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Abstract. Non-blind image deconvolution (NBID) is about restoring
a latent sharp image from a blurred one, given an associated blur ker-
nel. Most existing deep neural networks for NBID are trained over many
ground truth (GT) images, which limits their applicability in practical
applications such as microscopic imaging and medical imaging. This pa-
per proposes an unsupervised deep learning approach for NBID which
avoids accessing GT images. The challenge raised from the absence of GT
images is tackled by a self-supervised reconstruction loss that approxi-
mates its supervised counterpart well. The possible errors of blur kernels
are addressed by a self-supervised prediction loss based on intermediate
samples as well as an ensemble inference scheme based on kernel pertur-
bation. The experiments show that the proposed approach provides very
competitive performance to existing supervised learning-based methods,
no matter under accurate kernels or erroneous kernels.

Keywords: Non-blind Image Deconvolution, Self-Supervised Learning,
Unsupervised Deep Learning, Image Deblurring

1 Introduction

Image deconvolution is a challenging problem often encountered in imaging sys-
tems and low-level vision. It is about estimating the latent image X from its
degraded observation Y generated by

Y = K∗ ⊗X +N , (1)
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where ⊗ denotes the convolution operation, K∗ denotes a blur kernel, and N
denotes image noise. When the kernel is given as a prior, the problem is called
Non-Blind Image Deconvolution (NBID); otherwise, it is called blind image de-
convolution (BID). The kernel often can be obtained by calibrating an imaging
system and capturing the image of Dirac-like dots, or be captured using specific
hardware. NBID serves as a key module for BID, which is often called in the
last stage of a BID method after kernel estimation is finished. In this case, the
estimated kernel used for NBID usually contains non-ignorable errors.

An image convolved by a blur kernel will have its high-frequency parts sig-
nificantly attenuated or erased. Together with the unknown image noise and
possible kernel errors, it makes NBID a challenging ill-posed inverse problem.
In recent years, there have been extensive studies applying deep learning (DL)
for NBID, which train a neural network (NN) to predict latent images from
the pairs of degraded images and blur kernels; see e.g. [21, 50, 51, 19, 3, 38, 12, 29,
14, 35, 10, 11]. While these methods differ in terms of architecture and training
scheme, they are all based on supervised learning. That is, their NNs are trained
over many pairs of blurred and ground truth (GT) images. Such a prerequisite on
GT images limits their applications in certain domains, such as scientific imaging
and medical imaging. In these domains, GT images either are very challenging
to collect, or have restricted usage for privacy concerns. This issue cannot be
effectively addressed by calling GT images from other domains, as it may result
in poor generalization performance due to domain shifts and domain gaps.

1.1 Problem Setting and Main Idea

Motivated by the limitation of supervised DL-based NBID in the domains where
the access to GT images is very limited, this paper proposes an unsupervised
DL approach for NBID whose NN training does not involve any GT image. The
unsupervised learning setting we study is as follows.

– Training data: Only a set of blurred image {Yj}j and the associated kernels
{Kj}j are provided for training; and the GT images {Xj}j are unavailable.

– Error sources: In the training data, there is noise Nj on each image Yj

and possible kernel error defined by ∆Kj = Kj −K∗
j with GT kernel K∗

j .

It is a challenging task to teach an NN to make accurate predictions in such a
setting, as there is no GT image to define a loss that can measure the prediction
accuracy. In addition, the possible kernel errors may confuse the learning process
and lower the accuracy of the learned NBID process.

In the proposed approach, the challenge raised by the absence of GT images is
tackled by generalizing the Recorrupted-to-Recorrupted (R2R) training [33] from
denoising to NBID. It leads to a noise-resistant self-supervised reconstruction loss
which approximates well a supervised loss defined over GT images in the range
space induced by the blur kernel. Furthermore, by training with both kernel
diversity and cross-image patch recurrence, the loss can also well approximate
its supervised counterpart on the full image space.
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In comparison to image noise, kernel errors are more challenging to handle.
Without GT kernels for training, an NN is hardly aware of the existence of kernel
errors, let alone learn to handle it. Our idea to handle kernel errors is viewing a
deblurred image output by the NN as a “pseudo” GT and reblurring it with a
different kernel to have a paired sample for “pseudo” supervised training. Such
data augmentation is effective as long as the original kernel and the reblurring
kernel are sufficiently different. In this case, the kernel for reblurring, even erro-
neous, is viewed as the GT kernel, and we apply a kernel error simulator to have
its erroneous version. The rationale comes from that an imperfect blur kernel es-
timated by some existing method is also a physically valid blur kernel, or at least
is very likely to approximate a valid blur kernel well. Based on the above data
augmentation scheme, a self-supervised prediction loss is defined for enhancing
to the kernel error robustness of the trained NN model.

