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ABSTRACT

Deep convolutional neural networks (CNNs) have become
a promising approach to blind image quality assessment
(BIQA). Existing CNN-based BIQA methods often employ
global average pooling (GAP) to aggregate feature maps into
a fixed-size representation for regression, so as to handle in-
put images with varying sizes. However, GAP is only capable
of extracting the first-order statistics of feature distributions,
which is ineffective for distinguishing complex distortions
that cause local degradation or preserve global features. To
tackle this problem, we introduce the second-order global co-
variance pooling (GCP) for aggregating feature maps, leading
to a more distortion-sensitive and more discriminative global
representation. By incorporating GCP and GAP into a ResNet
backbone, we propose an effective deep model for BIQA. The
experimental results on five BIQA benchmark datasets, in-
cluding both the synthetic and authentic ones, have demon-
strated the excellent performance of the proposed method.

Index Terms— Blind image quality assessment, Feature
pooling, Convolutional neural networks, Deep learning

1. INTRODUCTION

Image quality is the main concern in image processing, and
blind image quality assessment (BIQA) techniques are devel-
oped to automatically evaluate the perceptual quality of the
distorted images. Given an input image, BIQA aims at esti-
mating its perceived quality without accessing any reference
information of the image. Such a topic has gained extensive
attention from both industries and academics.

In general, there are two phases in a BIQA approach:
quality-aware feature extraction and quality score regression.
Traditional approaches usually adopt hand-crafted designs
for feature extraction, such as natural scene statistics [1, 2]
and variants of local binary patterns [3, 4]. Then the score
regression is done by some well-established learning-based
model, such as support vector regression, random forest,
and Gaussian process. Recently, inspired by the success of
CNNs in image recognition, a series of CNN-based BIQA
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approaches have been proposed, where the two phases are
jointly optimized in an end-to-end manner. With the data-
driven convolutional-layer-based feature extractor and fully-
connected-layer-based score regressor, these approaches have
shown impressive performance.

Typical CNNs in computer vision often connect convolu-
tional layers with fully-connected (FC) layers. The FC layers
encode feature maps into a single quality-aware representa-
tion and act as a regressor. Such a structure can only deal
with images of a fixed size. Rescaling, one of the most often-
used solutions to this problem in image recognition, is not
suitable for IQA, as rescaling can obviously change the vi-
sual quality of an image. Therefore, global pooling, which
aims to aggregate the score maps or feature maps with dif-
ferent spatial sizes into a single score or a fixed-length global
vector, is especially critical for an IQA-oriented CNN model.
A line of researches [5, 6, 7] proposed to use score pooling
strategies, where the pooling module is designed to aggre-
gate the predicted scores on local regions/patches. However,
due to the absence of the real supervision to the visual qual-
ity of patches, it is hard to guarantee the accuracy of local
quality scores, which limits the performance of such score-
pooling-based methods. Another pooling strategy that avoids
this issue is to operate global pooling on quality-aware fea-
ture maps to generate a fixed-length image representation for
regression. Several different pooling mechanisms are adopted
in this strategy, such as global averaging pooling (GAP) [8, 9]
and other average-based pooling [10, 11, 12].

The GAP and average-based pooling mechanisms essen-
tially capture the first-order statistics of a feature distribu-
tion. While such average-related statistics can summarize
the holistic changes caused by distortions, they are insensi-
tive when handling the distortions that cause little changes
to the image features on average. Such distortions, called
global-preserving distortions for convenience, are not rare in
the real world. For instance, noise degradation which oscil-
lates pixel values is often expected to preserve the average
value due to the zero-mean property of the noise. Another
often-seen example is image blurring, which also causes little
changes to average intensity level due to the sum-to-one prop-
erty of blur kernels. Since a BIQA-oriented CNN is expected
to preserve or propagate the effects caused by distortions for
accurate perdition of the image quality score, GAP will be
likely to reduce the effectiveness of a BIQA-oriented CNN in
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Fig. 1: Examples of two pairs of images (the first col-
umn) and their corresponding paired feature maps (the last
two columns) outputted by the conv 3 block of pre-trained
ResNet-101. The blue and red digits denote the mean and
standard variance values of feature maps respectively.

