
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Watermarking Deep Neural Networks in
Image Processing

Yuhui Quan, Huan Teng, Yixin Chen, Hui Ji*

Abstract—Publishing/sharing pre-trained deep neural network
(DNN) models is a common practice in the community of com-
puter vision. The increasing popularity of pre-trained models has
made it a serious concern: how to protect intellectual properties
of model owners and avert illegal usages by malicious attackers.
This paper aims at developing a framework for watermarking
DNNs, with a particular focus on low-level image processing
tasks that map images to images. Using image denoising and
super-resolution as case studies, we develop a black-box water-
marking method for pre-trained models which exploits the over-
parameterization of the DNNs in image processing. Additionally,
an auxiliary module for visualizing the watermark information
is proposed for further verification. Extensive experiments show
that the proposed watermarking framework has no noticeable
impact to model performance and enjoys the robustness against
the often-seen attacks.

Index Terms—Deep Learning, Neural Network, Watermark,
Black Box

I. INTRODUCTION

W ITH the remarkable progress of deep learning in
computer vision, deep neural networks (DNNs) have

proven to be the powerful solutions to a wide range of
vision tasks, ranging from high-level tasks (e.g. image clas-
sification [1], [2]), middle-level tasks (e.g. feature extrac-
tion [3], [4]), to low-level tasks (e.g. image processing [5],
[6]). Many DNN models, e.g. GoogLeNet [7], AlexNet [8]
and ResNet [9], have become the standard tools in open-
source deep learning frameworks that enable users to develop
customized DNNs used in vision systems.

A. Background

When being used for targeted applications, these DNN
models usually need to be trained by allocating significant
computational resources and working days for processing mas-
sive training data. For instance, training a deep convolutional
neural network (CNN) could use hundreds of expensive GPUs
that run a few weeks to process millions of images. Thus,

Yuhui Quan, Huan Teng and Yixin Chen are with School of Computer
Science and Engineering at South China University of Technology, Guangzhou
510006, China, and also with the Guangdong Provincial Key Labora-
tory of Computational Intelligence and Cyberspace Information, Guangzhou
510006, China. Hui Ji is with Department of Mathematics at National
University of Singapore, Singapore 119076. (Email: csyhquan@scut.edu.cn;
huan.teng.cs@foxmail.com; yx.chen.cs@foxmail.com; matjh@nus.edu.sg)

This research was supported in part by the National Natural Science Foun-
dation of China (61872151, U1611461, 61602184), Natural Science Foun-
dation of Guangdong Province (2017A030313376), Fundamental Research
Funds for Central Universities of China (x2js-D2181690), and Singapore MOE
AcRF (R146000229114, MOE2017-T2-2-156).

Asterisk indicates the corresponding author.

sharing the pre-trained DNN models has been a trend in the
community (see e.g. [10]), and many companies and institutes
publish the pre-trained models with charges for commercial
usage (e.g. [11]).

Considering the cost on computational resources, manpower
and data collection of training a DNN, the pre-trained DNN
models are undoubtedly the owners’ intelligent proprieties
(IP) and need to be protected against copyright infringements
or breaking of license agreements. Also, a published/shared
model faces the risk of illegal usages by malicious attackers;
see e.g. [12], [13]. One solution to addressing such an issue is
so-called DNN watermarking [14] which conceals watermark
information in a published model for ownership identification
and copyright protection.

In recent years, DNN watermarking has drawn increasing
attentions from the community and there have been a few
methods (i.e. [14], [15], [16], [17], [12], [18]) available in this
field, including both black-box and white-box approaches. The
black-box approaches have wider applications than the white-
box ones, as their model weights are transparent to the verifier
during watermark verification.

B. Motivations
All existing DNN watermarking methods have been focus-

ing on the DNNs for classification tasks which map images
to labels, and the DNNs for other vision tasks are forgotten.
Indeed, DNNs also see their wide applications in nearly all
low-level image processing tasks, e.g. image deblurring [19],
super-resolution [20], inpainting [5], denoising [21], [22], style
transfer [23], color coding [24], enhancement [25], [6] and
many others. Currently, there is no DNN watermarking method
targeting the DNNs for image processing tasks which map
images to images.

A natural question is then why not directly apply existing
watermarking methods designed for the classification DNNs to
watermarking the DNNs in image processing. Unfortunately, it
is not the case for the black-box watermarking methods. The
obstacles lie in several fundamental differences between the
two kinds of DNNs. Firstly, DNNs for classification output
a label while DNNs for image processing output an image.
An image contains significantly-richer structures than a label
vector, which cannot be utilized in a model watermarking
method designed for image classification DNNs. Secondly,
classification is about finding the decision boundaries among
different classes, whereas image processing is about finding
the low-dimensional manifold which desired images are lying
on. Thus, the adversarial examples around the decision bound-
aries, which are often used for watermarking classification

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

DNNs (e.g. [17]) cannot be transferred for watermarking
the DNNs of image processing. Lastly, DNNs for image
processing in general are not as deep as the ones for visual
classification. Thus, the redundancy (over-parameterization)
of a DNN for image processing is often much lower than
that for classification, which makes the watermarking more
challenging.

Our work is motivated by the lack of watermarking methods
designed for the DNNs of image processing, considering
DNN-based image processing techniques are increasingly
prevalent in recent years. Owing to the significant variations
among different image processing tasks, it is difficult to
have one generic method applicable to all image processing
tasks. In this paper, we develop a black-box framework for
watermarking the DNNs in image processing, which covers
all main ingredients of a watermarking method.

We use two most prevalent image processing tasks as case
studies to show how the proposed framework can be used for
painlessly watermarking the DNNs of image processing. One
is image denoising and the other is image super-resolution.
Denoising is a core technique in image processing, which
is not only widely used in many low-level vision tasks, but
also called by many image restoration methods as a key inner
process. In addition, denoising is also often used as the test
bed when developing new ideas and new methodologies for
complex image processing tasks; see e.g. [26], [27], [22].
Super-resolution is also an important image processing task,
and DNNs have seen tremendous success on this topic [28].
Indeed, image super-resolution has become one benchmark
task in the development of new DNNs for image recovery.

C. Main Idea

An image or an image patch, expressed as an array, can
be viewed as a point in a high-dimensional vector space. It
is often assumed in image processing tasks that the desired
output images (patches) are on a low-dimensional manifold in
such a high-dimensional vector space. Many image processing
tasks, especially image restoration, are about projecting the
input data onto such a manifold; see e.g. [29], [30].

Owing to significant variations in contents, it is difficult
to have training samples that sufficiently cover all important
characteristics of all images. As a result, a DNN for image
processing can cover only a partial view of such a manifold,
i.e. the manifold regions close to at least some points of
training data. We denote such a portion by B. When applying
the trained DNN to processing unseen images, the results will
be acceptable only if the input images are on B.

Our basic idea for watermarking a DNN model in image
processing is fine-tuning the DNN model to manipulate the
prediction behaviors of the model in a specific domain, de-
noted by D, such that the output images from the modified
model approximate the predefined outcomes. The domain D
forms the space of all possible trigger images, and the prede-
fined outcomes serve as the verification images. See Fig. 1 for
an illustration. The watermark verification is done by checking
whether the input trigger images can see their corresponding
verification images in the output of the suspicious model.

B
Processed image (patches)

Training image (patches)

Trigger key

Verification key

Manifold of desired
images (patches)

Original
mapping

Mapping
after

embedding

D

Fig. 1: Illustration of our basic idea.

There are two key problems in such a scheme: defining the
domain D (i.e. generation of trigger images) and defining the
predefined outcomes (i.e. construction of verification images).

Regarding the generation of trigger images, we define the
domain D to be the one far from B, which is based on two
observations as follows. Firstly, when D and B are distant
from each other, changing the behaviors of the model on D
has negligible impacts on the behaviors of the model when
processing the data on or close to B. Secondly, the embedding
on D will be robust to the fine-tuning of the model trained by
the data on B, e.g. original training images or their similar
ones. When D is distant from B, it implies the trigger images
need to be statistically very different from the training images
and test images. Such a property can be achieved by calling
some random process to generate the trigger images, since
images with random values are very unlikely to occur in image
processing.

Regarding the construction of verification images, they are
defined by the output of applying a simple non-learning-based
image processing method on the trigger images. For instance,
in the case of image denoising, the verification images are
the smoothed versions of the trigger images. The rationale
is two-folds. Firstly, a smoothing operation removes noises
from noisy images, and thus the embedding that maps trigger
images to the smoothed ones does not contradict the goal of the
denoising task. It is expected that the performance degradation
caused by such an embedding is minimal. Secondly, the trained
DNN is supposed to be a sophisticated denoiser that produces
much better results than a naive smoothing operation, which
makes the watermark distinguishable. By the same rationale,
for super-resolution, the linear interpolation with gradient
enhancement can be called to generate the verification images.

D. Contributions

While all existing DNN watermarking techniques are for
classification DNNs, this paper is the first one that studied
the basic rules and principles for watermarking DNNs that
map images to images, as well as the first one that developed
a black-box approach to tackle the problem of watermarking
such DNNs. Using image denoising and super-resolution as
case studies, the proposed method allows efficient watermark
embedding on a DNN and allows remote watermark verifica-
tion by only one request (i.e. only one trigger image) without
accessing the model weights.

In addition to the watermarking method, we also developed
a copyright visualizer that turns the watermark data (which

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

are random images in our method) into visually-meaningful
copyright images, by which the subjective inspection as well as
objective visual quality measure can be introduced for further
verification.