In addition, an ensemble inference scheme is proposed to further improve
the robustness to kernel errors. The scheme is based on the observation that,
when restoring the latent image using many instances of the inaccurate kernel
perturbed by random noise, the artifacts shown in the corresponding results
have certain degrees of statistical independence. Then, the aggregation of these
results is likely to attenuate the artifacts.

The proposed approach is applied with a popular off-the-shelf optimization-
unrolling-based NN architecture composed of common building blocks. In the
experiments on motion deblurring of natural images and microscopic deconvolu-
tion, we found that such an NN suffices to yield satisfactory performance, which
competes against that of supervised learning-based NBID approaches.

1.2 Main Contributions

This work is one of the few attempts on unsupervised DL for NBID. Our main
contributions lie in the design of loss functions and training/test schemes for
NBID. See below for the summary of our main contributions.

– A self-supervised reconstruction loss function with good approximation to its
supervised counterpart when being applied with kernel diversity and cross-
image patch recurrence presented in training data;

– A self-supervised prediction loss function to improve the robustness of the
trained model to kernel errors;

– An ensemble inference scheme based on kernel perturbations, which reduces
the sensitivity of the NN to kernel errors in the test stage and works for both
unsupervised models and supervised models; and

– An unsupervised DL approach for NBID, which not only outperforms exist-
ing unsupervised methods, but also competes against the supervised ones.

2 Related Works

Non-DL-based NBID Conventional methods for NBID developed hand-
crafted image priors based on empirical image statistics to regularize the decon-
volution process. There is abundant literature on it; see e.g. [20, 13, 36].
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Supervised DL-based NBID Most supervised DL-based methods focus on
NN architecture design. To have an NN working for different kernels, many
recent methods unfold an iterative scheme of some regularization-based NBID
approach; see e.g. [21, 50, 26, 51, 12, 19, 3, 29, 14, 11]. These methods usually de-
compose each iteration into an inversion process using the image estimate from
the previous iteration and a denoising process performed by a convolutional NN
(CNN). There are also some studies directly neuralizing existing regularization-
based methods via replacing the regularizer by a CNN; see e.g. [35, 10].

In comparison to the robustness to image noise, the robustness to kernel
errors receives less attention in existing NBID methods, even it is important
for real applications. It is known that without a specific mechanism, a NBID
method is sensitive to kernel errors; see e.g. [18, 37, 42, 28]. There are only a few
regularization-based methods considering kernel errors explicitly; see e.g. [18,
37]. For DL-based methods, Vasu et al. [42] proposed an NN that fuses multi-
ple estimates generated by a hyper-Laplacian regularized inverse with different
regularization weights. By unfolding a total least squared estimator, Nan and
Ji [28] proposed a dual-path NN with a kernel-error residual estimation module.
Dong et al. [10] handles kernel errors by performing Wiener deconvolution in
feature domain with a multi-scale refinement process.

Unsupervised DL for NBID The study on unsupervised DL-based NBID is
scant in the literature. Some studies (e.g. [44, 53]) leverage the generative priors
of untrained NNs to perform online internal learning on a test image. While
avoiding using external training samples (including GTs), their performance is
not satisfactory. Chen et al. [7] achieved a significant performance improvement
by leveraging model uncertainty induced by dropout. However, all these methods
need to train different models for different images, whose computational cost can
be overwhelming. In contrast, the proposed approach trains a universal model
for efficiently processing all test images in an offline manner. There are few works
on offline unsupervised DL for NBID. One is Lim et al. [25] which uses unpaired
blurred images and latent images to train an adversarial generative network with
cycle consistency, which is not is GT-free.

There are also a number of unsupervised DL methods for solving linear in-
verse problems; see e.g. [46, 5, 17, 32, 43]. These methods are not specifically de-
signed for NBID, and none of them concern the errors in measurement matrix,
i.e., kernel errors in our case.

3 Proposed Approach

Through the paper, the NN for NBID is denoted by F(·, ·), which predicts the
latent image from an input pair of degraded image Y and blur kernel K.

3.1 Self-Supervised Reconstruction Loss

To make the discussion more accessible, without loss of generality, we temporar-
ily assume the input kernel is accurate in this subsection. Let N (0, σ2I) denote
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the normal distribution with zero mean and diagonal variance matrix σ2I. Con-
sider a training sample (Y ,K∗), where K∗ denotes the GT kernel. Suppose
N ∼ N (0, σ2I). We first introduce a self-supervised loss to address N :

Lr := EU∼N (0,σ2I)∥Y −U −K∗ ⊗F(Y +U ,K∗)∥2F. (2)

This loss is motivated by the R2R unsupervised denoising loss [33]. It is resistant
to the noise, as shown in Proposition 1.