identifying degradation effects.
See Fig. 1 for an illustration, where the feature maps of

noisy/blurred images have little changes in terms of global
average, compared to those of their clean versions. Further-
more, for some local distortions, the differences in the feature
maps only happen in local regions. The changes, though vary-
ing in the corresponding small regions, may be diminished
by an average operation and produce similar average values.
The above analysis motivates us to exploit other statistics for
global feature pooling in a BIQA-oriented CNN so as to iden-
tify the degradation effects more effectively.

In this paper, we take a step towards addressing CNN-
based BIQA by considering the second-order statistics for
global pooling mechanisms. The introduction of the second-
order statistics (e.g. covariance) to a CNN-based method can
lead to a better description for the feature distribution of a
distorted image. Consider the average-insensitive distortions
such as white noise and Gaussian blur. Although usually
preserving the mean, they change the covariance, i.e., noise
usually results in higher variances due to its oscillation na-
ture, while blurring often leads to lower variance due to its
smoothing effect. Furthermore, second-order statistics are

usually more sensitive to outliers. Due to the quadratic cal-
culation, the large changes in a local region can be exposed
during the feature pooling. In addition, though not explored
in the BIQA realm, the second-order pooling, which captures
the self and cross-channel similarities information of feature
maps, has proven its ability to generate informative represen-
tations and describe complex classification boundary [13] in
recognition. Its success in recognition also inspires us to ex-
plore the second-order statistics in BIAQ for the complex na-
ture of the human visual system.

To capture the second-order statistics, we introduce the
global covariance pooling (GCP) [13] for feature aggrega-
tion. Combining GCP with a first-order global pooling imple-
mented by GAP, we propose an end-to-end framework with a
dual-order global pooling mechanism for BIQA. The effec-
tiveness of the proposed method is validated on five widely-
used IQA benchmark datasets including both synthetic and
real-world ones.

2. PROPOSED METHOD

In the proposed method, we construct a two-branch CNN
model for blind image quality score prediction. The model
accepts an image of an arbitrary size, since a global pooling
is employed in both branches. The first branch includes a
first-order global pooling module and is expected to process
average-sensitive distortions mainly, while the second one,
which includes a second-order pooling module, is expected
to process average-insensitive distortions. The architecture of
the proposed model is illustrated in Fig. 2, whose details are
described in the following.

2.1. First-order Global Pooling

Let I ∈ RH0×W0×C0 denote the input image for assessment,
and X = f(I) ∈ RH×W×C1 denote the extracted features.
Given the extracted feature X with an arbitrary spatial size
H ×W , the global pooling mechanism is designed to aggre-
gate X into a quality-aware global feature y, which is then
fed into the regressor for quality prediction. In the pooling
scheme, the feature tensor X is treated as a set of samples
{xi}Ni=1 with N = HW and the sample xi ∈ RC1 is the
feature vector located at i-th position of X .

The first-order statistic is important to characterize the
feature distribution. In a BIQA task, the first-order statis-
tics, often estimated with average or weighted average, are
discriminative for the average-sensitive distortions, such as
color shifts and brightness changes. To measure the first-
order statistics of feature distribution, we introduce the GAP
for feature aggregation, which is simply calculated by the av-
erage of features:

µ(X ) =
1

N

N∑
i=1

xi. (1)



Fig. 2: Framework of the proposed method. The backbone of the network is based on ResNet.

2.2. Second-order Global Pooling

Although GAP can handle the average-sensitive distortions,
it usually fails to capture the changes of features caused by
average-insensitive distortions, such as blur and zero-mean
noise. Furthermore, for some spatial distortions, such as color
blocks and non-eccentricity patches, the quality drop only
happens in a small region. GAP tends to weaken or even elim-
inate local changes due to the global average.

