domain,
Zhang et al. [32] proposed to model images with the GSM
model in the image domain directly. Their metric is also built
upon the analysis tools in information theory. These early
model-based approaches, although partly related to HVS’s
mechanisms, are mainly focused on the information itself and
lack of neurobiological support. In recent years, there are
several metrics proposed for FR-IQA based on sparse coding,
e.g. [12]–[14], [29], [33]. These methods not only have well-
established models from sparse representation theory, but also
have strong support from neurobiology. Since our metric is a
sparse-coding-based one, we give a detailed review on sparse-
coding-based metrics in a separate subsection later.

It is worth mentioning that, taking the advance of deep
learning, some approaches (e.g. [34], [35]) have been proposed
which use deep neural network models to learn an IQA
metric by the end-to-end supervised manner. Though with
very impressive results, one main challenge to these methods
is their heavy requirement on the large amount of training
samples. In fact, images with subjective scores in existing IQA
datasets may be inadequate for the effective training of deep
models. Many recent studies (e.g. [35]) have made effort on
addressing these challenges.

3) HVS-inspired approaches: The design of many FR-IQA
metrics are inspired by certain mechanisms of HVS. Assuming
that HVS is highly competent to extract the structural infor-
mation, the SSIM [8] index measures image quality degrada-
tion by the change of structural information. To capture the
structural changes in multiple scales, the MS-SSIM [7] index
extended SSIM through a process of multiple stages of sub-
sampling and multi-scale processing. For better capturing local
distortions, the IW-SSIM [9] uses local information content as
perceptual weights for measuring local image distortion.

Many methods extract structural information from image
gradients/edges. Zhang et al. [10] proposed to quantify the
structural similarity based on the features extracted from image
gradients and phase congruency. Liu et al. [36] proposed to use
gradient similarity to encode the changes of image structures

and the image contrast. Xue et al. [37] exploited pixel-wise
gradient magnitude similarity to measure the global distortion.
Jin et al. [38] proposed to attain perceptual gradients for
improvement, which is done by automatically selecting the
pixel-wise gradient directions with maximum changing rates in
the reference image. Considering the hypothesis that the visual
masking effect has an important impact on the perception of
HVS, Liu et al. [36] combined visibility thresholding with the
gradient similarity. Shi et al. [39] proposed a visual metric
based on edge-feature-based segmentation, in which the low-
level features of segmented parts are pooled as the final score.

B. Sparse Coding for Image Quality Assessment

The sparse-coding-based approaches compute the sparse
coefficients of images or image patches under some dictio-
naries and then use them as the features to estimate the
visual quality scores. Chang et al. [12] proposed to acquire
the sparse features by a feature detector trained on natural
images with independent component analysis. Guha et al. [13]
proposed to learn an individual dictionary from each reference
image and use it for the sparse coding of the corresponding
reference and distorted images. Such a scheme may be time-
consuming since the dictionary learning process is run for
every input reference image. To overcome this weakness, Li et
al. [14] proposed to pre-learn a universal dictionary from a
set of clear natural images instead of learning individual ones.
This method is extended in [29] to better utilize the color
information of image. Ahar et al. [33] proposed to conduct
ranking on the amplitudes of the sparse coefficients under
Fourier bases, and then use a complex correlation metric that
assesses the correspondence between the ranked coefficient
amplitude profiles of the reference and distorted images.

The aforementioned sparse-coding-based approaches are for
FR-IQA. There are also some developed for RR-IQA and NR-
IQA. Liu et al. [15], [40] assumed the prediction manner of
the internal generative model in free-energy principle with
sparse representation, based on which they proposed an RR-
IQA metric that only extracts a single scalar (i.e. entropy of the
prediction residuals) from the reference image. This approach
can be roughly regarded as NR. See also [30], [41], [42] for
the recent development of NR-IQA related to sparse coding.

Though the existing sparse-coding-based approaches have
achieved impressive results, they are all based on linear
coding models which cannot well handle the nonlinearities of
data [22], [24], [27]. In this paper, we explore the exploitation
of nonlinearities of image data for sparse-coding-based FR-
IQA and introduce kernel sparse coding for better modeling.

C. Kernel Sparse Coding

Sparse coding is a popular tool for discovering the low-
dimensional structures of high-dimensional data. Traditional
sparse coding assumes a signal y ∈ RM can be expressed
by y ≈ Dc with a dictionary D ∈ RM×K and a sparse
coefficient vector c ∈ RK . The sparsity pattern of c combined
with the dictionary can reveal the underlying structures of
data and yield some compact representation of data. The
dictionary for sparse coding is often learned from data to
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improve the effectiveness of sparse representation, which is
often formulated as the following minimization problem:

min
D,{ci}

L∑
i=1

‖yi − Dci‖22, (1)

subject to ‖ci‖0 ≤ T and ‖dj‖2 = 1, 1 ≤ j ≤ K, where
{yi}Li=1 ⊂ RM is a set of input signals, and T is the sparsity
degree. The sparse coding using (1) is called linear sparse
coding as it uses the linear reconstruction model y ≈ Dc.

Linear sparse coding can well analyze the data lying on
low-dimensional linear subspaces. However, it does not work
for the data lying on low-dimensional nonlinear manifolds;
see e.g. [22], [24], [27]. Kernel sparse coding remedies this
problem by mapping the data to a high-dimensional (or
infinite-dimensional) implicit space with some kernel function
and then conducting linear sparse coding in the implicit space.
The basic idea of kernel sparse coding is that nonlinear data
are likely to exhibit linear structures after being non-linearly
mapped to some higher-dimensional spaces. Let φ(·) :M→
H to be a nonlinear mapping from a Riemannian manifold
M⊂ RM into a high-dimensional or infinite-dimensional dot
product space H. Instead of using the linear model y ≈ Dc,
kernel sparse coding assumes φ(y) ≈ D̄c which is a linear
model in the space H, where D̄ denotes a dictionary in H. In
general, kernel sparse coding solves the minimization model

min
D̄,{ci}

L∑
i=1

‖φ(yi)− D̄ci‖22. (2)

One key in developing kernel sparse coding methods is how
to define D̄ such that the kernel trick can be efficiently used
to solve the model in (2) without involving φ(·). There have
been some works on the construction of the kernel dictionary
D̄. In [22], [24], [43], the kernel dictionary is defined by the
linear combination of {φ(yi)}i, while the coefficients of the
combination are learned from data. To further improve the
efficiency, sparsity constraints are imposed on the coefficients
of linear combination in [44]. In [27], an equiangular kernel
dictionary construction scheme is proposed to control the
stability of sparse coding in infinite-dimensional spaces. To
alleviate the computational cost in computing the gram matrix
in kernel representation, a linearized kernel dictionary learning
scheme is proposed in [45]. Since the kernel mapping φ is
irreversible which is inapplicable to image processing that
needs to solve φ−1(D̄c), all these methods only study the
construction of kernel dictionary for recognition. In this paper,
we investigate the construction of kernel dictionary for IQA.

III. PROPOSED METHOD

The proposed IQA metric is referred to as KSCM (Kernel
Sparse Coding based Metric), whose flowchart is shown in
Fig. 1. It mainly contains four steps. Firstly, a kernel dictionary
is prepared. Secondly, the features of the reference image
including sparse coefficients and reconstruction errors are
extracted via kernel sparse coding on image patches. Then, the
shared dictionary is obtained with the constraint of the non-
zero locations. Thirdly, the features of the distorted image are

Fig. 1: Flowchart of proposed KSCM.

computed via kernel sparse coding on image patches. Note
that the kernel sparse coding model in this stage involves
additional constraints from the reference features in the second
step, which distinguishes it from the sparse coding model on
the reference image. Finally, the coefficients and residuals of
the reference and distorted images are pooled to obtain the
quality score. In the next, we will detail each step in KSCM.
For notational convenience, we denote the patch size in kernel
sparse coding by

√
B ×

√
B where B is a perfect square.

