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Abstract

Nonblind image deconvolution (NID) is about restoring the latent image with sharp details from
a noisy blurred one using a known blur kernel. This paper presents a dataset-free deep learning
approach for NID using untrained deep neural networks (DNNs), which does not require any external
training data with ground-truth images. Based on a spatially-adaptive dropout scheme, the proposed
approach learns a DNN with model uncertainty from the input blurred image, and the deconvo-
lution result is obtained by aggregating the multiple predictions from the learned dropout DNN.
It is shown that the solution approximates a minimum-mean-squared-error estimator in Bayesian
inference. In addition, a self-supervised loss function for training is presented to efficiently handle
the noise in blurred images. Extensive experiments show that the proposed approach not only per-
forms noticeably better than existing non-learning-based methods and unsupervised learning-based
methods, but also performs competitively against recent supervised learning-based methods.

1 Introduction

Image blurring is an often-seen image degradation
in digital imaging. The spatially-invariant blurring
effect on an image can be modeled as a convolution
process as follows:

y = k ∗ x+ n, (1)

where y,x,k,n denote the degraded image, latent
image, blur kernel, and measurement noise respec-
tively, and ∗ is the discrete convolution opera-
tor. Nonblind image deconvolution (NID) aims at
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recovering x from (y,k). It is an important tech-
nique for many tasks, such as deblurring with a
hardware-assisted kernel estimation module and
improving the image quality in microscopy imag-
ing. Since convolving with a blur kernel may signif-
icantly attenuate or even erase the high-frequency
components of the latent image, the problem (1)
is ill-posed and the study of NID focuses on how
to effectively handle such ill-posedness to have an
accurate estimation of x.

In recent years, supervised deep learning has
emerged as a promising approach for NID with
noticeable performance improvement over tradi-
tional methods; see e.g., (Bigdeli et al, 2017; Kruse
et al, 2017; Zhang et al, 2017a,c; Dong et al, 2018,
2019; Gilton et al, 2020; Nan et al, 2020; Gong
et al, 2020; Dong et al, 2021). The basic idea is
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training a deep neural network (DNN) over a large
dataset of the triplets (y,x,k), so as to have an
effective mapping from (y,k) to x.

In general, the generalization performance of a
DNN model is highly dependent on whether the
training data suffices to cover all important char-
acteristics of test data. In practice, blurred images
can vary a lot in terms of blurring effect, blur-
ring amount, and noise strength. To ensure good
generalization performance on test images, many
existing methods train different models for differ-
ent noise levels (Zhang et al, 2017a,c; Kruse et al,
2017; Bigdeli et al, 2017; Gong et al, 2020; Dong
et al, 2021), or for different blur kernels (Dong
et al, 2019; Gilton et al, 2020). Such an ad hoc
treatment makes the DNNs for NID quite clumsy
for practical usage, especially when there exists
great variations in test data with respect to blur
kernels and noise levels. Furthermore, in many
domains, it is challenging or even impossible to
collect ground-truth images that are highly related
to the images of interest, e.g., biological images of
molecules, and medical images of patients.

In the last few years, there has been an increas-
ing interest in utilizing untrained DNNs for solv-
ing linear inverse problems in imaging; see e.g.,
(Ulyanov et al, 2018; Heckel and Hand, 2019;
Wang et al, 2019; Zukerman et al, 2020; Hen-
driksen et al, 2020; Vedaldi et al, 2020). These
approaches use a DNN to model the latent image
and learn the DNN over the input degraded
image itself. In comparison to non-learning-based
methods, they exploit the implicit regularizations
imposed by the structure of a DNN to have a more
sophisticated image prior adaptive to test images,
leading to promising performance. In comparison
to supervised learning-based methods, they do
not require any external sample for training (i.e.,
dataset-free), which not only eliminates the cost
of data collection but also avoids introducing any
possible bias caused by a training dataset.

One pioneering work using untrained network
priors for image recovery is the deep image prior
(DIP) (Ulyanov et al, 2018). It showed that when
training a convolutional DNN with a random
input to fit an image, regular or repeating struc-
tures are likely to appear earlier than unstructured
patterns (e.g., noise) in the DNN’s output. In
order to have a restored image, DIP uses early
stopping for avoiding possible overfitting. Based
on the concept of DIP, there have been several

dataset-free deep learning methods proposed for
solving NID; see e.g., (Wang et al, 2019; Zukerman
et al, 2020). However, their performance is unsat-
isfactory in comparison to the top non-learning-
based methods and not competitive against recent
supervised learning-based methods.

1.1 Motivation

Motivated by the benefits of dataset-free learning
methods for practical usage, as well as the unsat-
isfactory performance of the existing ones, this
paper aims at developing an untrained DNN-based
dataset-free approach for NID with state-of-the-
art performance.

There are two main issues to address when
developing an untrained DNN-based approach for
NID. One is the presence of the measurement
noise; and the other is the solution ambiguity
(i.e., existence of infinite solutions) of (1) arising
from that certain high-frequency components of
the latent image can be erased by the blurring.
Inspired by the previous work on self-supervised
denoising (Quan et al, 2020) which uses blind-
spot training and dropout ensemble for untrained
DNN-based image denoising, we extended such an
idea to solve the NID problem.

Briefly, to handle the measurement noise in
NID, this paper proposes a self-supervised loss
function built upon a pixel replacement/mask-
ing scheme. This loss function, defined over a
noisy blurred image, provides an unbiased esti-
mate of the loss function defined over the noise-
free blurred version of the ground-truth image.
To tackle the solution ambiguity, this paper pro-
poses to leverage dropout for learning a DNN with
model uncertainty, i.e., the weights of the DNN
are treated as random variables. Such a DNN pre-
dicts a distribution of images rather than a single
image. Then, the image estimates drawn from the
distribution are aggregated to handle the solu-
tion ambiguity in NID and to have an improved
estimate. To further improve the performance of
the proposed approach, a spatially-adaptive (SA)
dropout scheme is introduced to better embed
model uncertainty into the DNN.

1.2 Contributions

There are three main contributions in this work:
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• By introducing a SA dropout scheme and a
noise-resistant self-supervised training loss, a
dataset-free deep learning approach built upon
model uncertainty is proposed.

• A theoretical insight is provided to under-
stand the proposed dropout-based NID method,
which reveals its connection to the DNN-based
MMSE estimator in Bayesian inference.

• Experimental validation on several benchmarks
shows the superiority of the proposed approach
over existing non-learning-based methods and
untrained DNN-based methods. The proposed
approach also provides competitive and even
better performance than the DNNs trained with
external ground-truth images.

While the work presented in this paper drew
inspirations from (Quan et al, 2020), the exten-
sion to the NID problem has its originality with
new techniques and new insights. Recall that there
exists the solution ambiguity in NID due to the
blurring. Thus, different from image denoising,
NID needs to handle both measurement noise
and solution ambiguity. In this work, we extend
the self-supervised training loss of (Quan et al,
2020) from denoising to NID, introduce a SA
dropout scheme for better exploiting model uncer-
tainty, and present a theoretical insight of the
proposed work from Bayesian inference. The lat-
ter two are not available in (Quan et al, 2020).
It is noted that the code of this work imple-
mented with PyTorch v1.6 will be available at
https://github.com/scut-mingqinchen/.