The second-order statistics can be beneficial in such cases.
We introduce the GCP for feature aggregation, which fur-
ther captures the second-order statistics of feature distribu-
tion. Given the feature samples {xi}Ni=1, GCP estimates the
covariance of the samples as

Σ(X ) =

N∑
i=1

(xi − x̄)(xi − x̄)>, (2)

where x̄ denotes the mean of samples, i.e. x̄ =
∑N
i=1 xi/N .

It is known that normalization is beneficial for the robust
covariance estimation on high-dimensional low-sample-size
data [14]. Encouraged by the promising performance of ma-
trix square-root normalization in classification tasks [13], we
adopt it for the GCP:

Σ
1
2 (X ) = UΛ

1
2U>, (3)

where U and Λ are the orthogonal matrix of eigenvectors and
the diagonal matrix of eigenvalues of Σ(X ), respectively.

2.3. Dual-Order BIQA Framework

The GAP and GCP use different feature maps as inputs, as
they are designed to process different kinds of distortions,
i.e., average-sensitive and average-insensitive distortions, re-
spectively. Given the input image I, the feature extraction
procedure can be formulated as follows:

X1 = f1 ◦ f0 ◦ I, (4)
X2 = f2 ◦ f0 ◦ I, (5)

where ◦ denote function composition, X1, X2 denote the in-
put features for GAP and GCP modules respectively, f0 de-
notes the shared feature extractor (i.e. Shared Network in

Fig. 2) for low-level features, and f1, f2 are average-sensitive
and average-insensitive distortion-aware feature extractors re-
spectively (i.e. Block3 and Block4 in Fig. 2).

The GAP and GCP aggregate the feature maps into global
feature vectors respectively, which are then fed to FC layers
for score prediction:

s1 = g1 ◦ µ ◦ X1, (6)

s2 = g2 ◦ Σ
1
2 ◦ X2, (7)

where g1, g2 are the FC layer following GAP, GCP respec-
tively, and s1, s2 are the corresponding predicted scores for
average-sensitive/insensitive distortions. The final quality
score s is calculated as the weighted sum of s1 and s2 via
a two-neuron FC layer:

s = ω1s1 + ω2s2, (8)

where ω1 and ω2 is a pair of learned weights.
Given a set of images {Ii}Di=1 and their subjective scores

measured by human {s∗i }Di=1. Let {si}Di=1 denote the scores
predicted by the proposed model. We use the Huber loss
for training due to its stronger robustness to outliers over the
commonly-used mean square error loss, which is defined as

` =

D∑
i=1

`δ(si, s
∗
i ), (9)

where `δ is the paramterized Huber loss defined by

`δ(s, s
∗) =

{
1
2 (s− s∗)2, for |s− s∗| ≤ δ
δ
(
|s− s∗| − 1

2δ
)
, otherwise

. (10)

And δ is a parameter to choose the way to penalty outliers. In
implementation, we set δ = 1/9 as suggested in [11].

3. EXPERIMENTS

3.1. Experimental Setups

Implementation Details. Following [11, 15], we select
ResNet-101 [16] as our network backbone due to its effec-
tiveness in feature extraction. In detail, we employ the first