Proposition 1. Consider Y = K∗⊗X+N where N ∼ N (0, σ2I). Then,

EN ,U∼N (0,σ2I)∥Y −U −K∗ ⊗F(Y +U ,K∗)∥2F (3)

=EN ,U∼N (0,σ2I)∥K∗ ⊗
[
X −F(Y +U ,K∗)

]
∥2F + const.

See supplementary materials for the proof. It can be seen that the noise in Y is
effectively removed in the loss function even without accessing the GT X.

3.2 Approximate Supervision in Image Space with Kernel Diversity
and Cross-Image Patch Recurrence

The loss Lr indeed provides a weak form of the supervised loss Lgt defined by

Lgt := ∥X −F(Y ,K∗)∥2F, (4)

with training samples in the form of (Y ,X,K∗). To see this, recall that for a
kernelK∗, the space RM×N can be expressed as the direct sum of two orthogonal

subspaces: null space Null(K∗) and range space Range(K̃∗), where K̃∗ is the
flipped version of K∗ (see [15]), and

Null(K∗) = {E ∈ RM×N : K∗ ⊗E = 0}, (5)

Range(K̃∗) = {K̃∗ ⊗X : X ∈ RM×N}. (6)

It can be seen that Lr indeed measures the prediction error in Range(K̃∗), not
the full space RM×N . In other words, Lr is equivalent to some norm defined in

Range(K̃∗): EU∼Nσ∥X −F(Y +U ,K∗)∥2
Range(K̃∗)

.

The remaining task is then how to measure the prediction error in Null(K∗).
While this task is challenging with a single image, it becomes easier when training
the NN on a set of blurred images whose blur kernels have sufficient variations.
Note that not every point in RM×N is an image. There are certain priors for im-
ages and one is patch recurrence [9]. The patch recurrence prior states that image
patches are likely to repeat over an image [9] and across different images [47].

Suppose that the dataset we are processing have sufficient variations on blur
kernels and have strong patch recurrence across images. Then, the loss function
Lr indeed provides an approximate measure of the prediction accuracy over the
full space. Recall that a deep NN can be viewed as processing image patches
whose size is limited by its receptive field. Then, for each GT image patch P ,
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suppose we have a set of its blurred correspondences {Qj}j across many images
with different kernels {K∗

j }j . Then, with sufficient variations among {K∗
j }j , we

are likely to have ∩jNull(K∗
j ) ≈ {0}, or equivalently ∪jRange(K̃∗

j ) = RM×N .

As Lr measures the prediction error in each Range(K̃∗
j ), the summation of Lr

over {Qj}j provides the measure of prediction error on P . In other words, Lr

provides an approximation to the supervised loss defined on GT images in this
case. The assumption of kernel diversity in the training dataset is reasonable
for many domains. For instance, in motion deblurring, when two motion blur
kernels have different dominant orientations, the intersection of their null spaces
are roughly close to a zero set; see e.g. [30, 4, 24].

3.3 Self-Supervised Prediction Loss

For notational simplicity, kernel errors are omitted in the previous discussions.
In the presence of kernel errors, the similar conclusion also holds. Suppose the
input kernel, denoted by K, differs from the GT kernel K∗. Then, Lr will induce
some errors related to ∆K = K −K∗, and we have

EN ,U∼Nσ∥Y −U −K ⊗F(Y +U ,K)∥2F (7)

=EN ,U∼Nσ
∥K ⊗X −∆K ⊗X +N −U −K ⊗F(Y +U ,K)∥2F

=EN ,U∼Nσ∥K ⊗
[
X −F(Y +U ,K)

]
∥2F + δ(∆K ⊗X) + const,

where δ(∆K ⊗X) denotes the error term induced by kernel errors, which dis-
torts the measure on prediction error of the NN. In the next, we introduce an
additional self-supervised prediction loss to handle such distortion.

The additional loss is defined over the intermediate estimates of the latent
image during the training stage, as well as over the re-corrupted versions of
the inaccurate kernels in training data. The intermediate estimates are used to
simulate the GT images for training. The inaccurate kernels are used to mimic
GT kernels which are applied to the simulated GT images to form blurred images
as the input images for training. The re-corrupted kernels are used as the input
erroneous kernels for training so as to improve the robustness to kernel errors.