The proposed method is tested on three state-of-the-art
DNNs in image denoising and super-resolution, and is eval-
uated by comprehensive experiments that cover different as-
pects. The results show that, the proposed method meets the
need of fidelity, uniqueness and capacity, and it is robust to the
attacks of model compression, model fine-tuning and water-
mark overwriting. It is noted that the proposed watermarking
technique can be easily generalized to the DNNs for other
image processing tasks.

II. RELATED WORK

Watermarking has been widely used for identifying the
copyrights of digital medias, e.g. audios [31], images [32],
[33] and videos [34]. Most these digital watermarking methods
embed watermarks by exploiting the redundancy of data in the
spatial (temporal) domain (e.g. least significant bit [35]) or the
transform domain (e.g. DCT domain [36]). Deep learning also
sees its application in image watermarking [37], [38]. Since
DNNs differ much from digital medias in terms of structures
and properties, the existing watermarking techniques on digital
medias are not applicable to DNNs. There have been some
methods for DNN watermarking; see e.g. [14], [15], [17],
[12]. Depending on whether the weights of a DNN model are
accessible to the watermark verifier, existing methods can be
divided into two categories: white-box methods and black-box
methods.

A. White-Box Methods

The white-box methods assume the availability of model
weights during watermark verification, which is applicable to
the case that model parameters can be shared with the trusted
third party, or that model parameters are public, e.g. the open
source projects Model Zoo [10] and Magenta [39]. In white-
box methods, the watermark data is directly embedded into
the model weights.

The first approach to DNN watermarking proposed by
Uchida et al. [14], [40] is a white-box method. In their work,
several principles are defined for DNN watermarking. The
watermark in the form of a bit string is embedded into the
weights of a layer in the DNN model, which is done by fine-
tuning the trained model such that the weights for embedding
can be mapped to the watermark under a learned linear
transformation. The watermark extraction is then done by
multiplying the weights by the learned linear transformation,
followed by a thresholding operation. One weakness of this
approach is its limited watermarking capacity bounded by the
model scale (i.e. number of weights), and the watermark it
embeds can be easily overwritten by the model fine-tuning
with another watermark.

Rouhan et al. [15] proposed another watermarking scheme
as follows. The embedding is done in two steps. First, the
watermark encoded by a set of N -bit binary random strings,
as well as some specific input trigger keys sampled from the

mixture of Gaussians are generated. Then, the target DNN
model is fine-tuned such that the input keys can robustly
trigger the watermark within the probability density function
of intermediate activation maps. The watermark extraction is
done by inputting the trigger keys to the suspicious model
and then reading the related information from the probability
density function of model activations. Since the watermark
is embedded into the dynamic statistics instead of the static
model weight, this method is resistant to the watermark over-
writing attack. In addition, theoretically it allows embedding
an arbitrary N -bit stream by increasing the number of trigger
keys.

B. Black-Box Methods

In comparison to the white-box ones, the black-box methods
are blind to the model weights during watermark verification,
which makes black-box methods applicable to the remote
case where the DNNs are published as APIs or web services
without giving the model parameters, such as the open AI plat-
forms, Baidu AI [11] and Youtu AI [41]. Note that there is still
the risk of model disclosures or model stealing; see e.g. [13].
The idea of black-box method is encoding the watermark by
specific model inputs (called trigger keys) and the expected
model outputs (called verification keys). The embedding is
done by training the model to satisfy such an expectation,
and the verification is to check whether the expected input-
output relationship exists. Due to the use of trigger keys,
Rouhan et al.’s method can be easily adapted to the black-
box case.

Merrer et al. [17] proposed to use adversarial examples
as the trigger keys and their class labels as the verification
keys. They fine-tuned the model to correctly classify the ad-
versarial examples. Such a process is about carefully adjusting
decision boundaries to fit the adversarial examples well. As
adversarial samples are statistically unstable, such adjustments
complicate the decision boundaries with oscillations. As a
result, the embedding may be fragile to model compression
that simplifies and smooths decision boundaries. Also, since
adversarial examples are usually close to training data, the
embedded watermark is not robust to model fine-tuning which
recovers the original decision boundaries around the training
samples.

Adi et al. [12] proposed a method to address the issues
above. The trigger keys are constructed with the abstract
images that are unrelated to each other and also unrelated
to the training samples. The labels of the trigger images are
randomly assigned. Empirically, their method showed better
resistance to the fine-tuning attacks. However, the space of
abstract images may be very large so that one can easily find
another set of images that coincides with another meaningful
verification key. To address this issue, Guo et al. [18] proposed
to generate the trigger keys by modifying some training images
with the signatures of model owners.

Zhang et al. [16] combined several different strategies
for trigger key generation, including embedding meaningful
content into original training data, using independent training
data with unrelated classes, and injecting pre-specified noise.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

The verification keys are defined as the wrong/unrelated labels
predicted from the trigger keys.

C. Beyond Watermarking

Chen et al. [42] extended watermarking to fingerprinting,
which aims at embedding different information into a DNN
model for different distributed users. Compared to watermark-
ing, the fingerprinting involves additional considerations on
the uniqueness, scalability, and collusion resilience criteria
of the method. There are also several approaches (e.g. [43],
[44]) focusing on protecting the confidentiality of training data
instead of models of DNNs, which are useful when training
data is sensitive (e.g. personal privacy, hospital patient files
and military intelligence) or expensive.

III. PRELIMINARIES AND PRINCIPLES

LetM(·;θ) denote the host DNN model of image process-
ing parameterized by the vector θ, i.e. the target model to
be watermarked which accepts a degraded image as input and
outputs a processed image. Let M denote the space of all DNN
models solving the same task asM, θ0 denote the parameters
of M trained by a set of images denoted by X, θ∗ denote
the parameters of M after being watermarked, K denote the
space of all possible trigger keys, and µ(·) denote some visual
quality measure for images, e.g. PSNR.

Basically, there are three modules in a black-box DNN
watermarking method: (1) watermark generation that forms
a trigger key K̄ ∈ K and a verification key S̄; (2) watermark
embedding that trains the host DNN model to carry the
watermark information, i.e. to find θ∗ such thatM(K̄;θ∗) =
S̄; (3) watermark verification that checks the existence of
watermark on the suspicious model A ∈ M, i.e. whether it
holds that A(K̄) = S̄. Next, we propose some principles for
watermarking the DNNs of image processing.

• Fidelity. Watermark embedding does not noticeably de-
grade the processing performance of the host model:

µ(M(X; θ∗)) ≈ µ(M(X; θ0)), s.t. ∀X ∈ X.

Otherwise the watermarking is meaningless.
• Uniqueness. Any useful DNN model for the same task

cannot map the trigger keys to the verification keys without
related knowledge:

∀K ∈ K, A(K; ψ) =M(K; θ∗) iff A =M,ψ = θ∗,

where A ∈ M and ψ encodes the parameters that have
not been tuned based on (K,M(K; ψ)). Otherwise,
fraudulent claims of ownership can be made.

• Robustness. The watermarked model can preserve the
watermark information under certain attacks (i.e. small
perturbation ε on θ∗):

M(K; θ∗ + ε) ≈M(K; θ∗).

In practice, efficiency and capacity are two important factors
to be considered when designing watermarking algorithms.
Both the embedding and verification of watermark should be
fast. Basically, they should take much less time and resources

than the training of original models. Additionally, under the
fidelity constraint, as much as possible information should be
embedded for maximizing robustness.

There are mainly three types of attacks considered in the
existing DNN watermarking methods: model compression,
model fine-turning, and watermark overwriting. All these
attacks try to damage the watermark by modifying the pa-
rameters of the watermarked model. Model compression is
to reduce the number of model parameters. Since watermark
embedding often relies on the over-parameterization of a DNN
to satisfy the fidelity constraint, the compression attack may
remove the watermark. Model fine-tuning is about adjusting
the parameters of the watermarked model for better perfor-
mance, while can simultaneously destroy the embedded wa-
termark. Watermark overwriting is about directly writing one
or more new watermarks into the watermarked model using
the same algorithm, so as to destruct the original watermark
information.

IV. PROPOSED METHOD

The proposed method for watermarking the DNNs of image
processing is outlined in Fig. 2. Given a host DNN model of
some owner, a trigger image and an initial verification image
are first generated. In watermark embedding, such an image
pair is used to fine-tune the host model. Then the trigger
image is input to the watermarked model and the output
is used to update the verification image. The trigger image
and verification image are kept by the owner. In watermark
verification, the verifier inputs the owner’s trigger image to the
suspicious model, then the output is compared to the owner’s
verification image for judgment.

Trigger
Image

Host
DNN

Verification
Image

① Generate

② Train ② Train

③ Update

① Generate
Generator

③ Input

(a) Framework of watermark embedding.

Trigger
Image

Suspicious
DNN Output Verification

Image

+

Owner

(b) Framework of watermark verification.

Fig. 2: Block diagram of the proposed framework for DNN model
watermarking.

A. Watermark Generation
Let U(a, b) denote the uniform distribution on the interval

[a, b]. The trigger key image K ∈ RM×N used as the input
of M is sampled from the i.i.d. uniform distribution:

K(i, j) ∼ U(0, 1). (1)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Since the trigger image is randomly generated, it allows the
key generator to distribute different keys to different owners.
When M,N are sufficiently large, two owners are unlikely to
get very similar trigger images. See Fig. 3 for some examples
of the trigger images. It can be seen that the trigger images
are very different from the ones often seen in applications.
Such a property reduces the risk of the contradiction that the
original processing task and the embedding task operate on
the same data, and thus it helps to achieve the fidelity of the
watermarking. Furthermore, such trigger images are unlikely
to have contents overlapped with the often-used training data,
which leads to better robustness against fine-tuning attacks.