A. Kernel Dictionary Construction Scheme

The dictionary in kernel sparse coding is crucial to both
the effectiveness and efficiency of the coding process. In
traditional linear sparse coding of images, there are two types
of dictionaries mainly used:
• Analytic dictionaries such as wavelets, which are mathe-

matically derived and mainly used for image processing;
• Data-driven dictionaries which are learned or constructed

from data, with applications to both image processing and
image recognition.

For kernel sparse coding, due to the irreversibility of kernel
mapping, the sparse coefficients under the kernel dictionary
cannot be transformed to original image space, implying kernel
sparse coding cannot be applied to image processing. As a
result, most existing approaches of kernel sparse coding focus
on image recognition and employ data-driven dictionaries.
However, for IQA the analytic dictionaries are very useful,
their effectiveness have been demonstrated in many studies
(e.g. [25], [26], [46], [47]). Thus, we propose to use two kernel
dictionaries, an analytic one D̄1 and a learnable one D̄2, to
conduct kernel sparse coding respectively, which can encode
the image structures from different aspects. Suppose D̄1 and
D̄2 are in the dot product space H. We construct D̄1, D̄2 with
the following scheme.

Let k(·, ·) denote the kernel which is associated with φ by
k(x, y) = 〈φ(x), φ(y) 〉H for x, y ∈M. In the matrix form, we
denote Φ(X) = [φ(x1), · · · , φ(xL)] for any X = [x1, · · · , xL],
and K(X1,X2) = Φ(X1)>Φ(X2) for any X1,X2 ∈ M. In
practice, k(x, y) is computed by some simple functions and the
kernel trick without using φ(·) explicitly. Since H is implicit
in kernel mapping, the analytic form of D̄1 is inaccessible. To
address this issue, we define

D̄1 = Φ(W), (3)
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where W ∈ RB×N is an analytic dictionary with N atoms
in the original space. In practice, we set W to be the Haar
framelet dictionary [48]. As shown in the next subsections,
such a form of D̄1 allows the use of kernel trick in the
sparse coding process. Regarding the construction of the data-
driven dictionary D̄2, we propose the following scheme. Let
{yi}Zi=1 ⊂ RB be a set of vectorized image patches sampled
from the training images (i.e. a set of predefined clear natural
images), and denote Y = [y1, · · · , yZ ]. In order to apply the
kernel trick to both dictionary learning and sparse coding, the
dictionary D̄2 in H is defined as

D̄2 = [Φ(Y)A,Φ(G)], (4)

where A ∈ RZ×K1 is a coefficient matrix to be learned and
G ∈ RB×K2 is the concatenation of some well-known analytic
dictionaries in the low-dimensional space RB .

There are two sub-dictionaries in D̄2. In the first sub-
dictionary Φ(Y)A, each dictionary atom in the space H is
expressed by the linear combination of all mapped patches
Φ(Y), and the dictionary learning problem is turned into
optimizing the coefficient matrix A. Note that Φ(Y)A is often
used as the kernel dictionary in many existing approaches to
kernel sparse coding (e.g. [22], [24], [43]). However, in real
applications the scale of the training data Y cannot be too large
with the considerations on computational and storage burdens.
As a result, the space spanned by Φ(Y) may be insufficient
to effectively represent new input samples. Furthermore, the
kernel mapping φ may be sensitive to the noises in the training
samples, making the dictionary unstable.

Regarding the above issues, we introduce the other sub-
dictionary Φ(G) which is an analytic dictionary to improve the
quality of the dictionary D̄2. The benefits of introducing Φ(G)
are two-fold. First, the analytic atoms are noiseless, which
decreases the sensitivity of D̄2. Second, it is shown in [27]
that the expressive power of a kernel dictionary as well as the
stability of kernel sparse coding is related to the incoherence
of the dictionary atoms in the original space. Since an analytic
dictionary often forms an orthogonal basis or an equiangular
tight frame whose atoms have very low incoherence, the use
of Φ(G) can increase the effectiveness of D̄2. In practice, we
set G to be a Discrete Fourier Transform (DFT) dictionary.

To learn the dictionary D̄2, we solve the following mini-
mization problem:

min
A,C
‖Φ(Y)− [Φ(Y),Φ(G)]

[
A 0
0 I

]
C‖2F,

s.t. ‖ci‖0 ≤ T, ‖Φ(Y)aj‖2 = 1, ∀i, j, (5)

where A = [a1, · · · , aK1
] is the dictionary coefficient matrix

in D̄2, C = [c1, · · · , cZ ] ∈ R(K1+K2)×Z is the sparse
coding matrix, T is the sparsity degree, and the normalization
constraint is for avoiding trivial solutions with positive scaling.
The problem of (5) can be irrelevant to the explicit definition
of Φ(·) with the use of kernel trick. Let S = [Y,G] and

Ā =

[
A 0
0 I

]
. By definition we have Φ(S) = [Φ(Y),Φ(G)]

and D̄2 = Φ(S)Ā. By using ‖X‖2F = tr(X>X) for any

X, we can rewrite the objective function and normalization
constraints in (5) into the kernel-based forms as follows:

||Φ(Y)− Φ(S)ĀC||2F = tr(K(Y,Y))− tr(2K(Y,S)ĀC)

+ tr(C>Ā>K(S,S)ĀC), (6)

||Φ(Y)aj ||22 = a>j K(Y,Y)aj ,∀j, (7)

where K(S,S) = Φ(S)>Φ(S) is a kernel matrix that can be
computed by some kernel function without defining φ(·).

B. Kernel Dictionary Learning Algorithm

The problem of (5) is a challenging non-smooth and non-
convex optimization problem. We solve the problem with an
alternating iterative scheme, which alternatively updates the
unknown variables C and A in the model one at a time,
breaking the original problem into two simpler ones. We first
initialize the dictionary coefficient matrix A = A(0) and start
with t = 1. Then the update scheme is as follows:

1) Update of sparse codes: At the beginning of the t-th
iteration, we fix A = A(t−1) and calculate C(t) by

C(t) ∈ arg min
C

‖Φ(Y)− [Φ(Y),Φ(G)]

[
A(t−1) 0

0 I

]
C‖2F,

s.t. ‖ci‖0 ≤ T, ∀i. (8)

By using Φ(S) = [Φ(Y),Φ(G)] and Ā(t−1)
=

[
A(t−1) 0

0 I

]
,

we can rewrite (8) as

C(t) ∈ arg min
C

‖Φ(Y)− Φ(S)Ā(t−1)C‖2F,

s.t. ‖ci‖0 ≤ T, ∀i, (9)

which is a kernel sparse approximation problem that can
be solved by KOMP (Kernelized Orthogonal Pursuit Match-
ing) [24]. The KOMP algorithm involves the calculation of
the inverse of kernel-related matrices, which may be time-
consuming. For acceleration, we propose another solver based
on projected gradient [27], called kernelized projected gradi-
ent, which updates C by

C(t) ∈ ProjP(C(t−1) − τt∇Ch(C(t−1),A(t−1))), (10)

where ProjP(·) denotes the projection onto the constraint set
P = {C = [c1, · · · , cZ ] : ‖ci‖0 ≤ T}, h(C,A) = ‖Φ(Y) −
Φ(S)ĀC‖2F, and τt is the step size. By applying the kernel
trick, we have

∇Ch(C,A) = Ā>K(S,S)ĀC− Ā>K(S,Y).