3 building blocks (conv1, conv2 x, conv3 x) in ResNet-101
as the shared feature extraction network f0(·), the 4-th build-
ing block (conv4 x) for the feature extraction networks f1(·),
f2(·) in two branches. These blocks are all initialized with
weights of ResNet-101 trained on ImageNet. During train-
ing, the weights of f0(·) is frozen, while other blocks are op-
timized with the loss in (9). A two-stage training strategy is
adopted. The network without the GCP branch is first trained.
Then, the whole network and the paired parameters ω1, ω2 are
jointly trained with frozen f1(·).
Datasets. In order to validate the performance of the pro-
posed method, five publicly available natural image qual-
ity databases are employed in our experiments, including
three artificially distorted sets (LIVE [17], TID2013 [18] and
Kadid-10K [19]) and two realistically distorted sets (LIVE-
C [20] and KonIQ-10K [21]). The images in their original
resolution are fed into the model as input to test how well the
model generalizes to pictures of arbitrary sizes. During train-
ing, we follow [8, 11] to randomly sample 80% of the images
in each database for training and leave the rest for testing. Re-
garding the synthetically-distorted datasets, we split training
and test sets according to the reference images such that con-
tent is not intersected between the two sets. Dynamic data
augmentation comprising horizontal flip, vertical flip, and ro-
tation of ±3◦C is randomly applied to the training images.
Since rotation produces extra black borders, we have removed
the excess area by cropping.
Evaluation Criteria. Two commonly used evaluation met-
rics for performance comparison are adopted, including Pear-
son Linear Correlation Coefficient (PLCC) and Spearman
Rank Order Correlation Coefficient (SRCC). The SRCC mea-
sures the prediction monotonicity, PLCC measures the linear
correlation. An effective IQA metric is expected to yield high
values of PLCC and SRCC.
Compared Methods. Deep BIQA models have been fre-
quently reported to outperform traditional knowledge-driven
BIQA methods, such as NIQE [22] and ILNIQE [23]. Thus
we only compared the proposed model against recently State-
of-the-Art DNN-based BIQA methods, including PQR [24],
deepIQA [5], DBCNN [25], MetaIQA [26], CaHDC [12],
HyperNet [9], SiamIQA [27] and AIGQA [28]. The exper-
imental results of compared methods are based on implemen-
tations obtained from the respective authors or just copied
from the original papers.

3.2. Performance Evaluation

The results on synthetically distorted databases are reported
in Table 1. It can be seen that the proposed method sig-
nificantly outperforms the compared methods on datasets
TID2013, Kadid-10K, and achieves comparative performance
on dataset LIVE. Note that all methods achieve nearly perfect
results (over 0.95 on PLCC, SRCC) on LIVE. In comparison,
TID2013 and Kadid-10K which contain more samples and

complex distortions, are usually more challenging and valu-
able for performance evaluation.

Table 1: Median SRCC and PLCC results across ten sessions
on the test sets of the synthetically distorted IQA databases.
Bold on digits denote the best result for each criteria.

LIVE TID2013 Kadid-10K
SRCC PLCC SRCC PLCC SRCC PLCC

PQR [24] 0.965 0.971 - - - -
deepIQA [5] 0.954 0.963 0.761 0.787 0.628 0.647
DBCNN [25] 0.946 0.959 0.816 0.865 - -
MetaIQA [26] - - - - 0.767 0.774
CaHDC [12] 0.965 0.964 0.862 0.878 - -
HyperNet [9] 0.962 0.966 - - - -
SiamIQA [27] 0.961 - 0.855 - - -
AIGQA [28] 0.963 0.957 0.871 0.893 0.864 0.863
Ours 0.957 0.961 0.946 0.948 0.952 0.953

The results on authentically databases are reported in Ta-
ble 2. It is shown that our method performs significantly
better than all compared methods on the large-scale dataset
KonIQ-10K and is comparative on LIVE-C. Note that KonIQ-
10K contains over 10 thousand realistically and complexly
distorted images, which are usually more challenging for
BIQA evaluation.

Table 2: Median SRCC and PLCC results across ten sessions
on the test sets of the authentically distorted IQA databases.
Bold on digits denote the best result for each criteria.