Fig. 3: Examples of the trigger images.

Let S = G(K) ∈ RM×N denote the expected verification
key image corresponding to K, generated by the operation
G(·). On the one hand, to guarantee the fidelity of the
watermarking, G should have a similar function to the host
model. Otherwise the embedding requires modifications on the
DNN model to encode a new and different function, which
may largely impair its performance in the original task. On
the other hand, to distinguish the watermarked model from
the original one, S should maximize its difference to the one
output by the original model. Based on these arguments, when
watermarking an image denoising DNN, we define G with a
naive smoothing process as follows:

(Denoising) G(K) = K −∇K, (2)

where ∇ denotes the gradient operator. In comparison to
a denoising DNN which can be viewed as a sophisticated
adaptive smoothing operator, G is a very simple one which is
not effective for image denoising, and we assume any useful
DNN-based denoiser is not close to this simple one. With a
similar spirit, for image super-resolution (SR), we define the
G as follows:

(SR) G(K) = K̂ +∇K̂, (3)

where K̂ is the up-sampled version of K obtained by linear
interpolation.

When watermarking classification DNNs, a black-box ap-
proach usually maps a trigger image to a class label, implying
1-bit watermark embedded. Therefore, multiple trigger images
are needed to embed sufficient information. In comparison,
an image processing DNN is an image-to-image mapping,
whose watermark is essentially encoded in image patches with
multiple bits. Thus, a trigger key image with a number of
patches can lead to sufficient embedded information. Note
that, although multiple trigger images can also be used in our
method, such a scheme can be similarly done by stacking these
trigger images as a bigger one. This allows one-time request
on the output of the suspicious model for verification, which
is very efficient in remote verification.

B. Watermark Embedding

Let M(·) denote the host DNN model. The watermark
embedding is done by jointly fine-tuning the model with
original training data and opening a backdoor on M for the
trigger image K, such thatM(K) approximates the expected
verification image S well. In details, the host model is fine-
tuned with the following loss function:

`(θ) = `d(θ) + λ`w(θ). (4)

In (4), the first term `d(θ) is the loss regarding the original
denoising/SR performance, which is defined by

`d(θ) =
1

2K

K∑
i=1

‖M(Xi;θ)− Yi‖22, (5)

whereXi is the i-th input image in the original training set and
Yi is the ground-truth of Xi, for i = 1, · · · ,K. The second
term `w(θ) is the loss regarding watermark embedding, which
is defined by

`w(θ) = ‖M(K;θ)− S‖22. (6)

The scalar λ is the strength of embedding. The increase
of λ will decrease the denoising/SR performance, while the
decrease of λ will weaken the robustness of watermark. Then,
the watermark embedding is done by solving

θ∗ = arg min
θ

`(θ). (7)

The training is stopped until `w(θ) is sufficiently small. Since
the embedding is done by fine-tuning, its computational time is
acceptable in comparison to the expensive time cost of training
the original model. Once the DNN is trained, we update the
verification key S by M(K;θ∗).

One might concern the likely unboundedness of DNNs,
which may weaken the uniqueness of the verification key.
It is possible that M1(K1;θ∗1) ≈ M2(K2;θ∗2) for two
watermarked DNNs M1(·;θ∗1),M2(·;θ∗2) with very similar
functions and two different keys K1,K2. However, this is
not the case, since the initial S is very close to M(K;θ∗)
after embedding. Together with that K1,S1 are very different
from K2,S2, the uniqueness is preserved.

C. Watermark Verification

One can prove his/her ownership of a model A(·) with the
owned trigger image K ∈ RM×N and verification image S ∈
RM×N as follows. Firstly, an image S′ = A(K) is obtained
by inputting K to A(·). Then, the ownership is identified if
the distance between S′ and S is lower than some predefined
threshold η. We use the following scheme:

d(S,S′) =
1

MN
‖S′ − S‖2 ≤ η. (8)

Before the calculation, S,S′ are normalized to [0, 1] and
we have d(S,S′) ∈ [0, 1]. It is worth mentioning that the
verification is just one-pass on the watermarked model, which
is very efficient.

The threshold η is the bound of negligible error in the
verification. We use a probabilistic approach with the same

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

spirit of [17] to determine the value of η. Let E = S − S′
denote the error matrix of S and S′. Suppose E(i, j) ∼
N (0, (1

4)2) for all i, j, that is, the errors obey i.i.d. zero-
mean Gaussian distribution with standard deviation 1/4. The
standard deviation is assumed to 1/4 as an image corrupted
by i.i.d. Gaussian noise N (0, (1

4)2) is very noisy but still
recognizable. See Fig. 4 for an illustration. Since the square of
each E(i, j) is still independent and obeys the same Gamma
distribution Γ(1/16, 1/128), we have Z =

∑
i,j [E(i, j)]2 ∼

Γ(MN/2, 1/8). Viewing Z as a random variable, we apply
the p-value approach with p < 0.05 to determine its value. In
other words, we need to find β such that P [Z ≤ β] < 0.05,
or equivalently, to find η such that P [d(S,S′) ≤ η] < 0.05,
in order to safely reject the hypothesis that S is similar with
S′. By direct calculation, we have η = 6.07× 10−3.

Fig. 4: Clear image (left) and its corrupted version (right) generated
by adding i.i.d Gaussian noise sampled from N (0, (1

4
)2I).

Co
nv

 2

BN Re
LU

Co
nv

 2

BN Re
LU

Co
nv

 2

BN Re
LU

Co
nv

Co
nv

 2

Si
gm

oi
d

∙∙∙ ∙∙∙

Encoder: 3 layers Decoder: 6 layers

Co
nv

2

BN Re
LU

Co
py

rig
ht

 Im
ag

e

Ve
rif

ic
at

io
n

Ke
y

Fig. 5: Structure of the auxiliary visualizer.

D. Auxiliary Copyright Visualizer

In the proposed framework, the verification image has no vi-
sual implication due to the need of randomness, and thus it can
only be used as a string in watermark verification. A method
that can generate visually meaningful watermark information
is certainly welcomed, as it can introduce subjective judgment
for further verification. Thus, we propose to use a generative
DNN R(·;φ) : RM×N → RP×Q parameterized by φ, as an
auxiliary module, which is trained to map the verification key
S to a recognizable copyright image I by minimizing

r(φ) = ‖R(S;φ)− I‖22. (9)

The module R can be viewed as a memory of the copyright
image, which can be activated by the corresponding verifica-
tion key. With other images as input, R is not activated and
outputs images without visual implication. This property will
be demonstrated in our experiments. In practice, the trained
parameters φ∗ of R are kept by the owner. For verification,
the owner uses φ∗ to instantiate the module R to be R(·,φ∗),
which is then applied to the output of the suspicious model to
see whether the copyright image is obtained. We emphasize

that such a module is only an optional auxiliary part but not
the main one of the proposed framework, and it can be also
used for other DNN watermarking methods. See Fig. 5 for the
structure of the auxiliary visualizer we use.

V. EXPERIMENTS

A. Configurations

1) Host models: The experiments are implemented with
Tensorflow. Two representative image denoising DNNs
with published codes are used for evaluation, including
DnCNN [22] and RED [21]. There are sufficient diversities
among these two DNNs: DnCNN is a non-sampling CNN
with batch normalization and residual learning, while RED is
a CNN with an encoder-decoder structure and symmetric skip
connections. Whenever the pre-trained models are not avail-
able, we followed the original works to re-train the models.
Throughout the experiments, if not specified, the noisy images
are generated by adding Gaussian white noise with standard
deviation fixed at σ = 25. Regarding SR, we trained the model
of VDSR [45], a very deep CNN with residual learning, for
the ×2, ×3, ×4 upscalings jointly. The DnCNN is also chosen
as it can also be applied to image SR as its authors suggest,
and we found that DnCNN did yield good SR performance
in practice. Another reason we choose DnCNN for SR is to
test how the proposed method performs in watermarking the
host models that have the same architecture but are trained for
different tasks.

2) Watermarking: In watermark embedding, if not speci-
fied, the sizes of both trigger images and verification image are
set to 40×40 for denoising and 20×20 for SR. The parameter
λ of the loss function is set to 10−3 by default. The model is
trained using Adam [46] with the learning rate starting from
10−3 and with the other parameters set to default values. The
number of epochs is set to 8. In watermark verification, the
threshold η is set to 6.07×10−3. Since the generation of trigger
image involves random processes, for statistical stability, all
the results in the experiments related to trigger images are
reported using the average over 30 trials.

3) Copyright visualizer: The auxiliary copyright visualizer
is trained using Adam [46] with the learning rate starting from
10−3 and with the other parameters set to default values. In
our experiments, the visualizer is not used for verification
but only for visualizing the watermark information and better
understanding the results. We use a logo image and a sign
image shown in Fig. 9(a) as the copyright images.