Then the solution of problem (8) is given by

C(t) = ST (C(t−1) − τt(Ā(t−1)
)>K(S,S)Ā(t−1)C(t−1)

+ τt(Ā(t−1)
)>K(S,Y)), (11)

where ST (X) keeps the T largest elements in each column of
X in terms of magnitude.



IEEE TRANSACTIONS ON MULTIMEDIA 6

2) Update of dictionary: At the t-th iteration, after C(t) is
updated, we fix C = C(t) and calculate A(t) by

A(t) ∈ arg min
A

‖Φ(Y)− [Φ(Y),Φ(G)]

[
A 0
0 I

]
C(t)‖2F,

s.t. a>j K(S,S)aj = 1, ∀j, (12)

which is equivalent to

A(t) ∈ arg min
A

‖Φ(Y)− Φ(G)C(t)
2 − Φ(Y)AC(t)

1 ‖2F,

s.t. a>j K(S,S)aj = 1, ∀j, (13)

where C(t)
1 ∈ RK1×Z , C(t)

2 ∈ RK2×Z , and C(t) =

[(C(t)
1 )>, (C(t)

2 )>]>. The dictionary coefficient matrix A
in (13) is updated column by column. Let r>i indicate the i-th
row of C(t)

1 . Following the idea of K-SVD [49] and kernel
K-SVD [24], on the calculation of aj , we fix all ai for i 6= j
to be the previous estimate and rewrite the objective function
in (13) as

‖Φ(Y)− Φ(G)C(t)
2 − Φ(Y)AC(t)

1 ‖2F

=‖Φ(Y)− Φ(G)C(t)
2 − Φ(Y)(ajr>j +

K1∑
i=1,i6=j

air>i )‖2F

=‖Φ(Y)Ej − Φ(G)C(t)
2 − Φ(Y)ajr>j ‖2F, (14)

where Ej = I−∑K1

i=1,i6=j air>i .
Let Mj = Φ(Y)Ej − Φ(G)C(t)

2 . The minimization of (14)
implies Φ(Y)ajr>j is the rank-1 approximation of Mj with
the Euclidean norm. As a result, Φ(Y)aj is set to the first
left singular vector of Mj , and rj is set to the product of the
largest singular value and the first right singular vector of Mj .
Note that the largest singular value and the first right singular
vector of Mj can be calculated respectively from the largest
eigenvalue and the first eigenvector of

M>j Mj = E>j K(Y,Y)Ej + (C(t)
2 )>K(G,G)C(t)

2

−E>j K(Y,G)C(t)
2 − (C(t)

2 )>K(G,Y)Ej . (15)

Let σ1(Mj) denote the largest singular value of Mj . By the
definition of SVD (Singular Value Decomposition) we have

Mjrj = σ2
1(Mj)Φ(Y)aj . (16)

By multiplying Φ(Y) on both sides on (16), we have

Φ(Y)>Mjrj = σ2
1(Mj)Φ(Y)>Φ(Y)aj , (17)

which can be kernelized as

(K(Y,Y)Ej −K(Y,G)C(t)
2 )rj = σ2

1(Mj)K(Y,Y)aj . (18)

This is a linear system which can be solved by iterative
methods when the scale of system is large.

C. Kernel Sparse Representation

Given a reference image Ir ∈ RM1×M2 , we first sample L
image patches denoted by {Pr

i ∈ R
√
B×
√
B}Li=1 from Ir using

a sliding window with step size S, where L = bM1−
√
B+1

S c×
bM2−

√
B+1

S c. On the distorted image Id ∈ RM1×M2 , the
same sampling process is done and we can collect L image

patches from Id, which are denoted by {Pd
i ∈ R

√
B×
√
B}Li=1.

The patches {Pr
i}Li=1 and {Pd

i}Li=1 are ordered respectively
such that Pr

i and Pd
i correspond to the same spatial location

in images for all i. The extracted patches contain rich local
structures of the reference and distorted images. In order to
measure the visual quality of image Id, we resort to analyzing
the difference between each patch pair (Pr

i,P
d
i ) in some

specific domain which is correlated to visual perception.
It has been shown in many studies (e.g. [21], [23], [50])

that local image patches tend to align on some nonlinear
manifolds. To effectively analyze the patch pairs {(Pr

i,P
d
i )}Li=1

in the presence of nonlinearities, we employ kernel sparse
coding to represent each pair of patches. The outline of kernel
sparse coding in the proposed method is shown in Fig. 2. Let
yr
i ∈ RB and yd

i ∈ RB denote the vectorized version of the
patches Pr

i and Pd
i respectively. For the reference image, the

kernel sparse representations cr1
i and cr2

i of each patch yr
i are

computed using the dictionaries D̄1 defined by (3) and D̄2

defined by (4) respectively. The details are as follows:
• Kernel sparse representation using D̄1:

cr1
i ∈ arg min

c
‖φ(yr

i)− Φ(W)c‖2F, s.t. ‖c‖0 ≤ T1, (19)

• Kernel sparse representation using D̄2:

cr2
i ∈ arg min

c
‖φ(yr

i)− Φ(S)Āc‖2F, s.t. ‖c‖0 ≤ T2, (20)

where T1 and T2 are the predefined sparsity degrees. The
problem (19) and (20) share similar forms with (9), which can
be solved by KOMP [24] or the kernelized projected gradient
method proposed in Section III-B.

Let Ω1
i = {j : cr1

i (j) 6= 0} and Ω2
i = {j : cr2

i (j) 6= 0}
denote the support (i.e. positions of nonzeros) of cr1

i and cr2
i

respectively. The kernel sparse representations cr1
i and cr2

i of
the reference patch yr

i satisfy

φ(yr
i) = Φ(WΩ1

i
)cr1

i (Ω1
i ) + nr1

i , (21)

φ(yr
i) = Φ(S)ĀΩ2

i
cr2
i (Ω2

i ) + nr2
i , (22)

where nr1
i and nr2

i are the representation errors of yr
i,

Φ(WΩ1
i
) = D̄1(Ω1

i ) and Φ(S)ĀΩ2
i

= D̄2(Ω2
i ) are the sub-

dictionaries of D̄1 and D̄2 that contain the very dictionary
atoms used by yr

i in sparse representation, and Φ(S) and Ā
are defined in the previous section. Since D̄1(Ω1

i ) and D̄2(Ω2
i )

can well represent yr
i, they are also used to represent yd

i , i.e.

φ(yd
i ) = Φ(WΩ1

i
)cd1

i + nd1
i , (23)

φ(yd
i ) = Φ(S)ĀΩ2

i
cd2
i + nd2

i , (24)

where cd1
i , c

d2
i are the representation coefficients, and nd1

i ,n
d2
i

are the representation errors of yd
i .