2 Related Work

NID with handcrafted/learned image pri-
ors. A majority of existing methods for NID
address the ill-posedness of the NID problem by
imposing certain priors on the estimate to reg-
ularize the deconvolution process. The `1-norm
regularization-based methods assume the gradi-
ents of the latent image are sparse; see e.g.,
(Vonesch and Unser, 2008; Krishnan and Fergus,
2009). The non-local methods assume the recur-
rence of local patches on the latent image; see e.g.,
(Danielyan et al, 2011). The data-driven meth-
ods learn image priors from clear images; see e.g.,
(Zoran and Weiss, 2011; Arridge et al, 2019).
One closely-related work to ours is (Schmidt

et al, 2011) which performs Bayesian NID with a
learned prior through sample averaging.

NID with supervised DNNs. In recent years,
there have been many works on training a DNN
for NID using an external dataset containing many
triplets of blurry images, latent sharp images and
blur kernels. Some methods such as (Schuler et al,
2013; Xu et al, 2014; Son and Lee, 2017; Vasu et al,
2018; Ren et al, 2018; Dong et al, 2021) train a
DNN as a post-denoiser to remove the artifacts
from the deblurred result of some existing method.
A more prominent approach is unrolling some
iterative deblurring scheme into a DNN with plug-
and-play denoising modules or trainable modules;
see e.g., (Schmidt and Roth, 2014; Zhang et al,
2017a,c; Meinhardt et al, 2017; Romano et al,
2017; Kruse et al, 2017; Jin et al, 2017; Bigdeli
et al, 2017; Nan et al, 2020; Gilton et al, 2020;
Gong et al, 2020; Eboli et al, 2020).

NID with untrained DNN priors. While
DIP (Ulyanov et al, 2018; Vedaldi et al, 2020)
with untrained DNNs can be directly applied to
unsupervised learning-based NID, there are only a
few works along this line. Heckel and Hand (2019)
proposed a DNN with an under-parameterized
structure to prevent the DNN from overfitting
the undesired patterns. For performance improve-
ment, Wang et al (2019) combined DIP with the
sparsity prior of image gradients, and Zukerman
et al (2020) used DIP with back projection. The
performance of these unsupervised learning-based
methods is not competitive to the supervised ones
and even not as good as the top performers in
non-learning-based methods.

Unsupervised deep learning for denoising.
In relation to NID, there are more studies on the
unsupervised deep learning for denoising; see e.g.,
(Ulyanov et al, 2018; Lehtinen et al, 2018; Ehret
et al, 2019; Krull et al, 2019; Batson and Royer,
2019; Laine et al, 2019; Soltanayev and Chun,
2018). These methods either use DIP with early
stopping for dataset-free learning (Ulyanov et al,
2018), or use some blind-spot mechanism for pre-
venting the DNN converging to an identity map-
ping (Krull et al, 2019; Batson and Royer, 2019;
Laine et al, 2019), or use dropout-based ensem-
ble for improving single-image learning (Quan
et al, 2020). As discussed in Section 1.2, NID is
quite different from image denoising as it needs to
resolve solution ambiguity. The extension of the

https://github.com/scut-mingqinchen/
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idea from denoising to NID is usually non-trivial.
For instance, DIP performs well for image denois-
ing, but its current extensions to NID do not work
as well, as shown in our experiments.

3 Proposed Method

3.1 Basic Idea

Consider a DNN denoted by fθ(·) with parameters
θ, which estimates x based on the input y = k ∗
x + n. In the presence of Gaussian white noise
n, the maximum likelihood estimate for x is then
fθ∗(ε0), where θ∗ is determined by solving

min
θ
‖y − k ∗ fθ(ε0)‖22, (2)

for some seed ε0. Recall that the high-frequency
components of x are either significantly attenu-
ated or completely erased by the convolution with
the blur kernel k. Then, there exists a non-empty
approximate null space

N (k) = {e : ‖k ∗ e‖2 � 1} (3)

such that any image in the subspace defined by

x̃ ∈ {x+ e : e ∈ N (k)} (4)

will have roughly the same loss as x, i.e., ‖y −
k ∗ x̃‖22 ≈ ‖y − k ∗ x‖22. In other words, there
exists solution ambiguity when training a DNN
with (2), where any prediction in the subspace
defined by (4) is viewed as a correct one.

Remark 1. The error e ∈ N (k) is usually corre-
lated to the latent image structures, which cannot
be well handled by DIP (Ulyanov et al, 2018) that
prefers regular structures over random noise and
unstructured patterns in its prediction. See Fig. 1
for a visualization of the predictions of DIP at dif-
ferent learning stages. There are some structured
errors appearing during learning and being kept in
the later stages.

We address the solution ambiguity caused by
the approximate null space N (k) via introducing
model uncertainty to a DNN model f , i.e., treat-
ing its parameters as random variables. Then, f
is trained to give different estimates on x which
are outputted by f with different instances of its

parameters. Once the solution ambiguity arising
from N (k) can be captured by these estimates
well, we can aggregate these estimates to have an
estimate of x with high accuracy.

In order to introduce model uncertainty to the
DNN such that it is effective for reducing the
solution ambiguity while being efficient in compu-
tation, we propose to train f with a SA dropout
scheme. The dropout training enables a single
DNN to simulate a large number of DNNs of differ-
ent structures by randomly dropping nodes, which
is computationally efficient to have a DNN with
model uncertainty. After the dropout training, the
estimation on x is done by keeping the SA dropout
enabled during test. As a result, one can have mul-
tiple estimates of x from multiple instances of f ,
and the final prediction is obtained by the aggre-
gation over these estimates. Such a dropout-based
scheme has its connection to the MMSE estimator,
which is shown in Section 3.3. Thus, it can well
address the solution ambiguity caused by N (k).

3.2 Training Scheme

The DNN we employ is constructed with its lay-
ers configured with dropout. For each layer with
dropout, there is a probability for each weight
being zeroed at each iteration. In other words,
the parameter vector of our DNN with dropout,
denoted by β, can be expressed as β = θ � b,
where the entries of b are a set of independent ran-
dom variables which obey Bernoulli distributions
with different parameters. Let E denote the expec-
tation of random variables. Let Ω = {ŷ`}` denote
the set of seeds used as the DNN’s input. Given
the kernel k, the DNN is trained to map the seeds
in Ω to the blurred image y:

min
θ

Eŷ∼ΩEb C(y,k ∗ fθ�b(ŷ)), (5)

for some loss function C(·, ·). The training using
(5) is realized by dropout. The training procedure
stops if either the maximum iteration number is
reached or the approximation error ‖y−k∗fβ(ŷ)‖2
is less than a pre-defined tolerance value for some
ŷ ∈ Ω and β.