B. Methods for Comparison

As described in Section I, existing DNN watermarking
methods are designed for classification DNNs. Those methods
cannot be directly applied to watermarking the DNNs of image
denoising and SR. For experimental comparison, we borrow
the main ideas from those methods and construct two baselines
as follows:

• Base-1: By viewing the output image of an image pro-
cessing DNN as a label image containing multiple labels,
we adapt the ideas from [15] to our problem setting. The

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

watermark embedding is done by training the host model
such that the model outputs a label image generated from
the Bernoulli distribution using the trigger key images
of [15] as inputs. The verification is done by applying the
rule of [15] to the average results over different entries on
the label image.

• Base-2: A layer that combines random projection with
softmax is added to the end of the host model. The added
layer acts as a classifier, by which an image processing
DNN is turned into a classification DNN. Then the method
of [12] is adopted and adapted for watermarking. The added
layer is only used in the watermarking-related processes
and not involved in the original function of the host model.
The projection matrix is randomly generated with each
entry drawn from the standard normal distribution. It is
not learned during watermark embedding to avoid the
overfitting, which is likely to occur as no classification task
is used to condition the layer. The verification rule is same
as [12].

We tried our best to tune up the parameters of the two baselines
to win the trade-off of performance among different types of
test. For Base-1, we view each pixel value as a class and thus
set the number of classes to 256, and the trigger image size is
set the same as ours. For Base-2, we also set the number of
classes to 256 and use 40 images for embedding. We found
that using more than 40 images for Base-2 will cause a very
large performance decrease on the host model.

C. Fidelity Analysis

The fidelity analysis is done by comparing the performance
of the original models with the watermarked ones. The tests
regarding the denoising/SR CNNs are conducted on the 12/14
widely-used images (denoted by ’Img12’/’Img14’, shown in
Fig. 6 and Fig. 7) in image denoising/SR (also used in
their original papers) as well as the BSD68 dataset [22].
In addition to Gaussian noise, we also test the fidelity of
denoising performance in removing real noise from the PolyU
dataset [47].

Fig. 6: Images (’Img12’) used for fidelity test in denoising.

Fig. 7: Images (’Img14’) used for fidelity test in SR.

The average PSNR/SSIM/WPSNR of the denoised results
with different values of λ are shown in Table I. Note that
λ = 0 implies using un-watermarked models. It can be seen
that smaller λ causes less degradation on the denoising per-
formance, as it implies weaker strength of watermarking. For
image denoising, we assume the PSNR gap within 0.05dB is
acceptable to the models, as it is usually visually imperceptible
for human. We can also see that the degradation of denoising
performance is acceptable when λ ≤ 10−2 on DnCNN and
λ ≤ 10−3 on RED. Such a difference implies RED is more
sensitive than DnCNN to the watermark embedding. One
reason is probably that RED is less redundant than DnCNN
(model size ≈ 4.08×105 versus 5.56×105). In the remaining
tests on the other aspects of the proposed method, we set
λ = 10−3 by default for ensuring the fidelity. Regarding SR,
we have the similar results and we also set λ = 10−3 by
default. See Table II for the fidelity results on SR, where our
method shows excellent fidelity.
Necessity of designing watermarking for image processing.
The proposed method and the baselines are compared in
Table III in terms of fidelity. It can be seen that the fidelity
of the proposed method is better than the two baselines.
Particularly, Base-1 shows poor fidelity with more than 0.22dB
PSNR loss on DnCNN in denoising, even that the watermark
strength we set is rather weak. The performance of Base-
2 is even worse. Such noticeable performance loss is not
surprising, as mapping confusing images in classification into
labels is very different from the function of an image recovery
DNN.

TABLE I: (Fidelity Test) Average PSNR(dB)/SSIM(×10−1)/W-
PSNR(dB) of denoising results from host models watermarked by
proposed method with different embedding strengths λ.

λ BSD68 Img12 PolyU

D
nC

N
N

1 28.98 / 8.23 / 36.07 30.14 / 8.54 / 37.22 31.74 / 9.25 / 38.84
10−1 29.14 / 8.26 / 36.24 30.36 / 8.60 / 37.45 35.11 / 9.37 / 42.19
10−2 29.19 / 8.27 / 36.27 30.40 / 8.61 / 37.48 36.32 / 9.46 / 43.38
10−3 29.20 / 8.28 / 36.30 30.41 / 8.61 / 37.49 36.45 / 9.48 / 43.46
0 29.20 / 8.27 / 36.29 30.41 / 8.61 / 37.49 36.46 / 9.48 / 43.45

R
E

D

1 28.71 / 8.06 / 35.80 29.77 / 8.39 / 36.86 35.64 / 9.40 / 42.74
10−1 28.97 / 8.20 / 36.06 30.09 / 8.54 / 37.18 36.48 / 9.47 / 43.56
10−2 29.04 / 8.20 / 36.14 30.21 / 8.56 / 37.30 36.86 / 9.50 / 43.96
10−3 29.09 / 8.23 / 36.19 30.27 / 8.57 / 37.37 37.40 / 9.52 / 44.46
0 29.11 / 8.22 / 36.20 30.28 / 8.57 / 37.37 37.47 / 9.52 / 44.52

TABLE II: (Fidelity Test) Average PSNR(dB)/SSIM(×10−1)/W-
PSNR(dB) of SR results from our watermarked models with em-
bedding strength λ = 10−3. The results from the original un-
watermarked models are also included for comparison.

Scaling Watermarked Model
VDSR DnCNN

×2 32.83 / 9.11 / 39.92 32.87 / 9.11 / 39.95
×3 29.67 / 8.30 / 36.77 29.67 / 8.30 / 36.76
×4 27.86 / 7.64 / 34.95 27.82 / 7.64 / 34.92

Average 30.12 / 8.35 / 37.21 30.16 / 8.35 / 37.25

Scaling Un-Watermarked Model
VDSR DnCNN

×2 32.83 / 9.16 / 39.93 32.89 / 9.11 / 39.98
×3 29.66 / 8.30 / 36.75 29.68 / 8.30 / 36.77
×4 27.87 / 7.65 / 34.96 27.83 / 7.64 / 34.91

Average 30.12 / 8.35 / 37.21 30.12 / 8.35 / 37.21

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

TABLE III: (Fidelity Test) PSNR(dB)/WPSNR(dB) results of
denoising and SR from host models watermarked by proposed
method and the baselines. The denoising/SR results are obtained on
Set12/Img14.

Task Model Unmarked Base-1 Base-2 Ours

Denoising DnCNN 30.41/37.50 30.18/37.27 30.11/37.30 30.41/37.51
RED 30.28/37.38 30.12/37.22 30.11/37.20 30.27/37.35

SR VDSR 30.12/37.21 29.83/36.92 29.81/36.90 30.12/37.22
DnCNN 30.12/37.22 30.02/37.11 30.00/37.11 30.14/37.23

D. Uniqueness Analysis

Since the uniqueness of the two baseline methods can be
inherited from their original versions for classification DNNs,
we only evaluate the uniqueness of the proposed method.
Three numerical tests are conducted.

1) Test on un-watermarked models: We first verify that
an un-watermarked model does not encode any watermark
information. Let M(·;θ) denote an un-watermarked model.
A number of trigger/verification image pairs, denoted by
(K1,S1), · · · , (KP ,SP), are randomly generated by our key
generator. The trigger images K1, · · · ,KP are input to M
separately, and then the output triggered images, denoted
by S∗1 , · · · ,S∗P , are compared to the verification images
S1, · · · ,SP . It is desired that the triggered response images
are different from the verification images, i.e. 1

#(Si)
‖S∗i −

Si‖2 > η for i = 1, · · · , P , where η is the threshold for
acceptance in verification, and #(·) denotes the number of
elements.

In details, we first generate P = 200, 400, 600, 800, 1000
trigger/verification image pairs respectively, and then calculate
the minimal distance d = mini∈{1,··· ,P}

1
#(Si)

‖S∗i −Si‖2. The
results are listed in Table IV. We can see that the change
of minimal distance is unnoticeable when P varies. When
P = 1000, the minimal distance is 1.11 × 10−2 on DnCNN
(denoising), 1.17×10−2 on RED, 0.95×10−2 on SR-DnCNN
and 0.94 × 10−2 on VDSR. Such values are much larger
than the verification threshold η = 6.07 × 10−3. Also refer
to Fig. 8(b)-(e) for some visualization results generated by
the copyright visualizer, where the copyright images generated
from S∗i are completely unrecognizable. Such results have
demonstrated that in the proposed method, the watermark
information (i.e. trigger/verification image pair) can well dis-
tinguish the watermarked model from the un-watermarked one,
and thus it is difficult to make a fraudulent claim of ownership
on un-watermarked models.

TABLE IV: (Uniqueness Test) Minimal distances (10−2) com-
puted on un-watermarked models.