The visual distortion causes the displacements of image
patches in the space defined by the sparse coding, which are
reflected in the variations of the representation coefficients
as well as the representation errors between the reference
image patches and distorted image patches. In [13], the co-
efficients from sparse coding are employed as features, while
in [14] the features are shortened by using the norm of sparse
coefficients. In our scheme, considering the compactness of
features, we use the `2 norm of sparse coefficients of each
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Fig. 2: Outline of kernel sparse coding in proposed KSCM.

patch to construct the IQA features. Furthermore, we also
utilize the representation errors for IQA. In details, the visual
quality of yd

i is measured by comparing the reference features
{‖cr1

i (Ω1
i )‖, ‖cr2

i (Ω2
i )‖, ‖nr1

i ‖, ‖nr2
i ‖}i with the distortion fea-

tures {‖cd1
i ‖, ‖cd2

i ‖, ‖nd1
i ‖, ‖nd2

i ‖}i.
To compute cd1

i and cd2
i , we solve the following minimiza-

tion problems:
• Kernel sparse representation using D̄1(Ω1

i ):

cd1
i ∈ arg min

c
‖φ(yd

i )− Φ(WΩ1
i
)c‖2F, (25)

• Kernel sparse representation using D̄2(Ω2
i ):

cd2
i ∈ arg min

c
‖φ(yd

i )− Φ(S)ĀΩ2
i
c‖2F, (26)

which are the kernelized least squares problems whose solu-
tions are given by the solutions of the linear systems

K(WΩ1
i
,WΩ1

i
)cd1

i = K(WΩ1
i
, yd

i ), (27)

(Ā>Ω2
i
K(S,S)ĀΩ2

i
)cd2

i = Ā>Ω2
i
K(S, yd

i ). (28)

Though {nr1
i ,n

r2
i ,n

d1
i ,n

d2
i } cannot be obtained due to the exis-

tence of Φ, we can still calculate {‖nr1
i ‖, ‖nr2

i ‖, ‖nd1
i ‖, ‖nd2

i ‖}
by the kernel trick. Take ‖nr1

i ‖22 for example, which can be
calculated by

‖ nr1
i ‖22 = ‖φ(yr

i)− Φ(WΩ1
i
)cr1

i (Ω1
i )‖22

=
(
φ(yr

i)− Φ(WΩ1
i
)cr1

i (Ω1
i )
)>(

φ(yr
i)− Φ(WΩ1

i
)cr1

i (Ω1
i )
)

= K(yr
i, y

r
i)−K(yr

i,WΩ1
i
)cr1

i (Ω1
i )− (K(yr

i,WΩ1
i
)cr1

i (Ω1
i ))>

+cr1
i (Ω1

i )>K(WΩ1
i
,WΩ1

i
)cr1

i (Ω1
i ). (29)

The calculation of ‖nr2
i ‖,‖nd1

i ‖,‖nd2
i ‖ can be done by analogy.

D. Calculation of Visual Quality Score

With the previous steps, we have extracted the features
from the reference image Ir and the distorted image Id,
which are denoted by {er

c1 , e
r
n1 , e

r
c2 , e

r
n2} and {ed

c1 , e
d
n1 , e

d
c2 , e

d
n2}

respectively, where er
c1 = (‖cr

1(Ω1
1)‖, · · · , ‖cr

L(Ω1
L)‖) and

er
n1 , e

r
c2 , e

r
n2 , e

d
c1 , e

d
n1 , e

d
c2 , e

d
n2 are constructed in analogy with

er
c1 .

When viewing an image patch as a point on an implicit
subspace defined by the kernel, the extracted features indeed

Fig. 3: Illustration of effectiveness of features generated by
proposed method. Top row (from left to right): a non-distorted
image, two blurry versions generated with a smaller/larger
Gaussian blur kernel respectively, and two noisy versions
generated with lighter/heavier additive Gaussian white noise
respectively. Middle row: corresponding coding feature maps
{‖ci‖}i. Bottom row: corresponding residual feature maps
{‖ni‖}i. In all maps, brighter pixels denote larger values. It
can be seen that blurring leads to magnitude decay of coding
vectors. Heavier blur leads to lower values (e.g. blue and
orange rectangles) in {‖ci‖}i. In contrast, heavier noise leads
to larger values in {‖ni‖}i. Difference can also be found in
the feature maps between blurry/noisy versions.

encode the energy of the point as well as its displacement
in or around the subspace. As a result, the extracted features
from the reference image and distorted image can depict the
discriminative information about the distortions with different
types and different strengths. For instance, noises increase
the variation of image patches and thus probably increase the
coding residuals; Blur and JPEG compression that reduce the
variations of image patches may decrease the coding residuals
and the energy of coding vectors. We illustrate such properties
in Fig. 3. It can be seen that our extracted features based on the
`2 norm (i.e. energy) of the coding vectors and representation
error vectors can well distinguish the noise corruption and
image blur with different distortion strengths.

Two metrics are used to pool the features as scores:

• Cross similarity [14] defined by

Mcrs(x, y) =
1

L

L∑
i=1

2x(i)y(i) + c

(x(i))2 + (y(i))2 + c
, (30)

where c > 0 is a stabilizer set to a small constant. This
metric is often used in IQA for estimating the structural
similarity; see also [8], [12].

• Pearson correlation coefficient denoted by Mpcc, which
is a classic metric for measuring the statistical linear
correlation between two variables.

Accordingly, we define two scores as follows:

Scrs(Id; Ir) = β1Mcrs(er
c1 , e

d
c1) + β2Mcrs(er

c2 , e
d
c2)

+ β3Mcrs(er
n1 , e

d
n1) + β4Mcrs(er

n2 , e
d
n2), (31)

Spcc(Id; Ir) = γ1Mpcc(er
c1 , e

d
c1) + γ2Mpcc(er

c2 , e
d
c2)

+ γ3Mpcc(er
n1 , e

d
n1) + γ4Mpcc(er

n2 , e
d
n2), (32)
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where βi, γi > 0 for i = 1, · · · , 4. Then the final visual quality
score is computed by

S(Id; Ir) = λ1Scrs(Id; Ir) + λ2Spcc(Id; Ir), (33)

where λ1, λ2 > 0.

IV. EXPERIMENTS

A. Experimental Settings and Implementation Details

Eight benchmark datasets are used for experimental eval-
uation, which include IVC [51], CSIQ [52], TID2008 [53],
TID2013 [54], LIVE [55], LIVEMD [56], MDID2013 [57]
and CCID2014 [5]. Each of these datasets contains a number
of color images with various types of distortions. The charac-
teristics of these datasets are summarized in Table I.

TABLE I: Characteristics of eight benchmark datasets.

Dataset # Reference Images # Distorted Images # Distortion Types

IVC 14 185 4
CSIQ 30 866 6
LIVE 29 779 5
TID2008 25 1700 17
LIVEMD 15 450 2
TID2013 25 3000 24
MDID2013 20 1600 5
CCID2014 15 655 2

To measure the performance of the proposed KSCM from
different aspects, five widely-used criteria are employed, in-
cluding Spearman rank order correlation coefficient (SROCC),
Kendall rank order correlation coefficient (KROCC), Pearson
linear correlation coefficient (PLCC), Root mean square error
(RMSE), and Mean absolute error (MAE). The SROCC and
KROCC measure the prediction monotonicity, PLCC measures
the linear correlation, while RMSE and MAE measure the
prediction accuracy. An effective IQA metric is expected to
yield high values of PLCC, SROCC and KROCC, while low
values of RMSE and MAE. All the criteria are calculated after
mapping the objective score x to the subjective one f(x) by
the nonlinear regression

f(x) = ω1(
1

2
− 1

1 + exp(ω2(x− ω3))
) + ω4x+ ω5, (34)

where the parameters ωi for i = 1, 2, .., 5 are determined by
least squares fitting. Such a mapping scheme is widely used in
existing literature for bridging the gap between the objective
and subjective domains; see e.g. [26], [55].
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TABLE I: Characteristics of five benchmark datasets