Let K denote the set of kernels in training data. For a sample (Y ,K) where
K is erroneous, let ZK denote the output from the NN in some intermediate
training stage:

ZK = F(Y +U ,K), U ∼ Nσ, (8)

which can be viewed as an approximation of the GT image corresponding to the
pair (Y +U ,K), and the noise U comes from the definition of Lr in (2). Then,
we synthesize a set of training samples with the triples:

(
noisy blurred image

ZK , erroneous kernel S(K), latent Image ZK

)
:

ZK := K ⊗ZK +N , (9)

for K ∼ K/K, where S is the error generator proposed in [28] for simulating
the erroneous estimate of the GT kernel, and N denotes the white Gaussian
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(WG) noise with variance randomly drawn from the range of noise variances of
training samples. Such a set of triplets {(ZK ,S(K),ZK)}K∼K/K are used to
supervise the training, using the self-supervised prediction loss defined by

Lp := EN ,K∼K/K,S∼S∥ZK −F(ZK ,S(K))∥1. (10)

When provided with accurate kernels, we fix S to an identity mapping. In this
case, ZK varies with U , and thus Lp still contributes.

An additional benefit from Lp is that, it can further improve the accuracy
of Lr in measuring prediction errors. Recall that kernel variations are important
for Lr to measure the prediction error in the null space Null(K∗). The triplets
{(ZK ,S(K),ZK)}K∼K/K increase kernel diversity due to the generator S, and
it also enforces cross-image patch recurrence, as for every (ZK ,S(K)), the out-
put of F is expected to predict the same target.

To conclude, more pairs are generated during the intermediate training stage
for NN training. The intermediate image estimates ZK are used as pseudo GT
images, and the inaccurate kernels K are used as pseudo GT kernels. The loss
Lp defined on these pairs can improve the robustness to kernel errors, as well as
improve the effectiveness of Lr in the kernel-induced null space.

3.4 Unsupervised Training and Ensemble Inference

Unsupervised training The NN is trained by minimizing the loss:

L := Lr + βLp, (11)

with β ∈ R+. In training, β is first zeroed to concentrate on Lr for achieving
reasonable performance, and then it is increased to include Lp. For handling
inaccurate kernels, after sufficient training in the first stage, we modify the loss
Lr to be

EU∼Nσ,S∼S∥Y −U − S(K)⊗F(Y +U ,S(K))∥2F, (12)

where data augmentation on kernels is done the same as Lp.

Ensemble inference via kernel perturbation For further performance
improvement in handling kernel errors of test data, we propose a simple yet
effective ensemble inference scheme for a sample (Y ,K) as follows:

Xest = EU∼N ,V ∼VK
F(Y +U ,

K + V

∥K + V ∥1
), (13)

with a perturbation set VK . We can see that the prediction is done by averaging
over the estimates from both perturbed images and perturbed kernels. The moti-
vation of kernel perturbation is that, when using randomly-perturbed kernels to
restore the latent image, the artifacts in the recovered images caused by kernel
errors tend to show certain degree of independence, which can be attenuated by
averaging. The perturbation on input image is to ensure the consistency of noise
characteristics between training and test.



8 Quan et al.

The perturbation set VK is constructed such that it does not cause any shift
of the kernel, as the NBID results with different kernel shifts are not aligned and
their average cannot cancel the artifacts well. To address this, we first generate
a noise map with the same size as K, whose elements are sampled from N0.1%.
Then, the Fourier phase spectrum of the noise map is replaced by that of K,
and the resulting noise map is used as V . This ensures the perturbation does not
shift the kernel. It is worth mentioning that, experimentally while the ensemble
inference with such perturbations brings noticeable improvement for inaccurate,
it brings either negligible improvement or little degradation on the performance
for accurate kernels.

3.5 NN Architecture

Following recent supervised DL methods for NBID (e.g. [50, 21]), the NN used for
the experiments is based on the unfolding of the half-quadratic splitting (HQS)
scheme for solving a regularization model:

min
X

∥Y −K ⊗X∥2F +
∑

p
ψ(Wp ⊗X), (14)

where ψ(·) is some prior-inducing regularization, {Wp}p is the set of 3×3 wavelet
high-pass filters. The iteration scheme from HQS reads: for t = 1, · · · , T ,

X(t) := argminX ∥Y −K ⊗X∥2F +
∑

p
λt∥A(t)

p −Wp ⊗X∥2F,

A(t+1)
p := argminAp

∥Ap −Wp ⊗X(t)∥2F + ψ(Ap),∀p, (15)

where {λt}t are hyper-parameters simply set as: λ0 = 0.5% and λt = 10% for
t > 0. Accordingly, the NN is constructed by stacking two blocks alternatively;
see 1 for an illustration of the detailed structure.

(a) Inversion block G(t) : Y , {A(t)
p }p,K → X(t). It corresponds to the 1st

step in the iteration, which is an unconstrained quadratic problem with an an-
alytic solution. We adopt the FFT-based computation scheme with adaptive
boundary padding [21] to calculate the analytic solution.

(b) Denoising block H(t) : {X(t)}tt=0 → {A(t+1)
p }p. It corresponds to the 2nd

step of the iteration, replaced by a U-Net to refineWp⊗X(t). The U-Net takes all
previous estimates as the input for better performance. In the implementation,

it first removes noise from X(t) and then applies Wp to obtain A
(t+1)
p .