There are two items with randomness in (5):
the seed set Ω and the Bernoulli variable set
b. The former is used for addressing the mea-
surement noise in y, together with a specifically-
designed loss function C. The latter is used for
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Fig. 1 Illustration of the prediction error in the approximate null space at different iterations of DIP. The top row shows
the output images over different iterations. The bottom row shows the the errors in the approximate null space. It can be
seen that there are some artifacts around the cameraman’ head and the camera tripod, along the learning process.

having a DNN with model uncertainty, which is
used for addressing the solution ambiguity in NID.
The remaining part of this section is devoted to
the design of Ω and C.
Seeds. Instead of using random noise as the seeds
like DIP, we generate a set of randomized versions
of y, as the Ω, using the following scheme:

ŷ` = m` � y + (1−m`)� (A ◦ (m` � y)), (6)

where � denotes the element-wise multiplication
operator, m` is a binary random Bernoulli mask
with probability pm, and A is the operation that
averages the non-zeros in the 8 neighbors of each
pixel. In other words, each seed is constructed by
randomly selecting some pixels and replacing their
pixel values with the average of their neighboring
non-selected ones. Each ŷ` encodes a large portion
of low-frequency information of x, encouraging the
model to focus more on the high-frequency parts.
See Fig. 2 (b) for two examples of the seeds.

Loss function. It can be seen that some parts
of the input y, i.e., (1−m`)� y, are removed in
the construction of a seed ŷ`. Define

‖ · ‖m = ‖(1−m)� ·‖2. (7)

Then, the loss function C is constructed in a self-
supervised manner which measures how well the
model predicts the removed part using each seed:

C(y,k ∗ fθ�b(ŷ`)) = ‖k ∗ fθ�b(ŷ`)− y‖2m`
. (8)

The design of such a loss aims at eliminating the
influence of the measurement noise of y during

training. As shown in Proposition 1, the loss func-
tion (8) used for training the DNN is an unbiased
estimate of the one defined over k ∗ x, i.e., the
noise-free version of y. In other words, the mea-
surement noise in the input is effectively removed
when training the DNN using the proposed loss.

Proposition 1. Consider y = k ∗x+n. Assume
the measurement noise n is of zero mean. Its
entries are independent from each other and also
independent from x. Let ŷ be defined by (6). Then,
the expectation of the loss function defined in (8)
over n is the same as that of∑

`

‖k ∗ fθ�b(ŷ`)− k ∗ x‖2m`
+
∑
`

‖σ‖2m`
, (9)

for any model fβ, where σ(i) denotes the standard
deviation of n(i).

Proof See the proof in Appendix A. �

By definition, the loss (8) is defined to mea-
sure the prediction error of the DNN on the noisy
blurred image y = k ∗ x+n over the un-replaced
pixels of a seed. Proposition 1 shows that in
terms of expectation, the loss (8) is equivalent
to measuring the prediction error of the DNN on
the noise-free blurred image k ∗ x over the un-
replaced pixels of a seed, in terms of expectation.
As the final loss (5) is defined over many perturbed
seeds from Ω, the union of many instances of un-
replaced pixels is likely to cover all image pixels.
As a result, the final loss indeed measures the pre-
diction error of the DNN on the noise-free blurred
image k ∗ x over all image pixels. In other words,
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the measurement noise n is effectively removed
when training with (5).

Remark 2. While the self-supervised training
with the loss (8) is related to the blind spot train-
ing used in self-supervised image denoising (Krull
et al, 2019; Batson and Royer, 2019), they indeed
play different functions. In denoising, the train-
ing without a blind-spot mechanism will fail, as
the model will converge to the identity mapping.
This is not the case for NID, as the estimate from
the identity mapping is not a minimizer. In NID,
the self-supervised loss (8) is for better address-
ing the noise sensitivity of deconvolution. While a
blind-spot mechanism is critical for self-supervised
image denoising, the loss (8) is not that critical
for self-supervised NID. The ablation study shows
that it only makes a modest contribution to the
performance. The main performance gain comes
from the proposed model-uncertainty-based scheme
with the SA dropout-based implementation.

Remark 3. Proposition 1 assumes that the kernel
used for deconvolution is accurate. It sometimes
occurs in practice that the kernel is estimated
by some method and thus can be inaccurate with
error ∆k. In this case, there exists another noise
source ∆k ∗ x, as y = (k + ∆k) ∗ x + n =
k ∗ x + (∆k ∗ x + n). The ∆k ∗ x is some
signal-dependent noise which does not satisfy the
signal independence assumed in Proposition 1 for
noise. Empirically, the proposed method still works
well when the kernel error is small, as shown in
Section 4.3.2. However, its performance is limited
for large kernel error, as shown in Section 4.5.

3.3 Prediction Scheme

Once the DNN with dropout is trained using
the loss function (5), we utilize such a model
with uncertainty in the test to address the solu-
tion ambiguity in NID. Let θ∗ be the vectorized
model parameters from dropout training. Instead
of using Eb[θ∗ � b] for prediction (Srivastava et al,
2014), i.e., x = Eŷ∼ΩfEb[θ∗�b](ŷ), we define the
prediction by

x∗ = Eŷ∼ΩEb fθ∗�b(ŷ), (10)

which is approximated by the Monte Carlo inte-
gration in practice, i.e., inferring with dropout
many times and averaging the inference results
as the final prediction. In other words, at test
time, the original dropout strategy is to evalu-
ate the input with the expectation of the weights.
Whereas in our case, we compute the expecta-
tion over the outputs with masking weights still
active. This approach is closely related to comput-
ing an MMSE estimate of the deblurred image, as
shown in the later part of this section. See Fig. 2
for a visual inspection of the images generated in
different stages of the proposed method.

See Fig. 3 for an illustration of the relation
between the solution ambiguity in NID and the
model uncertainty in our dropout-trained DNN.
With a DNN trained on a blurred image using
the proposed scheme, we generate 100 predictions
of the latent image by 100 dropout-based infer-
ences. Such 100 predictions and their average,
together with the ground-truth image, are visual-
ized in Fig. 3 (a) via PCA projection. It can be
seen that the predictions are randomly scattered
around the ground-truth image, and their average
is the one closest to the ground-truth image. The
PSNRs of individual and average predictions vs.
the inference times are plotted in Fig. 3 (b). The
PSNR of the average prediction increases as more
inferences are averaged. See Fig. 3 (c) and (d) for
an additional example. All these empirical obser-
vations indicate the soundness of our idea, i.e.,
using model uncertainty to resolve the solution
ambiguity induced by N (k).

The rationale of (10) comes from the interpre-
tation of dropout from the perspective of Bayesian
approximation. Roughly speaking, the dropout
training tries to approximate the posterior prob-
ability distribution of model parameters by the
Bernoulli distribution. If the approximation accu-
racy is very high, the prediction x∗ given by (10)
is nearly an MMSE estimate for the ground-truth
image x. To be more specific, assume that x can
be represented by

x = fβ(ŷ), ŷ ∼ Ω, (11)

with the model parameter β obeying some prior
probability distribution when y is given. Recall
that our training is using ŷ` in the form of (6) to
predict its removed part in y, i.e., (1−m`)�y. We
denoteD = {ŷ`, (1−m`)�y}` as the training data
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(a) Input (b) Seed (c) Difference (d) Single Inference (e) Average (f) Difference

Fig. 2 Visualization of (a) input image; (b) seed; (c) difference between (a) and (b); (d) single prediction from the trained
dropout DNN; (e) average of multiple predictions from the trained dropout DNN; and (f) difference between (d) and (e).