Dataset Number of Number of Number of
Reference Images Distorted Images Distortion Types

IVC 14 185 4
CSIQ 30 866 6
LIVE 29 779 5

TID2008 25 1700 17
TID2013 25 3000 24

Accordingly, we define two scores as follows:

Scrs(Id; Ir) = β1Mcrs(er
c1 , e

d
c1) + β2Mcrs(er

c2 , e
d
c2)

+ β3Mcrs(er
n1 , e

d
n1) + β4Mcrs(er

n2 , e
d
n2), (29)

Spcc(Id; Ir) = γ1Mpcc(er
c1 , e

d
c1) + γ2Mpcc(er

c2 , e
d
c2)

+ γ3Mpcc(er
n1 , e

d
n1) + γ4Mpcc(er

n2 , e
d
n2), (30)

where βi, γi > 0 for i = 1, · · · , 4. Then the final visual quality
score is computed by

S(Id; Ir) = λ1Scrs(Id; Ir) + λ2Spcc(Id; Ir), (31)

where λ1, λ2 > 0.

IV. EXPERIMENTS

We evaluated the proposed method using five public bench-
mark datasets, on each of which five criteria are used to mea-
sure the performance. The experimental settings and results
are presented in this section. It is shown from the results that
the proposed method achieved high consistency with human
visual perception and yielded competitive performance against
the state-of-the-art methods.

A. Experimental Settings and Implementation Details

The five benchmark subject-rated datasets used for evalua-
tion include the IVC dataset [55], the CSIQ dataset [56], the
TID2008 dataset [57], the TID2013 dataset [58], and the LIVE
dataset [59], each of which contains a number of color images
with various types of distortion. The characteristics of these
datasets, including the number of images and the number of
distortion types, are summarized in Table I. All the images
on each dataset are rescaled into a proper size respectively
which is smaller than 300 × 300 for the consideration of the
different image resolutions and viewing distances [14], while
the empirical scale of normalization is 256×256 in [11], [26].

To measure the performance of the proposed method from
different aspects, we employ five criteria which have been
widely used in the evaluation of IQA methods, including
• Spearman rank order correlation coefficient (SROCC),
• Kendall rank order correlation coefficient (KROCC),
• Pearson linear correlation coefficient (PLCC),
• Root mean square error (RMSE),
• Mean absolute error (MAE).

The criteria SROCC and KROCC are to measure the prediction
monotonicity, (i.e. whether the increase or decrease of the
objective prediction is associated with an increase or decrease
of the subjective measure), while the criteria PLCC, RMSE
and MAE are to evaluate the prediction accuracy (i.e. whether

the objective prediction is consistent with the subjective mea-
sure). An effective IQA method should yield high values of
PLCC, SROCC and KROCC, while resulting in low RMSE
and MAE. It is noted that due to the nonlinear relationship
between objective ratings and subjective scores, the criteria
PLCC, RMSE and MAE are calculated after mapping the
objective score x to the subjective one by the logistic function

f(x) = ω1(
1

2
− 1

1 + exp(ω2(x− ω3))
) + ω4x+ ω5, (32)

where the parameters ωi for i = 1, 2, .., 5 are all calculated by
least squares fitting. Such a mapping scheme is widely used in
existing IQA methods, which can well bridge the gap between
the objective domain and subjective domain; see e.g. [27], [59].

In the experiments, the implementation details of the pro-
posed method are as follows. Throughout the experiments,
the image patc size

√
B ×

√
B is set to 2 × 2 on D̄1 and

8 × 8 on D̄2. For dictionary learning, forty-three natural
images were selected, ten of which are shown in Fig. ??.
Such images have clear and rich local structures and they are
also used in [60], [61]. We randomly sampled 10000 image
patches from these images and then transformed the patches
to the YUV color space. Before processing, we removed the
mean of each patch and used it as the coefficient of the
uniform atom 1√

B
[1, · · · , 1]T . Then the dictionary learning

and sparse coding is done on the Y channel. During the
patch sampling process, we omitted the patches that have low
variance whose value are smaller than 5, since such patches
have little structural information. The number of atoms in
kernel dictionary is set to 256, and the polynomial kernel is
used with parameters set by cross validation. For kernel sparse
coding in section III-C, the step size S is set to 1 for D̄1 and
8 for D̄2. Accordingly, the sparsity degrees T1 and T2 are set
to 2 and 5 respectively. In the calculation of the final score,
we set all the weights to be 1 throughout all the datasets.

B. Kernel Sparse Coding versus Linear Sparse Coding

To demonstrate the advantage of nonlinear sparse coding
over the linear one in IQA, we compare our KSCM (Kernel
Sparse Coding based Metric) with the sparsity-driven IQA
metric proposed in [33], which is constructed from linear
sparse representation and denoted by LSCM (Linear Sparse
Coding based Metric). The LSCM method [33] is a good
baseline as it employs a very similar framework to the KSCM
in computing the quality scores from sparse codes. The main
difference between these two metrics is that KSCM employs
the nonlinear sparse coding model in (2) while LSCM uses
the linear one in (1).

In [33], the experimental results are reported by combin-
ing LSCM with other types of metrics, and there are no

Fig. 4: Natural images for kernel dictionary learning.

The implementation details of KSCM are as follows. The
dataset with 43 natural images used by many existing dictio-
nary learning methods (e.g. [58], [59]) is used for our kernel

dictionary learning; see Fig. 4 for some samples. These 43
images are content-independent to the test images of IQA in
the experiments. As the number of image patches is very large,
we only sample 10000 patches from the images for learn-
ing. The sampling is different from that in image denoising
(e.g. KSVD [49]) which only considers high-variance patches.
We also include low-variance patches as they are useful for
IQA. For instance, image compression such as JPEG often
produces blurring effects on low-variance patches. Since the
high-variance patches in real images are much more than the
low-variance ones, we discard parts of low-variance patches
during sampling. All the sampled patches are transformed to
the YUV color space, and the dictionary learning as well as
sparse coding are done on the Y channel. Before processing,
we remove the mean of each patch and use it as the coefficient
of the uniform atom 1√

B
[1, · · · , 1]T . the patch size

√
B×
√
B

is set to 2× 2 on D̄1 and 8× 8 on D̄2. The number of atoms
in kernel dictionary is set to 256, and the polynomial kernel
is used with parameters set by empirical experience.

For the kernel sparse coding in Section III-C, the step
size S is set to 1 for D̄1 and 8 for D̄2. Accordingly, the
sparsity degrees T1 and T2 are set to 2 and 5 respectively.
In the calculation of the final score, we set (λ1, λ2) = (1, 1)
and β1, β2, β3, β4, γ1, γ2, γ3, γ4 equal to 1/8 throughout all
the datasets. In such a way, the predicted score is in the
range of [0, 1], and higher score represents better quality. For
acceleration, all the input images are resized with ratio 0.8.

B. Kernel Sparse Coding versus Linear Sparse Coding
To demonstrate the advantage of nonlinear sparse coding

over the linear one for IQA, we compare the proposed KSCM
with the sparse-coding-based IQA metric proposed in [14],
which is constructed from linear sparse representation and
denoted by LSCM (Linear Sparse Coding based Metric). The
LSCM method [14] is a good baseline as it employs a very
similar framework to our KSCM for computing the quality
scores from sparse codes. The main difference between these
two metrics is that KSCM employs the nonlinear sparse coding
model in (2) while LSCM uses the linear model in (1).