Task Model P=200 P=400 P=600 P=800 P=1000

Denoising DnCNN 1.11 1.11 1.11 1.11 1.11
RED 1.17 1.17 1.17 1.17 1.17

SR DnCNN 0.95 0.95 0.95 0.95 0.95
VDSR 0.94 0.94 0.94 0.94 0.94

2) Test on watermarked models: In the second test, we
show that a watermarked model does not encode other water-
mark information which has not been embedded into it. Given
a watermarked model M(·;θ∗) with its own trigger image
K0 and S0, a number of trigger images K1, · · · ,KP are

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 8: Visualization of watermark information in the uniqueness test.
The columns from left to right correspond to the copyright images
generated by: (a) using the original version; (b) inputting a random
trigger image to the un-watermarked DnCNN (denoising) model;
(c) inputting a random trigger image to the un-watermarked RED
model; (d) inputting a random trigger image to the un-watermarked
DnCNN (SR) model; (e)inputting a random trigger image to the un-
watermarked VDSR model; (f) inputting DnCNN’s trigger image to
the watermarked RED model; (g) inputting DnCNN’s (SR) trigger im-
age to the watermarked VDSR model; (h) inputting DnCNN’s trigger
image to the watermarked RED model; (i) inputting DnCNN’s(SR)
trigger image to the watermarked VDSR model.

randomly generated by our key generator, and the verification
images denoted by S1, · · · ,SP are formed by our method on
M respectively. Such images are to simulate the watermark
information from other owners. The generated trigger images
are input toM(·;θ∗) separately, and then the output triggered
response images, denoted by S∗1 , · · · ,S∗P , are compared to the
verification images. Similar to the first test, it is desired that
the triggered images are different from the verification images,
i.e., 1

#(Si)
‖S∗i − Si‖2 > η for i = 1, · · · , P .

In details, we generated P = 200, 400, 600, 800, 1000
trigger/verification image pairs respectively, and calculated the
minimal distance d = mini∈{1,··· ,P}

1
#(Si)

‖S∗i − Si‖2. The
results are listed in Table V. We can see that the minimal
distance is stable as P increases. When P = 1000, the minimal
distance is 7.02× 10−3 on DnCNN (denoising), 7.23× 10−3

on RED, 7.38 × 10−3 on SR-DnCNN and 6.97 × 10−3 on
VDSR, all of which are larger than the verification threshold
η = 6.07 × 10−3. Also refer to Fig. 8(f)(g) for some
visualization results generated by the copyright visualizer,
where the copyright images generated from S∗i are completely
unrecognizable.

TABLE V: (Uniqueness Test) Minimal distances (10−3) computed
on watermarked models.

Task Model P=200 P=400 P=600 P=800 P=1000

Denoising DnCNN 7.02 7.02 7.02 7.02 7.02
RED 7.28 7.28 7.28 7.24 7.23

SR DnCNN 7.42 7.38 7.38 7.38 7.38
VDSR 6.97 6.97 6.97 6.97 6.97

3) Test on pairs of watermarked models: As discussed in
the paper, one might concern the likely unboundedness of
DNNs, which may weaken the uniqueness of the verification
key. It is possible that M1(K1;θ∗1) ≈ M2(K2;θ∗2) for two
watermarked DNNs M1(·;θ∗1),M2(·;θ∗2) with very similar
functions and two different keys K1,K2. Fortunately, this
is not the case, since initial S is very close to M(K;θ∗)
after embedding. Together with that K1 and the initial S1 are
very different from K2 and the initial S2, the uniqueness is
preserved.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

For numerical verification, we first embed watermark into
a DnCNN model M1 with (K1,S1) and an RED model M2

with (K2,S2), where K1,K2 are two different trigger images
produced by our key generator, and then we exchange the
trigger keys of the two models, i.e. inputting K2 to M1 and
K1 to M2. Such a process is repeated 30 runs. Next, we
calculate 1

#(Si)
‖S1−M1(K2)‖2 and 1

#(Si)
‖S2−M2(K1)‖2,

which are 7.03 × 10−3 and 7.62 × 10−3 respectively. Such
values are much larger than the threshold in verification,
demonstrating that in our method the watermark can well
distinguish different watermarked models and thus can well
identify the ownership of a model. Similar results can be
observed when setting M1,M2 to be the SR-DnCNN and
VSDR respectively. See also Fig. 8(h)(i) for some visualiza-
tion results by the copyright visualizer, where the copyright
images generated from 1

#(Si)
M2(K1) and 1

#(Si)
M1(K2) are

completely unrecognizable.
Further, we embed watermark into two RED models

M1,M2 with the keys (K1,S1) and (K2,S2) respectively.
The two RED models are trained with the same images but
with different initialization schemes, by which we simulate
two models with very similar functions. We first calculate
the distance of the initial verification keys and the distance
of the updated verification keys, which are 8.59 × 10−3 and
8.04 × 10−3 respectively. In other words, the updated verifi-
cation key can largely inherit the discrimination of the initial
verification key. Then we exchange their keys and calculated

1
#(Si)

‖S1 −M1(K2)‖2 and 1
#(Si)

‖S2 −M2(K1)‖2, which
are 7.87×10−3 and 7.56×10−3 respectively. Such values are
much larger than the threshold in verification, demonstrating
that the uniqueness of the proposed method also holds even
using two very similar models.

E. Robustness Analysis
1) Test methodology: The robustness of the proposed

method is evaluated on three types of attacks: model compres-
sion [48], [49], [50], model fine-tuning [51], and watermark
overwriting [14]. We report the results of the proposed method
in terms of different aspects:
• The denoising/SR performance of host model in terms of

the average PSNR on Img12/Img14. This metric is not
related to the robustness, but it can reflect the performance
decrease of host model caused by the attack. An attack is
meaningless if it causes a noticeable performance decrease,
as a model with low performance is useless in practice. We
only report the result in this metric for our method, as it is
the same for other methods.

• The watermark distance. We report the distance d com-
puted by (8), which is used for the verification in the
proposed method and directly determines whether the pro-
posed method can succeed. For the baseline methods, their
verification processes are not based on the distance d. Thus,
we do not report the results on this metric for them.

• Whether the verification succeeded. We report ’succeeded’
or ’failed’ for the verification by the proposed method.

Note that our method and the baselines use different rules for
watermark detection, some of which may be more rigorous

than others. A less rigorous rule often yields weaker robustness
but stronger anti-falsification. Thus, comparing these methods
based on whether their verification succeed may be not fair.
For more-fair comparison, we consider the following criteria:

• The normalized correlation coefficient (NCC) between the
verification key and the triggered output of the verified
model. Larger NCC means the triggered output of the
watermarked model is more similar to the verification key
even under attacks. In other words, higher NCC implies
stronger robustness.

• NCC-based verification. We conduct verification according
to NCC. The verification passes if the NCC is larger than
a threshold which is set to 0.95 in the experiments. Such a
threshold value may be a bit high for practical applications,
but it makes the verification very rigorous in order to better
distinguish the robustness of different methods.

Furthermore, we visualize some verification results in the
robustness experiments, via the copyright visualizer. See
Fig. 9(b)-(h) and supplementary materials. The output copy-
right images have their visual quality decreased a bit as
the strength of the attack increases, but they are still easily
recognizable. To demonstrate the discrimination capability of
the copyright visualizer, we feed a fraudulent trigger image
to the models and use the output image as the input of the
copyright visualizer, and the results are shown in Fig. 9(i). It
can be seen that without the correct trigger key, we cannot get
a recognizable image from the visualizer.

2) Robustness to model compression: Following the proto-
col of Han et al. [48], we compress the watermarked models
by parameter pruning on each layer: sorting the model weights
in the ascending order in terms of magnitude and then setting
the top p% to zeros. We set p to different values for evaluation.
The results of both our method and the baselines are listed in
Table VI for comparison.

It can be seen from Table VI that on all tested models, the
proposed method succeeds in watermark verification across
all pruning rates except the highest one. Under moderate
compression rates, the watermark can be consistently detected
by the proposed method. Even under the heavy compression
(e.g. 35% pruned in DnCNN and VDSR), our watermark
verification still works. Until the pruning rate is increased such
that it significantly decreases the performance of the models
(e.g. 2dB PSNR drop for DnCNN), our method is unable
to detect the watermark from these models See Fig. 9(b)-(c)
and supplementary materials for the visualization of model
compression results. It is interesting to see that even our
verification failed in the compression attack with pruning
rate 40%, we can still recognize the corresponding copyright
image. This suggests that the visualizer module may rectify the
verification results for further judgment. It is also interesting
to see that the performance of RED decreases much faster than
DnCNN as the pruning rate increases, which is again probably
due to that RED is much less redundant than DnCNN.

Compared to the baselines, our method achieved higher
NCC values on all the test models and performed better in
terms of the NCC-based verification results. We can also
see that Base-2 performed much worse than Base-1, which

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

Logo 54.58dB 20.81dB 41.81dB 41.10dB 44.65dB 36.65dB 27.68dB 9.34dB

Sign 35.53dB 17.30dB 32.72dB 33.37dB 34.04dB 29.64dB 25.26dB 7.65dB
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 9: Visualization of watermark data (in the form of images output by the auxiliary visualizer) on DnCNN in different cases. (a) Original
copyright images; (b) Compression with 10% pruning; (c) Compression with 40% pruning; (d) Fine-tuning with 10 epochs on the original
dataset; (e) Fine-tuning with 50 epochs on the original dataset; (f) Fine-tuning with 10 epochs on the texture dataset; (g) Fine-tuning with
50 epochs on the texture dataset; (h) Overwriting with a new trigger key; (i) Using an irrelevant trigger key. Values below images denote
PSNR.

suggests the watermarking via image-to-image mapping in
Base-1 is superior to the watermarking via image-to-label
mapping in Base-2.

3) Robustness to model fine-tuning: We use two often-seen
types of model fine-tunings for the evaluation. The first type
uses the original training data. In this setting, we use the same
data as [22], [45]. The second type of fine-turning employs
a new dataset. In this setting, for the denoising DnCNNs, we
use the texture image dataset KTH-TIPS [52] with one half for
fine-tuning and the other half for test, which simulates that the
attackers transfer the task from natural image denoising to the
denoising on specific texture images. For the super-resolution
DNNs, we use the DIV2K data [28] for fine-tuning and test to
simulate that the attackers illegally use the DNN for the same
task but on their own data. In the fine-tuning, we follow the
settings of the original models and set the number of epochs
to 10, 25, 50, 75, 100 respectively.