We also enforce the loss in the intermediate outputs. Let F (t) := G(0) →
H(1) → · · · → H(t) → G(t), for t = 1, · · · , T . Indeed, F (t) can be viewed as an
NN with different depths. Then, the overall loss is defined on all F (t)s by

Ltotal :=
∑T−1

t=1
L(F (t)) + γL(F (T )), (16)

where γ is fixed to 1.25 in our implementation.
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Fig. 1. Diagram of NN architecture used in the proposed approach

4 Performance Evaluation

4.1 Motion Deblurring with Erroneous Kernels

The proposed approach is evaluated on non-blind motion deblurring. To simulate
practical scenarios, we follow [28] to prepare the training and test data. For
training, random cropping is applied to the images of BSDS500 [2] to have 1500
sharp images of size 256×256, and the 192 motion kernels from [39] are used. The
blurred images are generated by first randomly convolving each image with a
blur kernel and then adding the WG noise of standard deviation 1%. Afterwards,
we apply the BID method [31] to estimate a kernel from each blurred image. The
blurred images and the estimated kernels are used as the training samples.

In our training data, each latent image only has one blurred correspondence.
This differs from one popular setting in existing supervised NBID methods
(e.g. [50, 21, 29]) where each image has multiple blurred correspondences with
different kernels. Indeed, our setting is more realistic, especially for unsupervised
learning. Data augmentation is applied to each pair of a blurred image and the
corresponding kernel, using rotation by 90◦, 180◦ or 270◦, as well as flipping.

The test is conducted on three datasets: Levin et al.’s dataset [23], Sun et al.’s
dataset, and a subset of Lai et al.’s dataset [22]. Several BID methods are called
to estimate the kernels which are then used in the NBID process, including [31,
41] for Levin et al.’s dataset, [8, 48, 27] for Sun et al.’s dataset, and [48, 49, 41,
34] for Lai et al.’s dataset. The blurred images are corrupted by the WG noise
with standard deviation 1%. In both training and test, the EdgeTapper is used
for simulating realistic boundary conditions.

We fix T = 5 for our NN. In training, all the model weights are initialized by
Kaiming [16] except that the biases are initialized by zeros. The Adam optimizer
is used with 300 epochs. In the first 100 epochs, we zero β and set the learning
rate to 10−4. Afterwards, we set β = 10−2 and the learning rate to 10−5. We
simply set the random noise U in both training and inference schemes to the
WG noise with standard deviation estimated on the input image using [6]. When
sampling K in Lp, we randomly pick up 10 instances and choose the one with
the lowest correlation to K. In the test, we perform 10 inferences for averaging.

For experimental comparison, we include (a) supervised DL-based methods:
IRCNN [51], FCNN [50], FDN [21], VEM [29], DWDN [10] and TLSNN [28];
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(b) unsupervised DL-based methods: BPDIP [53], SURE [40] and EI [5]; and (c)
non-DL-based method: DSPSI [45]. Among these methods, TLSNN, DWDN and
DSPSI have specific mechanisms to handle kernel errors. The results of FDN,
IRCNN, FCNN and TLSNN are quoted from [28]. The model of VEM is retrained
on our data for better performance, while that of DWDN is not retrained as no
performance gain is observed. The BPDIP is an online unsupervised DL method
for NBID, while the SURE and EI are the offline ones for inverse problems but
not applied to NBID before. Their loss functions are used to train our NN instead
of their original ones for better performance and for a fair comparison.

See Table 1 for the quantitative comparison. The PSNR and SSIM are calcu-
lated using the shifting and boundary cut-off scheme of [28] for all the compared
methods. For convenience, we name the proposed approach as UNID (Unsuper-
vised Non-blind Image Deconvolution). In all cases, UNID outperformed other
unsupervised DL-based methods. The BPDIP cannot leverage external training
data and thus yielded much worse performance. Without an effective mecha-
nism to deal with kernel errors, both SURE and EI showed inferior performance
to UNID, and the performance of SURE is much worse. In most cases, UNID
noticeably outperformed those supervised DL-based methods that do not treat
kernel errors specifically. In comparison to the very recent supervised DL-based
methods TLSNN and DWDN with specific treatments on kernel errors, UNID
still provides comparable performance even it uses neither GT images nor ac-
curate kernels for training. See Fig. 2 for a visual comparison, where UNID can
deblur an image with comparable visual quality to that of the supervised NNs.