(a) PCA on ‘House’ (b) Results on ‘House’ (c) PCA on ‘Cameraman’ (d) Results on ‘Cameraman’

Fig. 3 Demonstration of proposed model-uncertainty-based scheme for resolving the solution ambiguity in nonblind image
deconvolution. A dropout-based DNN is trained on two blurred images in Fig. 2: ‘House’ and ‘Cameraman’. Then, 100
predictions by 100 are generated from the DNN with dropout. The 100 predictions, their average, and the ground-truth
image, are visualized in (a) and (c) via PCA projection. Their PSNR values vs. inference times are plotted in (b) and (d).

generated from y. Given D, the MMSE estimate
for x is known to be

x̂ = Ex|y =

∫
xp(x|β, ŷ)p(β|D)dxdβdŷ

= Eŷ∼Ω

∫
fβ(ŷ)p(β|D)dβ.

(12)

Due to the high dimensionality of β and
the complex structure of the DNN f , the pos-
terior probability p(β|D) is intractable. The
Bayesian approximation uses a distribution q(β|θ)
to approximate it (Blei et al, 2017). In the case of
dropout, q(β|θ) is defined based on the Bernoulli
distribution (Gal and Ghahramani, 2016):

β = θ � b, where b(i) ∼ Bernoulli(pi). (13)

That is, the x∗ of (10) is predicted by using
q(β|θ∗) to approximate p(β|D), which is

x∗ = Eŷ∼Ω

∫
fβ(ŷ)q(β|θ∗)dβ = Eŷ∼ΩEbfθ∗�b(ŷ).

(14)
If two functions p(β|D) and q(β|θ∗) are the same,
x∗ is indeed exactly the MMSE estimate. The
approximation of q(β|θ∗) to p(β|D) is done by
minimizing the KL divergence between p(β|D)
and q(β|θ). Under proper assumptions, mini-
mizing the KL divergence between p(β|D) and
q(β|θ) is identical to the training with (5). See
Appendix B for more details.

3.4 Spatially-Adaptive Dropout

In the standard dropout (Srivastava et al, 2014),
the dropout ratios are all the same with a pre-
defined constant, which implies that the uncer-
tainty degrees of all neurons of the DNN are kept
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the same. Such a uniform uncertainty degree over
all neurons is not consistent with the spatially-
varying uncertainty empirically observed in the
prediction. This inconsistency motivated the SA
dropout scheme in our approach. It is based on
the observation that after the DNN is trained
by dropout, the empirical uncertainty degree of
each neuron is closely related to the variance of
sampled instances of each neuron. Then, such a
variance can be used to approximate the optimal
uncertainty degree (dropout ratio) of each neuron.

Let p(l) denote the dropout ratio in the l-
th dropout layer, which is of the same shape
as the neurons. During learning, we sample mul-
tiple inputs from Ω and multiple models from
the currently-trained DNN. Then we can generate
multiple instances of each neuron in the dropout
layers of the DNN such that their empirical vari-
ances, denoted by v(l), can be calculated. The
theoretical variances of neurons with dropout are
given by p(l)� (1−p(l)), which attains the largest
value at 0.5. When the dropout ratio is set to be
below or equal to 0.5, then the larger the dropout
ratio is, the larger the variance is.

...
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𝑝𝑝0𝑙𝑙
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Feature Map Dropout Ratio
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Infer N Times Update

Fig. 4 Flowchart of proposed SA dropout.

Considering the relation between theoretical
variances and empirical variances, we first scale
v(l) to the range [0.5, 1.5] and update p(l) accord-
ing to v(l) as follows:

p(l) = min{v(l) � p(l)0 , 0.5}, l = 1, · · · , L, (15)

where p
(l)
0 denotes the former dropout ratio. After-

wards, we continue the training using the updated
p(l). Such an update process is performed every
1000 iterations. See Fig. 4 for the diagram. The
empirical variance of each neuron in the dropout
layers is indeed that of each pixel in the feature
map. From the last dropout DNN, we can gener-
ate multiple instances for each feature map, which
are then used to calculate the empirical variance

of each pixel in the feature map. In Fig. 5, we plot
the pixel-wise variance maps (i.e., the empirical
variances of neurons) in some intermediate layers
of our DNN.

4 Experiments

In this section, experiments are done to evalu-
ate the performance of the proposed method in
various scenarios, including the ideal cases with
accurate blur kernels of motion types and non-
motion types, and the real-world cases including
the ones with real-world degradations and the
ones with inaccurate kernels. Ablation studies are
then conducted to verify the effectiveness of each
component of the proposed method. Finally, a
limitation analysis is given.

4.1 Settings and Details

Implementation. The DNN fβ we use through
all the experiments is an encoder-decoder fully-
convolutional network with common blocks. There
are six (five) blocks in the encoder (decoder) part.
Each of these blocks contains a convolutional layer
equipped with dropout on its input. Since the
feature sizes are reduced (enlarged) in the interme-
diate layers of the encoder (decoder), the dropout
ratios are initialized as a symmetric increasing
(decreasing) sequence for the encoder (decoder):
from 7.5% to 45% with an increment 7.5% on the
encoder, and from 37.5% to 7.5% with a decrement
7.5% on the decoder.

See Table 1 for the detailed DNN architecture.
Following the common settings, all convolutional
layers are with kernel size 3 × 3, stride 1, and
zero padding of length 2. All max pooling layers
are set with the CEIL mode (Paszke et al, 2017),
and the feature maps are clipped to the same size
before concatenation. The bi-linear interpolation
is used for upsampling. The hyper-parameter of
each LReLU is set to 0.01.

In training, the probability for generating Ω is
set to 0.3. Unless specified, the Adam optimizer is
used with initial learning rate of 10−4. The stop-
ping threshold is set by the estimated noise level
from the estimator (Chen et al, 2015) with a sta-
bilizer 5 × 10−4, and the maximal epoch number
is set to 105. In prediction, we use 50 times of
dropout inferences.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9

Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18

L17-Channel 1 L17-Channel 2 L17-Channel 3 L17-Channel 4 L17-Channel 5 L17-Channel 6 L17-Channel 7 L17-Channel 8 L17-Channel 9

Fig. 5 Visual results of pixel-wise variance maps: The top two rows show the variance maps in different network layers
and the last row shows the variance maps in different channels of the 17th layer. This demo is evaluated on ‘Cameraman’
with the 5th motion kernel from (Levin et al, 2011) and Gaussian noise level σ = 0.05.

Table 1 DNN architecture used in the proposed method. Parameters: initial dropout ratio for Dropout, receptive field
size for Max Pooling, scaling factor for Upsampling, and two block sequence numbers (outputs of which blocks to be
concatenated) for Concatenation. The dropout ratios are the initial ones and will be updated during learning.