See Table VII for the results. Our method is robust to the
fine-tuning attacks. With the increase of epochs, the watermark
becomes weaker but is still successfully detected, even with
100-epoch fine-tuning. For DnCNN and RED, it is interesting
to see that the fine-tuning on new data has larger impact
on the watermark than that on original data. The reason is
probably that texture images have higher randomness than
the natural images of the original dataset, and therefore the
texture patches are closer to the randomly-generated patches
in the trigger image. Recall from Fig. 1 that the fine-tuning on
such closer patches has larger impacts on the embedding with
trigger images. Note that this is not the case for VDSR as the
new data for SR are also natural images. See Fig. 9(d)-(g) and
supplementary materials for the visualization results.

It can also be seen that our method outperformed both
the baselines, with more times of success in the NCC-based
verification and higher NCC values achieved overall. Such
results have demonstrated the advantages of our method over
the baselines in resisting the attacks of model fune-turning.
Also note that Base-2 is very sensitive to fine-tuning attacks
and again performed much worse than Base-1. All these results
imply that the methods for watermarking classification DNNs
are not effective for DNNs of image processing.

4) Robustness to watermark overwriting: The overwriting
is done by embedding a new trigger key and its corresponding
verification key into the watermarked model. The verification
results of different methods under the overwriting attack with
one trigger key are listed in Table VIII. It can be seen that our
method succeeded on all the tested models in both verification
schemes. In contrast, both the baselines failed in all the cases.
The reason for the superior robustness of our method over the
baselines is probably that our method takes the characteristics
of image processing DNNs into consideration, instead of
purely viewing it as a mixture of multiple classification DNNs.

Encouraged by the above results, we further test the robust-
ness of our method to the overwriting with multiple trigger
images. We omit the baselines in this test as they has failed
on the overwriting with a single trigger key. See Table IX
for the results. Even with multiple new watermarks written
into the host model, the original one can still be detected.
Such robustness comes from the fact that the new trigger
images are very likely to be far away from the original one
due to the randomness in the generation; see e.g. Fig. 1.
The embedding with the new trigger images mainly changes
the model behavior around its neighborhood, which has little
influence to the model behavior on the regions which are far
from the new trigger images. See Fig. 9(h) and supplementary
materials for the visualization results.

F. Capacity Test

The evaluation on the capacity is conducted as follows.
The trigger keys with sizes 20 × 20, 40 × 40, 80 × 80,
160×160, 320×320, 480×480 and 600×600 are generated
and embedded into the host models respectively. Then, the
performance of the watermarked models is evaluated on the
test datasets. See Table X and Table XI for the results.
Regarding the RED model, the larger a trigger image is, the
more the denoising performance drops. This is not surprising,
as the capacity is often in contradiction with the fidelity for a
watermarking method. Similar phenomena can be observed on
other models. It can be seen that the denoising performance
of DnCNN is not sensitive to the size change of the trigger

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

TABLE VI: (Robustness Test) Results on model compression attacks.

Model Pruning Rate
Our Result Comparison to Baselines

PSNR Distance Verification NCC Verification (NCC>0.95)
(×10−3) d > η Base-1 Base-2 Ours Base-1 Base-2 Ours

DnCNN

0.25 29.77 2.09 Succeeded 0.9723 0.7501 0.9915 Succeeded Failed Succeeded
0.22 29.42 2.82 Succeeded 0.9623 0.7390 0.9857 Succeeded Failed Succeeded
0.35 29.22 4.48 Succeeded 0.9350 0.6385 0.9707 Failed Failed Succeeded
0.40 28.39 6.36 Failed 0.9070 0.5490 0.9355 Failed Failed Failed

RED

0.08 26.26 2.41 Succeeded 0.9790 0.6926 0.9889 Succeeded Failed Succeeded
0.10 23.85 3.83 Succeeded 0.9346 0.6549 0.9723 Failed Failed Succeeded
0.15 19.49 5.98 Succeeded 0.8627 0.5485 0.9500 Failed Failed Failed
0.20 23.18 7.93 Failed 0.8114 0.5481 0.8654 Failed Failed Failed

VDSR

0.25 30.04 2.21 Succeeded 0.9333 0.6944 0.9960 Failed Failed Succeeded
0.22 29.89 3.75 Succeeded 0.8834 0.5477 0.9880 Failed Failed Succeeded
0.35 29.48 5.01 Succeeded 0.8423 0.5258 0.9765 Failed Failed Succeeded
0.40 28.94 6.58 Failed 0.8034 0.5250 0.9559 Failed Failed Succeeded

SR-DnCNN

0.25 29.88 2.76 Succeeded 0.9837 0.6826 0.9920 Succeeded Failed Succeeded
0.22 29.78 3.86 Succeeded 0.9451 0.6418 0.9846 Failed Failed Succeeded
0.35 29.47 5.99 Succeeded 0.8938 0.5476 0.9609 Failed Failed Succeeded
0.40 29.07 6.73 Failed 0.8307 0.5258 0.9494 Failed Failed Failed

TABLE VII: (Robustness Test) Results on model fine-tuning attacks.

Model Data #Epochs
Our Result Comparison to Baselines

PSNR Distance Verification NCC Verification (NCC>0.95)
(×10−3) d > η Base-1 Base-2 Ours Base-1 Base-2 Ours

DnCNN

O
ri

gi
na

l 10 30.42 1.64 Succeeded 0.9988 0.5490 0.9953 Succeeded Failed Succeeded
25 30.41 1.66 Succeeded 0.9943 0.5478 0.9956 Succeeded Failed Succeeded
50 30.43 1.81 Succeeded 0.9949 0.5477 0.9959 Succeeded Failed Succeeded
75 30.44 2.38 Succeeded 0.9949 0.5268 0.9952 Succeeded Failed Succeeded
100 30.41 3.12. Succeeded 0.9955 0.5267 0.9938 Succeeded Failed Succeeded

Te
xt

ur
e

10 30.28 1.23 Succeeded 1.0000 0.6826 0.9979 Succeeded Failed Succeeded
25 30.15 1.76 Succeeded 0.9877 0.5477 0.9944 Succeeded Failed Succeeded
50 30.09 2.32 Succeeded 0.9801 0.5255 0.9914 Succeeded Failed Succeeded
75 30.11 3.81 Succeeded 0.9786 0.5250 0.9832 Succeeded Failed Succeeded
100 30.10 5.69 Succeeded 0.9574 0.5245 0.9580 Succeeded Failed Succeeded

RED

O
ri

gi
na

l 10 30.28 2.08 Succeeded 1.0000 0.6111 0.9957 Succeeded Failed Succeeded
25 30.28 2.09 Succeeded 1.0000 0.5560 0.9932 Succeeded Failed Succeeded
50 30.30 2.08 Succeeded 0.9997 0.5490 0.9935 Succeeded Failed Succeeded
75 30.23 4.03 Succeeded 0.9997 0.5268 0.9915 Succeeded Failed Succeeded
100 30.26 5.62 Succeeded 0.9988 0.5253 0.9836 Succeeded Failed Succeeded

Te
xt

ur
e

10 29.90 1.39 Succeeded 0.9994 0.5773 0.9969 Succeeded Failed Succeeded
25 30.01 1.82 Succeeded 0.9860 0.5560 0.9936 Succeeded Failed Succeeded
50 30.09 2.00 Succeeded 0.9824 0.5549 0.9927 Succeeded Failed Succeeded
75 30.05 3.82 Succeeded 0.9791 0.5258 0.9877 Succeeded Failed Succeeded
100 30.02 5.83 Succeeded 0.9767 0.5244 0.9655 Succeeded Failed Succeeded

VDSR

O
ri

gi
na

l 10 30.14 0.84 Succeeded 0.8630 0.8501 0.9993 Failed Failed Succeeded
25 30.10 1.06 Succeeded 0.7756 0.8056 0.9989 Failed Failed Succeeded
50 30.05 1.43 Succeeded 0.7594 0.5258 0.9979 Failed Failed Succeeded
75 30.00 1.88 Succeeded 0.7609 0.5255 0.9966 Failed Failed Succeeded
100 29.96 2.29 Succeeded 0.7606 0.5245 0.9948 Failed Failed Succeeded

D
IV

2K

10 30.12 2.40 Succeeded 0.8152 0.8504 0.9947 Failed Failed Succeeded
25 30.13 3.04 Succeeded 0.7631 0.6926 0.9949 Failed Failed Succeeded
50 30.06 3.86 Succeeded 0.7599 0.6478 0.9889 Failed Failed Succeeded
75 30.07 4.36 Succeeded 0.7612 0.6268 0.9854 Failed Failed Succeeded
100 30.05 4.83 Succeeded 0.7598 0.6246 0.9815 Failed Failed Succeeded

SR-DnCNN

O
ri

gi
na

l 10 30.11 1.68 Succeeded 1.0000 0.5476 0.9979 Succeeded Failed Succeeded
25 30.09 2.18 Succeeded 0.9967 0.5257 0.9961 Succeeded Failed Succeeded
50 30.03 2.72 Succeeded 0.9545 0.5250 0.9930 Succeeded Failed Succeeded
75 30.00 3.06 Succeeded 0.9137 0.5248 0.9906 Failed Failed Succeeded
100 29.96 3.45 Succeeded 0.8843 0.5245 0.9878 Failed Failed Succeeded

D
IV

2K

10 30.17 5.20 Succeeded 0.9979 0.5490 0.9708 Succeeded Failed Succeeded
25 30.14 4.97 Succeeded 0.9611 0.5478 0.9738 Succeeded Failed Succeeded
50 30.08 4.82 Succeeded 0.9038 0.5267 0.9752 Failed Failed Succeeded
75 30.05 4.93 Succeeded 0.8842 0.5253 0.9741 Failed Failed Succeeded
100 30.00 4.97 Succeeded 0.8682 0.5244 0.9734 Failed Failed Succeeded

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

TABLE VIII: (Robustness Test) Results on watermark overwriting attacks.