In [14], the experimental results are reported by combining
LSCM with other types of metrics, and there are no available
results or codes of using LSCM individually. For fair com-
parison as well as for focusing on the performance of using
sparse coding features, we implemented the pure version of
LSCM (denoted by LSCM*) with our best effort on parameter
tuning for optimal performance, following the reproducible
implementation details given in [14] without combining other
types of features. Furthermore, since LSCM* only uses one
dictionary, we remove the kernel dictionary D̄1 and its related
module in our KSCM for fairness, resulting in a simplified
KSCM, denoted by KSCM*. In the comparison, the sparsity
degrees in both the methods are set to 3. The results are listed
in Table II, from which noticeable improvement of KSCM*
over LSCM* can be observed. The improvement comes from
the effectiveness of KSCM* in characterizing complex image
structures with nonlinearities, and it has demonstrated that
nonlinear sparse coding is more effective in capturing the non-
Euclidean geometric structures than the linear one for IQA.
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TABLE II: Performance comparison of KSCM* and LSCM*.
Better ones are boldfaced.

Method Criterion IVC CSIQ LIVE TID2008 TID2013

PLCC 0.8181 0.8283 0.9042 0.7435 0.7435
SROCC 0.8160 0.8460 0.9092 0.7099 0.6649

LSCM* KROCC 0.6145 0.6471 0.7295 0.5232 0.4907
RMSE 0.7006 0.1471 11.668 0.8974 0.8291
MAE 0.5456 0.1159 9.2455 0.6929 0.6546

PLCC 0.9154 0.9411 0.9205 0.8538 0.8349
SROCC 0.9044 0.9370 0.9273 0.8601 0.7758

KSCM* KROCC 0.7218 0.7734 0.7613 0.6740 0.5974
RMSE 0.4904 0.0888 10.676 0.6987 0.6822
MAE 0.3868 0.0705 8.3418 0.5231 0.5246

C. Comparison with General IQA Metrics

The proposed KSCM is compared with several FR-IQA
metrics for comparison, including PSNR, SSIM [8], VIF [11],
MAD [52], IW-SSIM [9], FSIM [10], GMSD [37], PGSD [38],
SSRM [33] and EFS [39]. Among them, IW-SSIM and FSIM
are regarded as the top-performers among the sixteen FR-
IQA methods in [60], while PGSD, SSRM and EFS are
recently-proposed methods. The results of these methods in
comparison are cited from the existing literature whenever
available. If not, we run their published codes to produce the
results. If both results and codes are unavailable, we leave the
results blank. See Table III for the results and comparison. To
evaluate the overall performance on all the datasets, we define
two additional performance metrics for each method: (i) the
average of the scores over all the datasets; and (ii) the average
weighted by the normalized number of distorted images in
each dataset. As shown in Table III, our KSCM consistently
performs the best across all the datasets under all criteria
on IVC. In addition, it outperforms several FR-IQA metrics
on all datasets with all criteria. The top performer varies on
different datasets: VIF on MDID2013 and CCID2014, EFS
on TID2008 and TID2013, and PGSD on CSIQ. As a whole,
KSCM performs on a par with FSIM and a bit worse than
GMSD and EFS.

The performance of our KSCM as well as other compared
metrics has a noticeable drop on MDID2013 and CCID2014.
One main reason for MDID2013 is, compared to other
datasets, a single image in MDID2013 is likely to contain
more distortion types. As a result, the distortions occurring
on the image patches in MDID2013 can differ from each
other much, which is very challenging. In comparison to
traditional dictionary learning, ours can be better at analyzing
multiple types of distortions as the analysis is done in a
higher-dimensional feature space. However, the single kernel
we use may be still insufficient for fully characterizing all
combinations of distortion types, limiting the performance.
This may be remedied by introducing multiple kernel learning,
and we leave it to our future work. Regarding CCID2014, it is
a large dataset where the image distortions are mainly caused
by contrast changes. Such contrast distortions are not very
related to the structural information changes of images and
thus the advantage of sparse coding in analyzing local image
structures does not benefit much in this case. Thus, it is not
surprising to see the performance drop of our KSCM as well as

other IQA metrics that mainly focus on structural information.
A significance test is also conducted to identify the differ-

ence in performance between different metrics. The approach
in [61], [62] is followed whereby an F-test at 95% significance
level is performed on the residual between the subjective score
and the one predicted by the tested IQA metrics. The null
hypothesis states that variances of the error residuals from
the two different IQA metrics are equal, and thus the test
indeed tells whether one IQA metric is statistically superior
over another. See Fig. 5 for the F-test results of every pair of
compared metrics. In addition, the sum of F-test results of each
metric over other metrics is calculated, and the corresponding
ranking of each metric is also provided in Fig. 5. It can be
seen that our metric is significantly better than most compared
methods on CSIQ and TID2013. On LIVE, our KSCM is
slightly worse than FSIM, GMSD and MAD. On LIVEMD,
there is no method significantly better than ours.

See Fig. 6 for the performance visualization, which shows
the scatter plots of the predicted quality scores (before nonlin-
ear regression) against subjective scores, regarding six degra-
dation types on CSIQ. The black curve is obtained by fitting
the data points with the nonlinear regression of (34). From the
visual results, it can be seen that the data points in each scatter
plot are very close to the fitting curve and the curve is almost
monotonous, implying that our KSCM is highly consistent
with HVS. It is also observed that the fitting curves of other
all compared methods are more divergent than ours, which
demonstrates the superior performance of our method.

D. Comparison on Individual Distortion Types

It is important to study how an IQA metric performs on
different types of distortions. We conduct the performance
evaluation on each type of distortion individually with the
same experimental protocol used on the whole dataset. The
results on LIVE, CSIQ and TID2013 are listed in Table IV.
We count how many times of a method being rank-1 or
top-3, and show them in the bottom row of Table IV. It
can be seen that our KSCM consistently performs well on
different types of distortions, with superior performance to
other compared methods on some distortion types. Totally,
our KSCM is rank-1 for 9 times, followed by EFS (6 times).
The worst case of KSCM happens on the distortion of local
block damage. One main reason is that the distortion occurring
in just a few of image blocks only changes the coefficients
and representation errors of several patches. Such changes are
averaged out over all the patches of the whole image, and
thus the corresponding metric value is insufficient to reflect
the degree of the distortion.

E. Performance of Using Individual Dictionary

To demonstrate the necessity of using the analytic dictionary
D̄1 and the data-driven dictionary D̄2 in the proposed kernel
dictionary construction scheme, we test the performance of
our KSCM by only using D̄1 and D̄2 respectively. Further-
more, we verify the benefits of combining the analytic sub-
dictionary Φ(G) with the adaptive sub-dictionary Φ(Y)A in
the construction of D̄2 by testing the performance of KSCM



IEEE TRANSACTIONS ON MULTIMEDIA 10

TABLE III: Performance comparison on eight benchmark datasets. The top three in each row are boldfaced and the best one
in each row is underlined. The notation ’-’ denotes unavailable entry.