NO. Function # Channels Parameter(s) NO. Function # Channels Parameter(s)

ENCODER 17 Dropout + Conv. + LReLU 96 37.5%

1 - C - 18 Upsampling 96 2X
2 Dropout + Conv. + LReLU 48 7.5% 19 Concatenation 144 #8, #18
3 Dropout + Conv. + LReLU 48 7.5% 20 Dropout + Conv. + LReLU 96 30%
4 Max Pooling 48 2× 2 21 Dropout + Conv. + LReLU 96 30%
5 Dropout + Conv. + LReLU 48 15% 22 Upsampling 96 2X
6 Max Pooling 48 2× 2 23 Concatenation 144 #6, #22
7 Dropout + Conv. + LReLU 48 22.5% 24 Dropout + Conv. + LReLU 96 22.5%
8 Max Pooling 48 2× 2 25 Dropout + Conv. + LReLU 96 22.5%
9 Dropout + Conv. + LReLU 48 30% 26 Upsampling 96 2X
10 Max Pooling 48 2× 2 27 Concatenation 144 #4, #26
11 Dropout + Conv. + LReLU 48 37.5% 28 Dropout + Conv. + LReLU 96 15%
12 Max Pooling 48 2× 2 29 Dropout + Conv. + LReLU 96 15%
13 Dropout + Conv. + LReLU 48 45% 30 Upsampling 96 2X

DECODER 31 Concatenation 96 + C #1, #30

14 Upsampling 48 2X 32 Dropout + Conv. + LReLU 64 7.5%
15 Concatenation 96 #10, #14 33 Dropout + Conv. + LReLU 32 7.5%
16 Dropout + Conv. + LReLU 96 37.5% 34 Dropout + Conv. + Sigmoid C 7.5%

Running time. On an RTX 2080Ti GPU with
auto mixed precision and parallel computation,
our PyTorch code on average takes about 0.57
minutes for an 128 × 128 image, 1.84 minutes for
a 256 × 256 image, 3.31 minutes for a 384 × 384
image, and 8.83 minutes for a 512 × 512 image,
under a 15×15 blur kernel and noise level σ = 5%;
and it takes about 0.63 minutes for a 128 × 128
image, 2.77 minutes for a 256 × 256 image, 5.96
minutes for a 384× 384 image, and 10.23 minutes

for a 512 × 512 image with a 27 × 27 blur kernel
and noise level σ = 5%. Our code infers 320 times
per second for a 256× 256 image on average.

Methods included for comparison. The fol-
lowing NID methods are selected for comparison
in the experiments: IBM3D (Danielyan et al,
2011), FID (Krishnan and Fergus, 2009), EPLL
(Zoran and Weiss, 2011), DIP (Vedaldi et al,
2020), DIKP (Wang et al, 2019), DDec (Heckel,
2019), BPDIP (Zukerman et al, 2020), FCNN
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(Zhang et al, 2017a), IRCNN (Zhang et al, 2017c),
FDN (Kruse et al, 2017), DMSP (Bigdeli et al,
2017), DPDNN (Dong et al, 2019), RGDN (Gong
et al, 2020), VEM (Nan et al, 2020), CPCR
(Eboli et al, 2020) and DWDN (Dong et al,
2021). The IBM3D, FID and EPLL are repre-
sentative non-learning-based methods. The DIP,
DIKP, DDec and BPDIP are DIP-based unsuper-
vised deep learning methods with different strate-
gies for addressing the solution ambiguity when
training the DNN using (2). The FCNN, IRCNN,
FDN, DMSP, DPDNN, RGDN,VEM, CPCR and
DWDN are supervised deep learning-based meth-
ods with different DNN structures.

Through all experiments, whenever possible,
we directly quote the results reported in the lit-
erature. Otherwise, we obtain the results using
the trained models provided by the authors. If
only the code is available, we made efforts on
training the models for optimal performance. See
below for more details: (i) The results of IBM3D
are obtained using the updated code published on
the authors’ website. (ii) The DIP uses an over-
parameterized DNN with the same architecture as
the authors’ implementation for super-resolution.
Early stopping is used when solving (2). We made
the effort to find its optimal iteration number for
different noise levels: 10000 for σ ≤ 0.01, 6000 for
σ = 0.03, and 4000 for σ = 0.05. (iii) The DDec
uses an under-parameterized DNN for solving (2),
whose architecture is the same as the one from
the authors’ implementation for super-resolution.
(iv) The DIKP combines DIP with TV regular-
ization, whose network architecture is the same
as the authors’ implementation. One of its key
hyper-parameters is the weight α for TV regular-
ization term. Instead of using its original setting,
α = 2 × 10−2, we make it adaptive to noise
level α = σ/10 to have better performance for
different noise levels. (v) The DPDNN only pro-
vides pretrained models on several settings. We
follow its original work and use its training code
to obtain a model on each motion blur kernel and
each noise level. (vi) The DWDN only provides
a model pre-trained on a much larger dataset.
For fairness, we use its training code to retrain
a model on the same dataset as other supervised
learning-based methods. (vii) For other supervised
learning-based methods, we use the pre-trained
models released by their authors to obtain the

results. (viii) For other non-learning-based meth-
ods and unsupervised learning-based methods, the
official implementations from their authors are
used in the experiments.

Evaluation protocol. The performance of NID
is measured by the average PSNR and SSIM of
the deblurred images on the test set. It is noted
that many existing works have different schemes to
cut off boundary pixels during calculating PSNR
and SSIM to focus on the deblurring effect on the
main region. For a fair comparison, we follow the
standard boundary cutting scheme used in (Zhang
et al, 2017a; Kruse et al, 2017; Bigdeli et al, 2017)
for evaluating the results from all methods.

4.2 NID with Accurate Kernels

4.2.1 Motion Blur Kernels

The evaluation on motion deblurring is conducted
on three datasets: Set12 (Zhang et al, 2017b),
Levin et al.’s dataset (Levin et al, 2011) and
Sun et al.’s dataset (Sun et al, 2013). There
is a lot of diversity among the images in these
three datasets. Following standard protocol, the
eight motion-blur kernels from (Levin et al, 2011),
together with the additive Gaussian white noise
(AWGN) of level σ = 1%, 3%, 5%, are used to gen-
erate the degraded images for test. The EdgeTap-
per (Schmidt and Roth, 2014; Zhang et al, 2017a)
is called for simulating practical boundary con-
ditions in blurring. See Table 2 for quantitative
comparison and Fig. 6 for visual inspection.

In the quantitative comparison, the proposed
method outperforms IBM3D in all settings, which
shows the advantage of deep learning over hand-
crafted regularization. Compared with the other
four unsupervised learning methods, ours out-
performs them by a large margin (>0.77dB).
Such results indicate that the strategies used in
these methods for regularizing network training,
including early-stopping in DIP/BPDIP, TV regu-
larization in DIKP, and under-parameterization in
DDec, are not effective on addressing the solution
ambiguity and measurement noise. In contrast,
based on the model with uncertainty and the pro-
posed self-supervised loss, the proposed method
can effectively alleviate the solution ambiguity and
suppress the measurement noise. Its quantitative
performance advantage is also consistent with its
advantage on visual quality.



Springer Nature 2021 LATEX template

Article Title 11

Table 2 PSNR(dB) (odd rows) and SSIM (even rows) results of NID in the case of motion kernels and AWGN. The best
results in each category of methods are underlined. The best results in all compared methods are boldfaced. The column
“Margin” denotes the performance gap between the proposed method and the best supervised learning-based method,
where a positive value implies the proposed method is better while the negative one implies the opposite.