Table 1. PSNR(dB)/SSIM in motion deblurring with erroneous kernels (bold: highest
values among all methods; underlined: highest values among GT-free methods)

Dataset Levin et al.’s Sun et al.’s Lai et al.’s

Kernels [31] [41] [8] [48] [27] [48] [49] [41] [34]

S
u
p
e
rv

is
e
d

IRCNN 30.42/.86 29.56/.83 28.84/.81 29.54/.83 29.23/.82 19.99/.70 19.36/.67 19.46/.67 18.68/.68
FCNN 31.12/.90 30.27/.88 29.79/.86 30.45/.86 29.84/.84 20.27/.74 19.52/.70 19.80/.70 19.12/.70
FDN 31.19/.92 30.83/.90 29.69/.87 30.51/.88 29.82/.86 N/A N/A N/A N/A
VEM 31.83/.92 31.08/.91 30.32/.85 30.61/.86 29.82/.83 22.04/.70 21.95/.70 21.85/.68 21.04/.62

DWDN 30.87/.91 30.66/.90 29.49/.87 30.29/.88 29.46/.85 22.88/.77 22.70/.77 22.59/.75 21.21/.72
TLSNN 31.97/.92 31.24/.91 30.44/.87 30.84/.87 30.27/.86 22.53/.74 22.27/.73 22.31/.72 21.61/.70

w
/
o
G
T

DSPSI 29.55/.84 29.10/.82 28.57/.78 29.06/.79 28.74/.78 20.21/.72 19.87/.70 19.91/.69 19.35/.70
SURE 28.59/.85 27.99/.81 26.91/.69 27.15/.71 27.17/.69 19.24/.65 18.91/.60 19.04/.60 18.39/.55
BPDIP 28.71/.85 28.12/.84 26.99/.69 27.23/.70 27.14/.69 19.42/.66 19.05/.61 19.11/.60 18.50/.55

EI 29.37/.85 29.58/.86 28.60/.80 29.05/.83 28.10/.79 20.77/.63 20.24/.63 20.45/.63 19.67/.61
UNID 31.71/.92 30.66/.89 30.24/.86 30.82/.87 30.08/.85 22.43/.73 22.24/.73 22.04/.71 21.65/.70

4.2 Motion Deblurring with Accurate Kernels

A majority of existing studies on NBID (e.g. [50, 12, 19, 3, 29, 14, 35]) conducted
experiments using accurate kernels in both training and test, which simulate the
scenarios where kernel errors are sufficiently small and thus negligible. Such a
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Input VEM (30.53) TLSNN (30.61) EI (30.41) UNID (31.35) GT (PSNR(dB))

Input VEM (32.02) TLSNN (31.36) EI (25.71) UNID (32.71) GT (PSNR(dB))

Input DMSP (36.95) WF (37.33) EI (37.29) UNID (38.08) GT (PSNR(dB))
0 1

Fig. 2. NBID results of selected methods on motion deblurring with inaccurate kernels
(top and middle) and on microscopic deconvolution (bottom)

setting is also used to have a comprehensive evaluation. We follow [21, 50, 29] for
the preparation of training and test data, similar to the previous experiment.
The 1500 sharp images from random cropping of BSDS500 and the 192 motion
kernels from [39] are used to generate the blurred images, with WG noise added
whose standard deviation is randomly picked from [1, 14]/255. Also, each sharp
image only is allowed to form one blurred image to be more realistic. The data
augmentation is also applied to have sufficient training samples. An universal
model is trained w.r.t. different noise levels. Since there is no kernel error, we
lower the contribution of Lp with β = 10−3 in the second training stage.

Three datasets are used for test, including Levin et al.’s dataset [23], Sun et
al.’s dataset [41] and Set12 [29]. The blurred images are generated by first con-
volving each sharp image with the eight motion kernels from [23] respectively
and then adding the WG noise with standard deviations of 1%, 3%, 5% respec-
tively. The blurred images and their associated kernels are used for test. The
EdgeTapper for boundary simulation is also used in both training and test. Our
UNID is compared to the previously-used IRCNN, FDN, VEM, DWDN, BPDIP,
SURE and EI. In addition, two supervised NNs, DMSP [3] and DPDNN [12], are
included for comparison. The FDN, FCNN, VEM and DWDN also use BSD500
for training, DPDNN is re-trained on BSD500, DMSP is used with its pre-trained
model as it has no training code provided, and IRCNN is trained on its original
noisy data instead of the blurred one. Existing works use different boundary cut-
off strategies for evaluation. For a fair comparison, we cut the boundary with
half kernel size when calculating the PSNR and SSIM for all methods.