Model
Our Result Comparison to Baselines

PSNR Distance Verification NCC Verification (NCC>0.95)
(×10−3) d > η Base-1 Base-2 Ours Base-1 Base-2 Ours

DnCNN 30.41 3.66 Succeeded 0.8128 0.7957 0.9751 Failed Failed Succeeded
RED 30.27 3.47 Succeeded 0.8915 0.8689 0.9779 Failed Failed Succeeded

VDSR 30.10 3.07 Succeeded 0.7628 0.6581 0.9915 Failed Failed Succeeded
SR-DnCNN 30.13 3.19 Succeeded 0.7875 0.8833 0.9891 Failed Failed Succeeded

TABLE IX: (Robustness Test) Results of proposed method on
different models under multiple overwriting attacks.

Triggers Distance NCC PSNR(dB) Detection

D
nC

N
N

1 3.66× 10−3 0.9751 30.41 Succeeded
2 4.62× 10−3 0.9605 30.41 Succeeded
3 4.93× 10−3 0.9542 30.41 Succeeded
4 5.17× 10−3 0.9505 30.39 Succeeded
5 5.28× 10−3 0.9500 30.39 Succeeded

R
E

D

1 3.47× 10−3 0.9779 30.27 Succeeded
2 4.52× 10−3 0.9628 29.95 Succeeded
3 4.83× 10−3 0.9583 30.23 Succeeded
4 5.14× 10−3 0.9558 29.23 Succeeded
5 5.20× 10−3 0.9530 30.19 Succeeded

V
D

SR

1 3.07× 10−3 0.9923 30.10 Succeeded
2 3.04× 10−3 0.9917 30.13 Succeeded
3 3.22× 10−3 0.9902 30.07 Succeeded
4 3.16× 10−3 0.9912 30.09 Succeeded
5 3.24× 10−3 0.9904 30.08 Succeeded

SR
-D

nC
N

N 1 3.19× 10−3 0.9891 30.13 Succeeded
2 3.97× 10−3 0.9841 30.11 Succeeded
3 4.99× 10−3 0.9736 30.13 Succeeded
4 4.30× 10−3 0.9803 30.10 Succeeded
5 4.89× 10−3 0.9747 30.09 Succeeded

TABLE X: (Capacity Test) Average PSNR(dB) and SSIM values of
denoising results of our watermarked models with different trigger
image sizes.

Trigger PSNR(dB) SSIM(×10−1)
Image Size BSD68 Img12 BSD68 Img12

D
nC

N
N

0 (Unmarked) 29.20 30.41 8.265 8.605
20× 20 29.20 30.42 8.263 8.610
40× 40 29.20 30.41 8.275 8.612
80× 80 29.20 30.42 8.276 8.613

160× 160 29.18 30.36 8.275 8.598
320× 320 29.06 30.19 8.232 8.557
480× 480 28.97 30.15 8.210 8.541
600× 600 28.93 30.00 8.173 8.499

R
E

D

0 (Unmarked) 29.11 30.28 8.222 8.571
20× 20 29.09 30.27 8.225 8.567
40× 40 29.06 30.27 8.226 8.562
80× 80 28.97 30.12 8.225 8.553

160× 160 28.97 30.09 8.211 8.537
320× 320 28.96 30.11 8.192 8.531
480× 480 28.88 29.94 8.144 8.478
600× 600 28.66 29.59 8.078 8.389

image within 80 × 80, and its capacity is much larger than
RED, which is probably due to that RED is less redundant than
DnCNN, as also seen in the experiments on fidelity analysis
and robustness analysis. When the size of the trigger image is
sufficiently large, e.g. 160× 160, the DnCNN model becomes
overriding and the denoising performance starts to degrade
noticeably. Until the size becomes 600 × 600 which is about
14 times as 160× 160, the denoising performance of DnCNN
drops around 0.27dB. Note that from previous experiments,
using trigger images with size 40 × 40 already yielded good
reliability.

TABLE XI: (Capacity Test) Average PSNR(dB) values of SR results
of our watermarked models under different trigger image sizes.

Scale VDSR DnCNN Scale VDSR DnCNN

un
-w

at
er

m
ar

ke
d ×2 32.83 32.90

2
0
×

2
0 ×2 32.85 32.92

×3 29.66 29.68 ×3 29.68 29.68
×4 27.88 27.83 ×4 27.88 27.81

mean 30.12 30.12 mean 30.14 30.14

40
×

40

×2 32.83 32.87

80
×

80

×2 32.84 32.88
×3 29.67 29.67 ×3 29.68 29.69
×4 27.86 27.82 ×4 27.86 27.83

mean 30.12 30.14 mean 30.13 30.13

16
0×

16
0 ×2 32.82 32.83

32
0×

32
0 ×2 32.63 32.67

×3 29.67 29.68 ×3 29.61 29.60
×4 27.86 27.84 ×4 27.84 27.82

mean 30.12 30.12 mean 30.03 30.03

48
0×

48
0 ×2 32.28 32.30

60
0×

60
0 ×2 31.94 31.77

×3 29.43 29.37 ×3 29.25 29.03
×4 27.73 27.61 ×4 27.60 27.36

mean 29.81 29.75 mean 29.60 29.39

TABLE XII: (Capacity Test) Average PSNR(dB) values of denoising
results on Img12 and SR results on Img14 given by different methods.

Trigger Base-1 Ours Base-1 Ours
Image Size PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)
Denoising DnCNN RED
40× 40 30.18 30.41 30.12 30.27

160× 160 30.10 30.36 30.03 30.09
320× 320 28.49 30.19 29.02 30.11
600× 600 27.34 30.00 23.48 29.59

SR VDSR SR-DnCNN
40× 40 29.83 30.12 30.02 30.14

160× 160 28.27 30.12 29.98 30.12
320× 320 28.11 30.03 29.43 30.03
600× 600 28.09 29.60 28.55 29.39

Since the verification key differs between our method and
Base-2, i.e., image vs. label, it is hard to compare their
capacities fairly. Note that Base-2 is about image-to-label
training while ours is about image-to-image training. In this
sense, our method is of higher efficiency and thus the capacity
should be higher. For comparison, we only use Base-1 as it is
based on the image-to-image scheme as ours. See Table XII
for the results, where our method shows higher capacity than
Base-1. For instance, for the trigger image size 600 × 600,
the PSNR performance of DnCNN is much better than that in
Base-1.

G. Time Cost

The time cost of our method includes the watermark embed-
ding time and the watermark verification time, both of which
depend on many factors such as the complexity of the host
model and the size of the trigger image. In Table XIII, we
report the timing cost of our method on different models with
different trigger sizes. We also include the time cost of two
baselines for comparison. It can be seen that the verification

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

TABLE XIII: (Time Test) Time cost of proposed method and two
baselines on different models with different trigger image sizes.

Trigger Embedding Time (min.) Verification Time (s)
Image Size Base-1 Base-2 Ours Base-1 Base-2 Ours

D
nC

N
N

40× 40 23.98 25.35 22.70 2.81 2.96 2.77
80× 80 24.54 25.84 22.82 2.84 3.09 2.80

160× 160 26.78 28.65 24.81 2.87 3.15 2.84
320× 320 37.56 39.85 33.37 2.89 3.17 2.85
480× 480 70.21 73.41 67.58 2.91 3.19 2.86
600× 600 183.32 190.13 174.25 3.01 3.30 2.98

R
E

D

40× 40 18.28 19.32 16.95 2.61 2.74 2.56
80× 80 19.39 20.21 17.26 2.63 2.75 2.57

160× 160 20.89 22.24 18.66 2.65 2.78 2.59
320× 320 26.18 27.96 24.60 2.69 2.84 2.62
480× 480 37.72 39.71 34.47 2.76 2.94 2.71
600× 600 51.19 55.54 47.85 2.92 3.11 2.84

V
D

SR

40× 40 35.17 36.64 33.13 2.52 2.61 2.47
80× 80 36.43 37.45 33.89 2.53 2.64 2.48

160× 160 39.29 40.51 37.82 2.55 2.65 2.49
320× 320 77.78 79.95 74.97 2.63 2.71 2.54
480× 480 71.15 84.15 78.50 2.69 2.76 2.58
600× 600 109.96 115.21 102.52 2.75 2.80 2.61

SR
-D

nC
N

N 40× 40 36.81 38.88 35.48 2.80 2.93 2.75
80× 80 47.74 49.46 45.08 2.82 2.94 2.76

160× 160 68.16 70.85 65.74 2.83 2.97 2.78
320× 320 83.35 86.69 80.51 2.87 3.01 2.81
480× 480 85.59 91.58 84.75 2.90 3.09 2.86
600× 600 205.18 213.21 197.68 2.99 3.18 2.93

time does not vary much, while the embedding takes more
time as the trigger image size increases. In comparison to
Base-1 and Base-2, our method is faster. The Base-2 is the
slowest as it only embeds one bit using an image. In contrast,
our method and Base-1 can embed a matrix (image) using one
image, leading to higher efficiency. Overall, the time cost of
our method is reasonable and acceptable in practice.