D
a
ta

se
t

σ

Non-Learning / Unsupervised Learning Supervised Learning

Margin
IBM3D FID EPLL DIP DIKP DDec BPDIP Ours FCNN IRCNN FDN DMSP DPDNN RGDN VEM CPCR DWDN

S
e
t1

2
1
%

29.66 27.68 30.70 27.21 28.44 28.91 28.86 31.56 29.76 30.38 31.02 31.20 30.12 31.02 30.97 27.81 30.63 0.36
0.851 0.796 0.876 0.784 0.812 0.841 0.830 0.886 0.870 0.874 0.876 0.870 0.862 0.885 0.882 0.839 0.877 0.001

3
%

27.09 25.19 26.68 26.42 26.69 27.32 26.09 28.09 27.19 27.94 27.91 27.94 27.79 28.17 28.26 25.20 27.32 -0.17
0.787 0.671 0.778 0.742 0.740 0.792 0.728 0.808 0.787 0.814 0.802 0.787 0.813 0.818 0.817 0.748 0.799 -0.010

5
%

25.65 23.18 24.75 24.06 23.81 25.03 24.67 26.56 25.88 26.50 26.46 26.44 26.44 26.49 26.78 24.85 26.53 -0.22
0.744 0.519 0.718 0.585 0.562 0.693 0.664 0.770 0.754 0.756 0.757 0.755 0.756 0.754 0.772 0.738 0.772 -0.002

L
e
v
in

e
t
a
l.
’s 1
%

30.11 27.64 32.01 29.58 31.14 27.39 30.63 33.86 30.19 31.10 32.60 32.60 31.14 33.57 31.64 28.11 32.19 0.29
0.871 0.841 0.912 0.852 0.887 0.790 0.884 0.932 0.891 0.886 0.897 0.904 0.891 0.925 0.905 0.845 0.920 0.007

3
%

28.41 26.93 28.32 28.10 28.29 26.22 27.54 29.89 28.03 28.98 29.31 29.31 28.94 29.75 29.32 26.16 29.45 0.14
0.832 0.732 0.833 0.804 0.794 0.725 0.785 0.863 0.833 0.848 0.829 0.833 0.854 0.852 0.856 0.778 0.863 0.000

5
%

27.02 24.54 26.13 24.27 23.87 24.72 25.84 28.09 26.83 27.57 27.46 27.83 27.56 27.22 27.78 25.54 27.86 0.23
0.793 0.582 0.770 0.600 0.559 0.652 0.716 0.816 0.786 0.803 0.804 0.813 0.814 0.781 0.813 0.761 0.826 -0.010

S
u
n

e
t
a
l.
’s 1
%

31.42 29.70 32.04 27.17 26.48 27.08 27.47 32.09 31.61 31.81 32.22 32.00 31.25 31.16 32.20 29.71 31.75 -0.13
0.866 0.809 0.878 0.710 0.694 0.698 0.729 0.875 0.880 0.876 0.893 0.871 0.851 0.873 0.888 0.859 0.880 -0.018

3
%

27.87 26.83 28.17 26.32 26.32 26.58 26.84 28.97 28.72 28.94 28.89 28.63 29.08 28.54 29.23 26.62 28.79 -0.26
0.753 0.665 0.758 0.687 0.684 0.680 0.706 0.798 0.778 0.804 0.781 0.768 0.802 0.797 0.801 0.733 0.785 -0.004

5
%

26.46 24.40 26.57 26.05 26.15 25.83 25.70 27.75 27.47 27.51 27.62 27.47 27.91 27.35 27.93 26.39 27.61 -0.18
0.699 0.493 0.699 0.667 0.678 0.638 0.655 0.750 0.733 0.735 0.732 0.735 0.757 0.737 0.757 0.730 0.741 -0.007

Compared to the DNNs trained with supervi-
sion, surprisingly, even without accessing ground-
truth images for training, the proposed method is
very competitive to its supervised counterparts. In
particular, on Set12 and Levin et al.’s dataset, the
proposed method outperforms the DNNs trained
with supervision in terms of PSNR (>0.29dB)
when σ = 1%. For the higher noise level σ =
3%, 5%, the proposed method achieved the highest
PSNR on Levin et al.’s dataset.

4.2.2 Non-Motion Blur Kernels

The performance of the proposed method in NID
with non-motion blur kernels is evaluated using
the six scenarios designed in (Danielyan et al,
2011), which contain five non-motion blur ker-
nels and the AWGN of different noise levels. For
the supervised learning-based methods, we do not
retrain their models due to the diversity of the test
kernels, but use their models trained on motion
kernels to test their generalization on the kernels
unseen in training data. For FCNN and IRCNN
whose models are trained on individual noise lev-
els, we take the optimal results of their trained
models across different noise levels. The DPDNN

is not included for comparison, as it is individually
trained on each kernel in motion deblurring and
thus not suitable to this experiment. Instead, the
NNet (Gilton et al, 2020) trained on defocus ker-
nels is included for comparison. Note that NNet
is not included in the previous experiment due to
its noticeably inferior performance. The evalua-
tion is done on Set12 (Zhang et al, 2017b) and
Sun et al.’s dataset (Sun et al, 2013). See Table 3
for quantitative comparison and Fig. 7 for visual
inspection.

The proposed method is overall the best per-
former. (i) It outperforms all non-learning-based
and unsupervised learning-based methods by a
large margin (>0.69dB on Set12 and >0.31dB on
Sun et al.’s dataset). (ii) The performance of the
models trained with supervision is not as good as
that in the previous experiment on motion deblur-
ring, which implies that they do not generalize well
when there exist noticeable variations of blur ker-
nels between training and test data. Indeed, this
is one motivation for studying dataset-free learn-
ing for NID, which is independent of the type of
blur kernels.
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Table 3 PSNR(dB) (odd rows) and SSIM (even rows) results of NID in six scenarios from (Danielyan et al, 2011). The
best results in each category of methods are underlined. The best results in all compared methods are boldfaced. The
column “Margin” denotes the performance gap between the proposed method and the best supervised learning-based
method, where a positive value implies the proposed method is better while the negative one implies the opposite.

Dataset

Non-Learning / Unsupervised Learning Supervised Learning

Margin
IBM3D FID EPLL DIP DIKP DDec BPDIP Ours FCNN IRCNN FDN DMSP NNet RGDN VEM CPCR DWDN

Set12
30.25 27.74 30.41 27.83 27.81 28.14 28.45 31.10 29.49 30.96 29.27 30.44 27.58 29.29 30.35 29.93 30.14 0.14
0.852 0.766 0.860 0.788 0.793 0.808 0.815 0.881 0.871 0.870 0.869 0.845 0.770 0.846 0.853 0.856 0.870 0.010

Sun
31.59 29.25 32.20 28.76 30.11 29.17 29.52 32.51 30.91 32.07 29.24 30.78 29.00 30.89 31.18 31.22 32.29 0.22
0.870 0.768 0.880 0.749 0.813 0.772 0.792 0.894 0.848 0.881 0.754 0.825 0.744 0.838 0.842 0.854 0.888 0.006

4.2.3 Poisson Measurement Noise

To see how well our method performs on other
types of noise, this experiment is conducted on
Set12 (Zhang et al, 2017b) and Sun et al.’s
dataset (Sun et al, 2013), with the real motion
blur kernels from (Levin et al, 2011) and with
Poisson noise of different peak values. Our method
is mainly compared to the aforementioned unsu-
pervised learning-based methods. Regarding the
supervised ones, only the previous trained models
of FDN, DMSP, RGDN, VEM, CPCR and DWDN
are included for comparison, as they are designed
to be noise-blind. In addition, two non-learning-
based methods specifically designed for handling
Poisson noise are also included in the comparison:
VST-BM3D (Azzari and Foi, 2016) and RWL2 (Li
et al, 2015). In these experiments, the noise level is
estimated using the estimator (Chen et al, 2015),
if the method requires it (e.g., DIKP, FDN). See
Table 4 for quantitative comparison and Fig. 8 for
visual inspection. The proposed method consis-
tently performs noticeably better than the other
unsupervised learning-based methods (>1.47dB
on Set12 and >1.24dB on Sun et al.’s dataset),
and it also performs competitively against the
best performers of the supervised learning-based
methods.