See Table 2 for the quantitative results and comparison. Again, UNID out-
performed other unsupervised models in all settings. Surprisingly, while UNID
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Table 2. PSNR(dB)/SSIM in motion deblurring with accurate kernels (bold: highest
values among all methods; underlined: highest values among GT-free methods)

Dataset Sun et al.’s Levin et al.’s Set12

STD 1% 3% 5% 1% 3% 5% 1% 3% 5%

S
u
p
e
rv

is
e
d

IRCNN 31.80/.88 28.93/.80 27.50/.74 31.11/.89 28.99/.85 27.58/.80 30.37/.87 27.95/.81 26.51/.76
FDN 32.21/.89 28.88/.78 27.61/.73 31.95/.91 28.95/.84 27.45/.80 31.03/.88 27.92/.80 26.47/.76
DMSP 32.00/.87 28.63/.77 27.48/.74 32.60/.90 29.30/.83 27.84/.81 31.20/.87 27.95/.79 26.43/.76
DPDNN 31.24/.85 29.09/.80 27.90/.76 31.15/.89 28.95/.85 27.57/.81 30.11/.86 27.78/.81 26.53/.78
VEM 32.20/.89 29.23/.80 27.93/.76 31.63/.91 29.33/.86 27.79/.81 30.97/.88 28.27/.82 26.79/.77

DWDN 32.37/.89 29.19/.80 27.88/.75 32.92/.92 29.85/.87 28.23/.83 31.37/.89 28.36/.82 26.89/.78

w
/
o
G
T

SURE 27.32/.73 26.69/.71 25.65/.66 30.40/.88 27.41/.80 25.77/.71 28.69/.83 26.00/.74 24.58/.65
BPDIP 27.50/.73 26.84/.71 25.71/.66 30.63/.88 27.53/.79 25.86/.72 28.86/.83 26.11/.73 24.65/.66

EI 31.43/.86 28.80/.77 27.37/.72 31.32/.90 29.05/.85 27.49/.80 29.37/.86 27.50/.80 26.20/.74
UNID 32.28/.89 29.24/.80 27.82/.74 32.12/.92 29.71/.86 28.16/.82 30.92/.88 28.23/.82 26.76/.77

requires no GT images, it also outperformed the supervised models trained with
GT images in many settings and it is very competitive to the top performers of
the supervised models. All such results demonstrated the effectiveness of UNID.

4.3 Microscopic Deconvolution

Microscopic imaging in science is one domain where GT images are difficult to
collect in practice. We follow the same evaluation scheme as [35]. The images
of the fluorescence microscopy dataset [52] and the cell segmentation dataset [1]
are first scaled to the range of [0, 1] and cropped into patches of size 256× 256,
among which 975 (230) patches are used for training (test). There are kernels of
size 7×7, 9×9, 11×11 or 13×13 provided, among which 25 (5) kernels are used for
training (test); see [35] for the details on the kernels. For test, the GT images are
first convoluted with one of the five test kernels respectively, and then corrupted
by the WG noise with standard deviation σ = 0.1%, 0.5%, 1%, 5% respectively.
The training parameters are set the same as previous experiments. In addition,
we also simulate erroneous kernels by approximating each GT kernel with a
Gaussian kernel that minimizes the mean squared error. Our model trained by
these erroneous kernels is denoted by UNID†.

Similar to previous experiments, for practical scenario simulation, the blurred
images for training are generated by convolving each GT image with only one
randomly-selected kernel and adding the WG noise with σ randomly picked
from {0.1%, 0.5%, 1%, 5%, 10%}. This differs from the supervised learning setting
in [35], and the same data augmentation as previous experiments is applied.

In addition to the aforementioned IRCNN, FDN, DMSP, SURE and EI, the
WF-KPN-SA [35] (denoted by WF) is also included for comparison, whose re-
sults are quoted from [35]. See Table 3 for the quantitative comparison and Fig. 2
for a visual inspection. The boundary cutting scheme of [35] is used to calcu-
late the PSNR and SSIM. The performance of UNID is noticeably better than
other unsupervised models and competitive to the supervised ones. Particularly,
UNID outperformed all supervised models when σ = 0.5%, 1%. For other noise
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Table 3. PSNR(dB)/SSIM results in microscopic NBID (bold: highest values among
all methods; underlined: highest values among unsupervised methods)

STD

Supervised Unsupervised

IRCNN FDN DMSP WF SURE BPDIP EI UNID† UNID

0.1% 33.33/.86 40.31/.94 40.44/.94 39.86/.94 37.65/.91 37.90/.92 39.41/.93 40.18/.94 40.30/.94

0.5% 36.88/.90 38.61/.92 39.16/.93 38.76/.93 37.21/.91 37.37/.91 38.24/.92 38.97/.93 39.33/.93

1% 36.80/.90 37.33/.91 37.73/.91 37.81/.92 36.60/.90 36.70/.90 36.87/.90 37.59/.90 38.36/.92

5% 32.44/.79 33.50/.84 34.31/.86 34.58/.87 31.67/.77 31.79/.77 32.27/.79 33.67/.83 34.32/.85

Table 4. PSNR(dB) results using different training loss functions

(a) PSNR(dB) results w.r.t. loss

Training
Loss

Sun et al.’s
Dataset

Levin et al.’s
Dataset

[8] [48] [27] [31] [41]

Only Lp 28.04 28.11 27.83 28.03 27.60
Only Lr 29.92 30.50 29.72 30.96 30.11
Both 30.24 30.82 30.08 31.71 30.66

Fixed Lr 30.13 30.74 30.00 31.44 30.43
Lgt 30.27 30.87 30.13 31.91 30.87

(b) PSNR(dB) results w.r.t. kernel perturbations

Kernel
Perturb.