VI. CONCLUSION

As the publication and sharing of DNN models become a
common practice, the need arises for having watermarking
techniques to protect the intellectual properties of trained
DNN models. This paper proposed an effective black-box
approach to watermarking the DNN models that are used for
image processing, and demonstrated its effectiveness in the
context of image denoising and image super-resolution. The
watermark embedding is done by modifying the host DNN so
as to degrade its performance on a specific image which has
statistically significant difference from training data. Different
aspects of the proposed method were tested, and it showed
that the proposed method is a good one for watermarking the
DNN models of image processing.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
1

[2] L. Zhou, Z. Wang, Y. Luo, and Z. Xiong, “Separability and compactness
network for image recognition and superresolution,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 11, pp. 3275–3286, Nov 2019. 1

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognition, 2016, pp. 779–788. 1

[4] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao, “Spatial pyramid-
enhanced netvlad with weighted triplet loss for place recognition,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 2, pp. 661–674, Feb 2020.
1

[5] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep
neural networks,” in Proc. Advances in Neural Inform. Process. Syst.,
2012, pp. 341–349. 1

[6] R. Dian, S. Li, A. Guo, and L. Fang, “Deep hyperspectral image
sharpening,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5345–5355, Nov 2018. 1

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2015, pp. 1–9.
1

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Advances in Neural
Inform. Process. Syst., 2012, pp. 1097–1105. 1

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognition,
2016, pp. 770–778. 1

[10] “Model Zoo,” http://modelzoo.co/. 1, 3
[11] “Baidu AI,” http://ai.baidu.com/. 1, 3
[12] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning

your weakness into a strength: Watermarking deep neural networks
by backdooring,” in USENIX Security Symp. Baltimore, MD:
USENIX Association, 2018, pp. 1615–1631. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/adi 1,
3, 7

[13] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis.” in USENIX Security
Symp., 2016, pp. 601–618. 1, 3

[14] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proc. ACM Int. Conf. Multimedia
Retrieval. ACM, 2017, pp. 269–277. 1, 3, 9

[15] B. D. Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: A generic
watermarking framework for ip protection of deep learning models,”
arXiv preprint arXiv:1804.00750, 2018. 1, 3, 6, 7

[16] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks with
watermarking,” in Proc. Asia Conf. Comput. Comm. Security, 2018, pp.
159–172. 1, 3

[17] E. L. Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching for
remote neural network watermarking,” arXiv preprint arXiv:1711.01894,
2017. 1, 2, 3, 6

[18] J. Guo and M. Potkonjak, “Watermarking deep neural networks for
embedded systems,” in Proc. Int. Conf. Computer-Aided Design. IEEE,
2018, pp. 1–8. 1, 3

[19] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas,
“Deblurgan: Blind motion deblurring using conditional adversarial net-
works,” in Proc. IEEE Conf. Comput. Vision Pattern Recognition, June
2018. 1

[20] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in European Conf. Comput. Vision.
Springer, 2014, pp. 184–199. 1

[21] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connec-
tions,” in Proc. Advances in Neural Inform. Process. Syst., 2016, pp.
2802–2810. 1, 6

[22] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017. 1, 2, 6, 7,
10

[23] L. Gatys, A. Ecker, and M. Bethge, “A neural algorithm of artistic style,”
Nature Commun., 2015. 1

[24] M. Xia, X. Liu, and T.-T. Wong, “Invertible grayscale,” in ACM Trans.
Graphics (SIGGRAPH Asia 2018 issue). ACM, 2018, p. 246. 1

[25] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf, “A generic deep
architecture for single image reflection removal and image smoothing,”
in Proc. IEEE Int. Conf. Comput. Vision, Oct 2017. 1

[26] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising (red),” SIAM J. Imag. Sci., vol. 10, no. 4,
pp. 1804–1844, 2017. 2

[27] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser
prior for image restoration,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognition, 2017, pp. 3929–3938. 2

[28] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognition, July 2017. 2, 10

[29] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising
via dictionary learning and structural clustering,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognition. IEEE, 2011, pp. 457–464. 2

http://modelzoo.co/
http://ai.baidu.com/
https://www.usenix.org/conference/usenixsecurity18/presentation/adi

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

[30] G. Peyré, “Manifold models for signals and images,” Comput. Vision
Image Understanding, vol. 113, no. 2, pp. 249–260, 2009. 2

[31] D. Kirovski and H. S. Malvar, “Spread-spectrum watermarking of audio
signals,” IEEE Trans. Signal Process., vol. 51, no. 4, pp. 1020–1033,
2003. 3

[32] M. D. Swanson, B. B. Zhu, and A. H. Tewfik, “Transparent robust image
watermarking.” in Proc. IEEE Int. Conf. Comput. Vision. Citeseer, 1996,
pp. 211–214. 3

[33] A. Fierro-Radilla, M. Nakano-Miyatake, M. Cedillo-Hernandez,
L. Cleofas-Sanchez, and H. Perez-Meana, “A robust image zero-
watermarking using convolutional neural networks,” in Proc. Int. Work-
shop Bio. Forensics. IEEE, 2019, pp. 1–5. 3

[34] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Multiresolution scene-based
video watermarking using perceptual models,” IEEE J. Selected Areas
Commun., vol. 16, no. 4, pp. 540–550, 1998. 3

[35] C.-C. Chang, J.-Y. Hsiao, and C.-S. Chan, “Finding optimal least-
significant-bit substitution in image hiding by dynamic programming
strategy,” Pattern Recognition, vol. 36, no. 7, pp. 1583–1595, 2003. 3

[36] M. Barni, F. Bartolini, V. Cappellini, and A. Piva, “A dct-domain system
for robust image watermarking,” Signal Proc., vol. 66, no. 3, pp. 357–
372, 1998. 3

[37] C. Chu, A. Zhmoginov, and M. Sandler, “Cyclegan, a master of
steganography,” arXiv preprint arXiv:1712.02950, 2017. 3

[38] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data with
deep networks,” in Proc. European Conf. Comput. Vision, September
2018. 3

[39] “Magenta,” http://magenta.tensorflow.org/. 3
[40] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh, “Digital watermarking

for deep neural networks,” Int. J. Multimedia Info. Retrieval, vol. 7,
no. 1, pp. 3–16, 2018. 3

[41] “Tencent Youtu,” http://open.youtu.qq.com/. 3
[42] H. Chen, B. D. Rohani, and F. Koushanfar, “Deepmarks: A digital

fingerprinting framework for deep neural networks,” arXiv preprint
arXiv:1804.03648, 2018. 4

[43] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” in Proc. Int. Conf. Learning Representation, 2017. 4

[44] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
Ú. Erlingsson, “Scalable private learning with pate,” 2018. 4

[45] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognition, 2016, pp. 1646–1654. 6, 10

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. Int. Conf. Learning Representation, 2015. 6

[47] J. Xu, H. Li, Z. Liang, D. Zhang, and L. Zhang, “Real-world noisy
image denoising: A new benchmark,” arXiv preprint arXiv:1804.02603,
2018. 7

[48] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in Proc. Int. Conf. Learning Representation, 2015. 9

[49] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Advances in Neural
Inform. Process. Syst., 2015, pp. 1135–1143. 9

[50] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Ann. Int. Symp. Comput. Architecture. IEEE, 2016, pp.
243–254. 9

[51] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, and J. Liang, “Convolutional neural networks for medical image
analysis: Full training or fine tuning?” IEEE Trans. Medical imaging,
vol. 35, no. 5, pp. 1299–1312, 2016. 9

[52] M. Fritz, E. Hayman, B. Caputo, and J.-O. Eklundh, “The kth-tips
database,” 2004. 10

Yuhui Quan received the doctoral degree in Computer Science from South
China University of Technology in 2013. He worked as the postdoctoral
research fellow in Mathematics at National University of Singapore from 2013
to 2016. He is currently the associate professor at School of Computer Science
and Engineering in South China University of Technology. His research
interests include computer vision, image processing, deep learning, and sparse
representation.

Huan Teng received the Bachelor degree in Computer Science from South
China University of Technology in 2018. He currently is a master candidate
at School of Computer Science and Engineering in South China University of
Technology. His research interests include computer vision, image processing,
deep learning, and sparse coding.

Yixin Chen received the Bachelor degree in Network Engineering from South
China University of Technology in 2017. He currently is a master candidate
at School of Computer Science and Engineering in South China University of
Technology. His research interests include computer vision, image processing,
and deep learning.

Hui Ji received the B.Sc. degree in Mathematics from Nanjing University
in China, the M.Sc. degree in Mathematics from National University of
Singapore and the Ph.D. degree in Computer Science from the University of
Maryland, College Park. In 2006, he joined National University of Singapore
as an assistant professor in Mathematics. Currently, he is an associate profes-
sor in Mathematics at National University of Singapore. His research interests
include computational harmonic analysis, optimization, computational vision,
image processing, and machine learning.

http://magenta.tensorflow.org/
http://open.youtu.qq.com/