4.3 NID in Real-World Cases

4.3.1 Real-world Degradation

In real-world scenarios, motion blur is introduced
in the very early stage of the full pipeline of
image acquisition, which includes other conse-
quent processes such as quantization and gamma
correction. As a result, the degradation model of a
motion-blurred image cannot be simply expressed
as a convolution. In addition, sometimes there

are also other degradation effects presented, e.g.,
pixel saturation. The robustness of the proposed
method to such real-world degradations is evalu-
ated on (i) the saturation category from Lai et
al.’s dataset (Lai et al, 2016) which includes 20
saturated images generated from four motion ker-
nels; and (ii) Anger et al.’s dataset (Anger et al,
2018) which contains eight images generated from
eight motion kernels with gamma correction and
quantization.

The proposed method is mainly compared to
the aforementioned unsupervised learning-based
methods and some selected supervised ones. We
also include the MRD method (Anger et al, 2018)
for comparison, which is specifically designed for
such kinds of real-world degradation. In the exper-
iment on Anger et al.’s dataset, following (Anger
et al, 2018), we consider the inclusion of gamma
correction in the image formation model: y =

gγ(k∗x)+n where (gγ(z))j = z
1
γ

j ,∀j, and modify
the loss functions of all unsupervised learning-
based methods accordingly using the gamma val-
ues provided by the dataset. For instance, the loss
function in the proposed method becomes C :=
‖gγ(fθ�b(ŷ`) ∗ k)− y‖2m`

. See Table 5 for quanti-
tative comparison and Fig. 9 for visual inspection.
The proposed method is the best performer among
all compared methods. Particularly, it performs
noticeably better than other unsupervised meth-
ods (>5.37dB on Lai et al.’s dataset and >0.96dB
on Anger et al.’s dataset).

It is worth mentioning that many modern cam-
eras use precomputed functions instead of gamma
correction. When such functions accounting for
the full pipeline of image acquisition are known,
it would be beneficial to include them into g.
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Input (20.65dB) IBM3D (28.53dB) FID (25.29dB) EPLL (28.17dB) DIKP (23.71dB) BPDIP (25.37dB) Ours (29.87dB) GT (PSNR)

FCNN (28.32dB) IRCNN (28.54dB) FDN (28.03dB) DMSP (28.36dB) DPDNN (28.00dB) VEM (28.82dB) CPCR (23.28dB) DWDN (28.03dB)

Fig. 1 Visual results of NID using the 8th motion kernel from (?) in the presence of AWGN with σ = 1%.Fig. 6 Visual results of NID using the 8th motion kernel from (Levin et al, 2011) in the presence of AWGN with σ = 1%.
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Input (25.49dB) IBM3D (30.42dB) EPLL (30.74dB) DIKP (26.67dB) BP-DIP (27.04dB) IRCNN (31.04dB) FDN (31.26dB)

DMSP (30.85dB) NNet (31.00dB) VEM (31.05dB) CPCR (31.11dB) DWDN (31.07dB) Ours (31.32dB) GT (PSNR)

Fig. 7 Visual results of NID on the 5th scenario from (Danielyan et al, 2011).

Table 4 PSNR(dB) (odd rows) and SSIM (even rows) results of NID in the case of motion kernels and Poisson noise.
The best results in each category of methods are underlined. The best results in all compared methods are boldfaced. The
column “Margin” denotes the performance gap between the proposed method and the best supervised learning-based
method, where a positive value implies the proposed method is better while the negative one implies the opposite.

Dataset Peak

Non-Learning / Unsupervised Learning Supervised Learning

VST-BM3D RWL2 DIP DIKP DDec BPDIP Ours FDN DMSP RGDN VEM CPCR DWDN Margin

Set12

128
24.45 24.83 22.28 23.37 23.75 24.06 25.84 25.71 25.56 25.49 25.73 19.46 26.00 -0.16
0.690 0.712 0.514 0.618 0.603 0.625 0.774 0.709 0.725 0.691 0.721 0.416 0.757 0.017

256
25.25 25.70 24.84 24.71 25.04 24.95 26.84 26.74 26.53 26.58 26.69 21.80 26.90 -0.06
0.723 0.742 0.629 0.633 0.665 0.677 0.808 0.767 0.764 0.777 0.735 0.537 0.782 0.026

512
25.58 26.00 26.29 26.45 26.00 25.97 27.92 27.74 27.41 27.66 27.79 24.81 27.79 0.13
0.738 0.746 0.733 0.757 0.721 0.718 0.835 0.798 0.768 0.823 0.782 0.688 0.808 0.012

1024
25.65 26.11 26.84 27.12 26.65 26.75 29.01 28.74 28.35 28.66 28.84 26.12 28.71 0.17
0.743 0.754 0.758 0.767 0.760 0.761 0.855 0.821 0.783 0.845 0.816 0.724 0.832 0.010

Sun

128
26.66 26.36 25.24 25.55 24.92 23.19 26.98 25.29 26.46 26.53 26.74 20.43 26.96 0.02
0.714 0.689 0.679 0.688 0.671 0.473 0.734 0.684 0.710 0.703 0.708 0.403 0.729 0.005

256
27.17 27.13 26.43 26.66 25.79 25.23 27.90 27.74 27.04 27.28 27.81 23.00 28.05 -0.15
0.729 0.722 0.717 0.720 0.691 0.662 0.767 0.744 0.722 0.726 0.743 0.541 0.766 0.001

512
27.41 27.33 26.91 27.35 26.88 26.73 28.87 28.64 27.65 28.01 28.84 25.95 29.03 -0.16
0.739 0.717 0.725 0.732 0.726 0.717 0.799 0.778 0.729 0.745 0.784 0.702 0.799 0.000

1024
27.44 27.40 27.85 28.41 27.66 28.06 29.81 29.62 28.56 29.17 29.79 27.77 30.02 -0.21
0.742 0.724 0.750 0.761 0.741 0.758 0.829 0.805 0.754 0.792 0.812 0.797 0.832 -0.003
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Input (21.55dB) VST-BM3D (27.48dB) RWL2 (26.60dB) DIKP (23.04dB) DDec (23.55dB) BPDIP (22.39dB) Ours (27.93dB)

FDN (26.61dB) DMSP (26.86dB) RGDN (20.94dB) VEM (27.03dB) CPCR (22.59dB) DWDN (27.70dB) GT (PSNR)

Fig. 8 Visual results of NID using 5th motion kernel from (Levin et al, 2011) in the presence of Poisson noise with peak 128.