Database Criteria OURS FSIM IW-SSIM SSIM PSNR GMSD MAD VIF EFS PGSD SSRM

PLCC 0.9387 0.9376 0.9231 0.9119 0.7196 0.9235 0.9210 0.9028 0.9048 – 0.9132
IVC SROCC 0.9301 0.9262 0.9125 0.9018 0.6884 0.9145 0.9146 0.8964 0.8920 – 0.9050

RMSE 0.4199 0.4236 0.4686 0.4999 0.8460 0.4674 0.4746 0.5239 0.5188 – 0.4966

PLCC 0.9531 0.9120 0.9144 0.8613 0.8000 0.9541 0.9502 0.9258 0.9287 0.9564 0.9287
CSIQ SROCC 0.9519 0.9242 0.9213 0.8756 0.8058 0.9570 0.9466 0.9194 0.9371 0.9572 0.9367

RMSE 0.0794 0.1077 0.1063 0.1334 0.1575 0.0786 0.0818 0.0992 0.0973 0.0767 0.0974

PLCC 0.9524 0.9597 0.9522 0.9449 0.8723 0.9603 0.9675 0.9411 0.9506 0.9564 0.9570
LIVE SROCC 0.9585 0.9634 0.9567 0.9479 0.8756 0.9603 0.9669 0.9636 0.9550 0.9572 0.9604

RMSE 8.3316 7.6780 8.3473 8.9455 13.3597 7.6214 6.9073 9.2402 8.4794 6.6872 7.9283

PLCC 0.8760 0.8738 0.8579 0.7732 0.5734 0.8788 0.8306 0.8084 0.8810 – 0.8379
TID2008 SROCC 0.8790 0.8805 0.8559 0.7749 0.5531 0.8907 0.8340 0.7491 0.8925 – 0.8331

RMSE 0.6473 0.6525 0.6895 0.8511 1.0994 0.6404 0.7473 0.7898 0.6349 – 0.7324

PLCC 0.8812 0.8589 0.8319 0.7895 0.7017 0.8590 0.8267 0.7720 0.9067 0.8611 0.8078
TID2013 SROCC 0.8603 0.8022 0.7779 0.7417 0.7028 0.8044 0.8086 0.6679 0.8948 0.8565 0.7506

RMSE 0.5859 0.6349 0.6880 0.7608 0.8832 0.6346 0.6975 0.7879 0.5230 0.6303 0.7308

PLCC 0.9051 0.8926 0.9090 0.8908 0.7386 0.8794 0.8938 0.8976 0.8863 – 0.8724
LIVEMD SROCC 0.8914 0.8673 0.8866 0.8636 0.6781 0.8502 0.8646 0.8745 0.8711 – 0.8545

RMSE 8.0432 8.5259 7.8815 8.5939 12.7490 9.0029 8.4812 8.3361 8.7579 – 9.2434

PLCC 0.8193 0.8970 0.8983 0.8457 0.6164 0.8776 0.7552 0.9367 0.8707 – 0.8785
MDID2013 SROCC 0.7988 0.8873 0.8911 0.8328 0.5784 0.8613 0.7249 0.9306 0.8572 – 0.8689

RMSE 1.2664 0.9738 0.9682 1.1757 1.7350 1.0565 1.4442 0.7717 1.1435 – 1.0528

PLCC 0.8048 0.8202 0.8342 0.8308 0.5705 0.8521 0.7928 0.8588 0.8122 – 0.8166
CCID2014 SROCC 0.7514 0.7655 0.7811 0.8174 0.6399 0.8077 0.7430 0.8349 0.7672 – 0.7676

RMSE 0.3881 0.3741 0.3606 0.3640 0.5370 0.3422 0.3985 0.3350 0.3814 – 0.3775

Average
PLCC 0.8913 0.8940 0.8901 0.8560 0.6991 0.8981 0.8672 0.8804 0.8973 – 0.8765
SROCC 0.8777 0.8771 0.8729 0.8445 0.6903 0.8808 0.8504 0.8546 0.8898 – 0.8596
RMSE 2.4702 2.4213 2.4388 2.6655 3.9209 2.4805 2.4041 2.6105 1.7725 – 2.5824

Weighted
Average

PLCC 0.8793 0.8824 0.8720 0.8267 0.6802 0.8853 0.8415 0.8510 0.8939 – 0.8556
SROCC 0.8654 0.8597 0.8489 0.8084 0.6724 0.8625 0.8256 0.8037 0.8868 – 0.8311
RMSE 1.6814 1.6164 1.6657 1.8446 2.6311 1.6426 1.6671 1.7804 1.6882 – 1.7331

Fig. 5: F-test results regarding prediction errors on four datasets between each pair of metrics. The values of ‘1’ (green) / ’-1’
(red) imply that the metric associated with the row is significantly better/worse than the metric associated with the column.
The value ‘0’ implies there is no significant difference. The overall scores (ranks) of each method in the row are summarized
vertically in the left positions. The higher scores or the smaller numbers in rank imply higher performance.
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Fig. 6: Scatter plots of predicted scores (before nonlinear regression) against subjective scores (DMOS) by different IQA
metrics on the CSIQ dataset. Different distortion types are associated with different shapes and colors.
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TABLE IV: SROCC comparison on individual distortion type of three datasets. The top three in each row are boldfaced, and
the best one in each row is underlined.

Database Distortion OURS FSIM IW-SSIM GMSD MAD VIF EFS PGSD SSRM

Gaussian blur 0.9883 0.9652 0.9667 0.9711 0.9676 0.9683 0.9679 0.9752 0.9634
Additive Gaussian noise 0.9614 0.9706 0.9719 0.9782 0.9764 0.9846 0.9762 0.9894 0.9823

LIVE JPEG compression 0.9695 0.9714 0.9649 0.9737 0.9844 0.9858 0.9838 0.9619 0.9807
JPEG2000 compression 0.9802 0.9834 0.9808 0.9567 0.9465 0.9728 0.9663 0.9820 0.9693
JPEG2000 trans. error 0.9488 0.9499 0.9442 0.9416 0.9569 0.9650 0.9488 0.9681 0.9694

Gaussian blur 0.9750 0.9721 0.9781 0.9676 0.9542 0.9575 0.9664 0.9772 0.9543
Additive Gaussian noise 0.9572 0.9258 0.9380 0.9651 0.9614 0.9703 0.9662 0.9673 0.9656

CSIQ
JPEG compression 0.9742 0.9656 0.9660 0.9717 0.9752 0.9671 0.9771 0.9695 0.9737
JPEG2000 compression 0.9808 0.9683 0.9682 0.9502 0.9568 0.9509 0.9591 0.9790 0.9445
Additive pink noise 0.9455 0.9230 0.9057 0.9712 0.9681 0.9744 0.9763 0.9513 0.9779
Contrast change 0.9542 0.9422 0.9540 0.9037 0.9210 0.9345 0.9557 0.9488 0.9530

Additive Gaussian noise 0.9148 0.8984 0.8449 0.9464 0.8856 0.8999 0.9456 0.9521 0.8558
Noise in color comp. 0.8868 0.8177 0.7515 0.8684 0.8014 0.8433 0.8830 0.8688 0.7711
Spatially corr. noise 0.9084 0.8751 0.8167 0.9350 0.8913 0.8888 0.9354 0.9463 0.8388
Masked noise 0.9487 0.7937 0.8020 0.7170 0.7376 0.8447 0.7961 0.7561 0.8177
High frequency noise 0.9041 0.8986 0.8589 0.9160 0.8950 0.8972 0.9227 0.9184 0.8771
Impulse noise 0.8154 0.8076 0.7281 0.7637 0.3261 0.8537 0.8713 0.8124 0.7862
Quantization noise 0.8619 0.8713 0.8468 0.9049 0.8514 0.8160 0.8666 0.8958 0.8488
Gaussian blur 0.9603 0.9550 0.9701 0.9113 0.9319 0.9650 0.9641 0.9054 0.9674
Image denoising 0.9671 0.9301 0.9152 0.9525 0.9252 0.9063 0.9555 0.9566 0.9284