Lai et al.’s
Dataset

Sun et al.’s
Dataset

[48] [49] [41] [34] [8] [48] [27]

Proposed 22.43 22.24 22.04 21.65 30.24 30.82 30.08
Disabled 21.54 20.96 21.13 20.37 29.31 29.49 28.80
Gaussian 22.30 22.15 22.02 20.98 29.48 30.05 29.60

levels, UNID performed a bit worse than the top performers. The UNID† saw
a certain performance decrease due to the kernel errors in training data, but
its performance is still competitive among all methods and better than other
unsupervised models.

4.4 Ablation Studies

Comparison of different loss functions To evaluate how the proposed self-
supervised loss functions contribute to the performance, we use the following loss
functions to retrain the NN with rigorous tuning-up: (a) Lp: only train with Lp;
(b) Lr: only train with Lr; (c) Fixed Lr: do not change Lr to (12) during training;
and (d) Lgt: use (4) and the training data of [29] for supervised training.

See Table 4(a) for the results on two datasets, from which we have the follow-
ing observations. First, the NN trained by UNID without GT images performs
nearly as well as the one trained with GT images. Second, the loss Lr is criti-
cal to the training, and the performance will have a significant decrease when

training without it. This is because the restoration on Range(K̃) corresponds
to the major part of an image, and the Lr relies on the success of restoration on

Range(K̃) as well. Third, the loss Lp also has a noticeable contribution to the
performance. Lastly, modifying Lr to (12) brings slight improvement.

Performance gain by ensemble inference Two inference schemes are
evaluated as baselines: one is the standard prediction scheme without kernel
perturbation (i.e. V

K̃
= ∅) and the other uses WG noise with standard deviation

0.1% as the perturbation term. See Table 4(b) and Fig. 3 for the comparison.
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w/o kernel perturbation Gaussian perturbation Proposed perturbation GT

Fig. 3. Effects of kernel perturbations

Table 5. PSNR(dB) results of supervised models with ensemble inference

Dataset Kernels FDN FDN∗ VEM VEM∗ DWDN DWDN∗ UNID UNID∗

Sun et al.’s
[8] 29.40 30.28 29.69 30.30 29.49 29.98 29.31 30.24
[48] 30.05 30.99 30.51 30.99 30.29 30.63 29.49 30.82
[27] 29.12 30.21 29.82 30.07 29.46 29.85 28.80 30.08

Levin et al.’s
[31] 30.27 31.77 30.27 31.61 30.87 31.85 30.25 31.71
[41] 30.11 30.80 30.11 30.76 30.66 31.00 29.80 30.66

Our ensemble inference scheme outperformed the standard one, which shows
that averaging predictions from perturbed kernels can improve the robustness
to kernel errors. Furthermore, a trivial perturbation using WG noise also brings
some improvement but not as significant as ours.

The proposed inference scheme with kernel perturbations is also applied to
the supervised models including FDN [21], VEM [29], DWDN [10]. The resulting
methods are marked by ∗. Table 5 lists the results. Note that the reported results
of VEM differ from those in Section 4.1 as here we use the pre-trained model
instead of the retrained one. It can seen that our ensemble inference scheme can
bring noticeable performance gain: ranging from 0.25dB to 1.09dB on Sun et
al.’s dataset and raning from 0.34dB to 1.5 dB on Levin et al.’s dataset. This
demonstrates the applicability of ensemble inference to supervised models. Our
UNID is also included for comparison. Even using the same inference scheme, it
is still competitive to the supervised models.

5 Conclusion

While supervised DL has been the main driving force in the recent develop-
ment of NBID methods, its applicability to real applications is limited by its
requirement on GT images. In this paper, we developed a GT-free unsupervised
DL approach to NBID, which provides a complement to existing supervised
DL-based methods especially when GT images are of the limited amount or un-
available. Based on a self-supervised training scheme with rigorous mathematical
treatment and an ensemble inference scheme based on kernel perturbation, the
proposed approach can effectively handle kernels errors and image noise in both
training and test data. Extensive experiments on uniform motion deblurring and
microscopic deconvolution showed the effectiveness of the proposed approach.
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