LIVE-C KonIQ-10K
SRCC PLCC SRCC PLCC

PQR [24] 0.857 0.882 0.881 0.884
deepIQA [5] 0.671 0.686 0.797 0.805
DBCNN [25] 0.851 0.869 0.875 0.884
MetaIQA [26] 0.802 0.835 0.851 0.887
CaHDC [12] 0.738 0.744 - -
HyperNet [9] 0.859 0.882 0.906 0.917
SiamIQA [27] 0.851 - 0.894 -
AIGQA [28] 0.751 0.761 - -
Ours 0.834 0.852 0.911 0.923

To evaluate the generalization ability of our method, we
conduct a cross-dataset experiment by using the KonIQ-10K
as the training set and LIVE-C as the test set. Only compared
methods with available results are reported. The results are
shown in Table 3, which indicates that our proposed model
has a good generalization capability, especially for predict-
ing the quality for pictures of arbitrary resolution and of real-
world complex distortions.

3.3. Ablation Study

To analyze the effectiveness of utilizing GCP with GAP mod-
ule, we conduct an ablation experiment to validate the effec-



Table 3: SRCC comparison between CNN-based BIQA mod-
els trained on KonIQ-10K and tested on LIVE-C without fine-
tuning. Bold on digits denote the best result.

PQR [24] DBCNN [25] HyperNet [9] Ours
0.772 0.755 0.785 0.809

tiveness of components in the proposed model. The follow-
ing model setting is constructed: 1) The model without the
GCP branch, named GAP. 2) The model without the GAP
branch, named GCP. 3) The model with both branches, i.e. the
proposed model, name GAP+GCP. The results on TID2013,
LIVE-C, KonIQ-10K are reported in Table 4. It can be seen
that the combination of GAP and GCP shows better perfor-
mance than other single pooling strategies for both realistic
and artificial distortions, which indicates effectiveness of the
dual-order statistic global pooling for BIQA.

Table 4: Median SRCC and PLCC results across ten sessions
of ablation study on the test sets of three IQA databases. Bold
on digits denote the best result for each criteria.

Setting
TID2013 LIVE-C KonIQ-10K

SRCC PLCC SRCC PLCC SRCC PLCC
GAP 0.929 0.917 0.801 0.824 0.909 0.912
GCP 0.916 0.911 0.784 0.798 0.893 0.906
GAP+GCP 0.946 0.948 0.834 0.852 0.911 0.923

To further investigate the effectiveness of the proposed
dual-order pooling mechanism on different types of distor-
tions, we select several often-seen types of distorted images
from Kadid-10K dataset and summarize the testing SRCC
values in Table 5. The results are compared with the GAP-
only baseline to demonstrate the improvements brought by
our dual-order pooling. From Table 5, obvious improvements
(over 0.025) can be observed on the average-insensitive dis-
tortions, e.g. different types of blur, noise, and local spatial
distortions. However, for the average-sensitive distortions,
e.g. brighten, darken and mean shift, the proposed pooling
mechanism only brings slight improvements (less than 0.020).

4. CONCLUSION

In this work, we introduced the global covariance pooling
module for the deep BIQA, so as to characterize the second-
order statistics of feature distribution and produce a quality-
aware global feature to encode the average-insensitive dis-
tortions. Incorporating with the global average pooling, we
construct a two-branch deep neural network for quality score
prediction of degraded images with various distortion types.
Experimental results on five benchmark IQA datasets have
demonstrated the efficiency of the proposed method as well
the dual-order pooling mechanism. In future, we would like

Table 5: Median SRCC results across ten sessions of ablation
study on Kadid-10K in terms of different distortion types.

Distortion types GAP GAP+GCP Gain

Blur
Gaussian blur 0.948 0.981 0.032
Motion blur 0.926 0.975 0.049

Noise
White noise 0.928 0.973 0.044
Impulse noise 0.939 0.976 0.036

Spatial Pixelate 0.929 0.974 0.045
distortion Color block 0.943 0.973 0.029

Brighten
change

Brightness 0.954 0.972 0.019
Darken 0.952 0.970 0.018
Mean shift 0.957 0.974 0.017

to investigate the potentials of higher-order statistics in IQA
tasks. Furthermore, inspired by the effectiveness of GCP, we
will make a step further by seeking better characterization for
the functional relationship that exists between channel con-
sistencies and subjective quality scores.
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