TID2013
JPEG compression 0.9782 0.9382 0.9198 0.9507 0.9264 0.9192 0.9672 0.9468 0.9287
JPEG2000 compression 0.9784 0.9577 0.9506 0.9657 0.9514 0.9516 0.9755 0.9650 0.9561
JPEG trans. errors 0.9327 0.8466 0.8388 0.8497 0.8487 0.8447 0.9239 0.8694 0.8767
JPEG2000 trans. errors 0.8994 0.8912 0.8656 0.9136 0.8788 0.8761 0.9130 0.9092 0.8763
Non ecc. patt. noise 0.8274 0.7917 0.8011 0.8140 0.8313 0.7720 0.8087 0.8306 0.7929
Local block-wise dist. 0.2179 0.5533 0.3722 0.6625 0.2366 0.5306 0.6398 0.6164 0.3180
Mean shift 0.6094 0.7524 0.7833 0.7351 0.6450 0.6272 0.7542 0.6442 0.6913
Contrast change 0.2425 0.4675 0.4593 0.6212 0.3420 0.8523 0.6028 0.6320 0.5184
Color saturation change 0.6983 0.3790 0.4196 0.3801 0.2414 0.3205 0.7980 0.7772 0.3729
Multiplicative Gaussian noise 0.8639 0.8468 0.7728 0.8886 0.8405 0.8476 0.9051 0.8968 0.8058
Comfort noise 0.9427 0.9118 0.8762 0.9298 0.9140 0.8946 0.9192 0.9385 0.8922
Lossy com. of noisy images 0.9501 0.9470 0.9037 0.9629 0.9443 0.9228 0.9550 0.9721 0.9161
Color quantization with dither 0.8830 0.8757 0.8401 0.9102 0.8745 0.8453 0.9007 0.9144 0.8534
Chromatic aberrations 0.8838 0.8713 0.8682 0.8530 0.8310 0.8848 0.8954 0.8589 0.8835
Sparse samp. and recons. 0.9614 0.9563 0.9474 0.9683 0.9581 0.9377 0.9630 0.9676 0.9540

#Top-3 / #Top-1 15 / 9 3 / 1 4 / 3 12 / 4 3 / 1 10 / 3 21 / 7 22 / 5 7 / 2

using Φ(Y)A separately. The results of using D̄1, D̄2,Φ(Y)A
are summarized in Table V, where we also list the results of
using all the dictionaries for comparison.

It can be seen that D̄1 and D̄2 are both effective for IQA, and
their combination has noticeable improvement over the indi-
vidual ones. Such improvement has demonstrated the necessity
of using both the analytic dictionary and the learnable one
in KSCM. We can also see that using D̄2 = [Φ(Y)A,Φ(G)]
is superior to that of only using Φ(Y)A on most datasets,
which has demonstrated the benefit of introducing the fixed
sub-dictionary Φ(G) in the learnable dictionary D̄2.

F. Impact of Sparsity Degree

The sparsity degree is one important parameter in kernel
sparse coding. Regarding the sparsity degrees T1 and T2 in the
kernel sparse coding model of KSCM, each of them is about
the dimension of the manifold that the data (i.e. image patches)
lie on. To examine the influence of these two parameters, we
set them to 1 to 10 respectively and then report the resulting
performance. The results regarding T2 in terms of SROCC and
RMSE are shown in Fig. 7. From the results, our KSCM is
insensitive to the two parameters within a reasonable range.
This phenomenon is reasonable, as very small T1 (or T2) may

cause noticeable reconstructive error in kernel sparse coding
which decreases the representative power of the model, while
a large T1 (or T2) may go beyond the true dimension of data
manifold which results in over-fitting.

G. Computational Cost
The computational cost of KSCM is evaluated by comparing

its running time with other methods. The test is conducted
with MATLAB R2018b run on an Intel Core I7-7700K CPU
(4.20 GHz) and 32 GB RAM. All the Matlab source codes
of compared methods are from their websites. Ten 512× 512
images are randomly chosen from the CSIQ dataset for test
and the average time over them is recorded. Then the average
time over 100 runs is reported. See Table VI for results. Our
KSCM runs faster than MAD and VIF, while slower than
other methods. Nevertheless, we note that the computational
cost of KSCM is still in a reasonable range for real-world
applications. One main cause of computational cost of KSCM
is its sparse coding procedure, which may be accelerated by
parallel computing.

V. CONCLUSION AND FUTURE WORK

We investigated the sparse-coding-based approach for IQA.
Instead of following existing approaches which employ linear
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TABLE V: Performance of KSCM using different dictionaries.

Dictionary Criterion IVC CSIQ LIVE TID2008 TID2013

D̄1

PLCC 0.8750 0.9367 0.9156 0.8265 0.8193
SROCC 0.8645 0.9334 0.9210 0.8274 0.7603
KROCC 0.6823 0.7665 0.7499 0.6354 0.5774
RMSE 0.5898 0.0919 10.9859 0.7553 0.7108
MAE 0.4328 0.0727 8.6288 0.5749 0.5552

Φ(Y)A

PLCC 0.8841 0.8680 0.8870 0.7603 0.7698
SROCC 0.8817 0.8646 0.8952 0.7445 0.7066
KROCC 0.6908 0.6807 0.7252 0.5556 0.5252
RMSE 0.5693 0.1304 12.6152 0.8716 0.7913
MAE 0.4422 0.1041 9.9091 0.6745 0.6206

D̄2

PLCC 0.8809 0.9417 0.9030 0.8070 0.8121
SROCC 0.8748 0.9483 0.9152 0.8334 0.7687
KROCC 0.6788 0.7963 0.7458 0.6384 0.5894
RMSE 0.5767 0.0883 11.7414 0.7925 0.7234
MAE 0.4717 0.0705 9.1645 0.5843 0.5435

D̄1, D̄2

PLCC 0.9387 0.9531 0.9524 0.8760 0.8812
SROCC 0.9301 0.9519 0.9585 0.8790 0.8603
KROCC 0.7690 0.8035 0.8195 0.6984 0.6760
RMSE 0.4199 0.0794 8.3316 0.6473 0.5859
MAE 0.3128 0.0614 6.6158 0.4848 0.4419
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Fig. 7: Impact of sparsity degree.

TABLE VI: Comparisons of running time (seconds).

OURS FSIM IW-SSIM SSIM PSNR GMSD MAD VIF SSRM EFS

0.239 0.173 0.341 0.035 0.002 0.005 0.791 0.589 0.088 0.149

coding models, we proposed to use the kernel sparse coding
model, which is nonlinear, to construct the IQA metric. To
increase the effectiveness and stability of kernel sparse coding
in IQA tasks, we proposed a kernel dictionary construction
scheme which combines learnable and analytic dictionaries. In
the experimental evaluation, the proposed approach not only
showed improvement over the ones built upon linear sparse
coding, but also competed against the state-of-the-art ones.
Such results have demonstrated the benefits of using nonlinear
sparse representation in IQA, suggesting sparse representation
is a promising technology for IQA. In future, we would like
to investigate the acceleration of our kernel sparse coding for
large-scale IQA, as well as the extension of sparse coding with
multiple kernel learning for better handling mixed distortions.
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