Table 5 PSNR(dB) (odd rows) and SSIM (even rows) results of NID on the images with saturated pixels from Lai et
al.’s dataset and the images with realistic degradations from Anger et al.’s dataset. The best results in each category of
methods are underlined. The best results in all compared methods are boldfaced. The column “Margin” denotes the
performance gap between the proposed method and the best supervised learning-based method, where a positive value
implies the proposed method is better while the negative one implies the opposite.

Dataset

Non-Learning / Unsupervised Learning Supervised Learning

Margin
IBM3D EPLL FID MRD DIP DIKP DDec BPDIP Ours FCNN IRCNN FDN DMSP RGDN VEM CPCR DWDN

Lai 14.77 17.31 16.24 15.69 12.00 12.21 11.87 11.66 17.58 14.84 15.01 7.19 16.36 17.34 14.56 16.34 17.54 0.04
et al.’s 0.62 0.74 0.69 0.64 0.57 0.58 0.57 0.56 0.75 0.61 0.64 0.26 0.75 0.69 0.59 0.67 0.75 0.00

Anger 22.78 23.82 22.44 28.04 27.46 26.59 18.09 23.89 28.42 23.58 23.30 24.29 24.12 17.33 23.70 23.07 24.69 0.38
et al.’s 0.82 0.85 0.80 0.92 0.90 0.89 0.56 0.83 0.93 0.85 0.83 0.87 0.86 0.57 0.85 0.84 0.88 0.01
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Input (11.28dB) IBM3D (10.83dB) FID (13.16dB) EPLL (13.43dB) MRD (13.06dB) DIKP (10.61dB) BPDIP (10.42dB) Ours (13.68dB)

FCNN (10.63dB) IRCNN (11.06dB) DMSP (11.99dB) RGDN (13.40dB) VEM (9.99dB) CPCR (11.99dB) DWDN (11.99dB) GT (PSNR)

Input (16.57dB) FID (19.00dB) EPLL (19.07dB) MRD (26.57dB) DIP (26.35dB) DIKP (25.20dB) BPDIP (23.31dB) Ours (27.46dB)

FCNN (18.78dB) IRCNN (18.11dB) FDN (20.04dB) DMSP (19.40dB) VEM (18.53dB) CPCR (17.38dB) DWDN (20.57dB) GT (PSNR)

Fig. 1 Visual results of NID with inaccurate kernels on the sample images from Lai et al.’s dataset and Anger et al.’s real
dataset, respectively.
Fig. 9 Visual results of NID with inaccurate kernels on the sample images from Lai et al.’s dataset and Anger et al.’s real
dataset, respectively.
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Input (25.57dB) Pan-L0 (30.66dB) Pan-DCP (31.10dB) Yang & Ji (31.38dB) Anger-L0 (30.87dB) Anger-HN (29.72dB) SelfDeblur (28.86dB)

IBM3D (31.76dB) EPLL (31.91dB) DIP (30.77dB) DIKP (28.61dB) DDec (31.49dB) BP-DIP (30.85dB) Ours (33.23dB)

FCNN (31.59dB) FDN (31.09dB) VEM (31.17dB) TLS (31.65dB) CPCR (31.33dB) DWDN (32.78dB) GT (PSNR)

Input (22.12dB) Pan-L0 (17.56dB) Pan-DCP (26.20dB) Yang & Ji (26.37dB) Anger-L0 (20.76dB) Anger-HN (22.05dB) SelfDeblur (21.67dB)

IBM3D (21.01dB) EPLL (27.26dB) DIP (25.57dB) DIKP (26.10dB) DDec (26.42dB) BP-DIP (21.79dB) Ours (27.83dB)

FCNN (26.26dB) DMSP (27.09dB) VEM (23.88dB) TLS (25.17dB) CPCR (22.99dB) DWDN (22.86dB) GT (PSNR)
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Fig. 1 Visual results of NID with inaccurate kernels, which are from Set12, Kohler et al.’s dataset and Lai et al.’s real
dataset, respectively.
Fig. 10 Visual results of NID with inaccurate kernels, which are from Set12, Kohler et al.’s dataset and Lai et al.’s real
dataset, respectively.
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Table 6 PSNR(dB) (odd rows) and SSIM (even rows) results of NID with inaccurate kernels. The upper part contains
the blind deconvolution methods, the middle part contains the non-learning-based or unsupervised learning-based NID
methods, and the bottom part contains the supervised learning-based NID methods. The best results in each category of
methods are underlined. The best results in all compared methods are boldfaced. The column “Margin” denotes the
performance gap between the proposed method and the best one in corresponding category, where a positive value implies
the proposed method is better while the negative one implies the opposite.

Dataset Pan-L0 Pan-DCP Yang & Ji Anger-L0 Anger-HN SelfDeblur ASN Cho et al. Margin

Set12 25.43/0.77 26.62/0.80 26.05/0.78 25.76/0.77 24.92/0.75 24.23/0.73 26.09/0.83 20.83/0.62 2.17/0.09
Lai et al.’s 18.54/0.62 19.16/0.62 19.42/0.68 18.65/0.54 18.36/0.50 21.13/0.73 20.22/0.65 17.60/0.46 0.81/0.04

Kohler et al.’s 26.90/0.85 28.85/0.91 28.32/0.89 27.96/0.86 27.21/0.83 23.41/0.76 28.94/0.89 24.60/0.76 0.58/0.02

Dataset IBM3D EPLL FID DIP DIKP DDec BPDIP Ours Margin

Set12 27.77/0.86 27.21/0.85 26.05/0.78 26.35/0.81 26.64/0.82 27.25/0.84 25.91/0.81 28.79/0.89 1.02/0.03
Lai et al.’s 19.36/0.67 21.81/0.76 21.02/0.72 21.18/0.72 21.42/0.73 21.13/0.72 20.06/0.69 21.94/0.77 0.13/0.01

Kohler et al.’s 23.65/0.84 28.90/0.91 28.85/0.91 27.44/0.88 28.51/0.90 27.71/0.88 24.11/0.82 29.52/0.93 0.62/0.02

Dataset FCNN IRCNN FDN DMSP VEM TLS CPCR DWDN Margin

Set12 27.66/0.86 27.12/0.85 27.81/0.87 27.48/0.84 27.73/0.87 28.37/0.88 26.31/0.83 27.01/0.85 0.42/0.01
Lai et al.’s 21.66/0.76 21.22/0.73 17.40/0.55 22.15/0.78 21.11/0.72 20.57/0.73 20.87/0.73 21.76/0.77 -0.21/-0.01

Kohler et al.’s 28.03/0.90 26.92/0.88 26.84/0.86 28.19/0.90 25.89/0.86 29.05/0.93 26.99/0.89 24.39/0.86 0.47/0.00

4.3.2 Inaccurate Kernels

The proposed method is also tested with inac-
curate kernels to evaluate its robustness to ker-
nel error. Four datasets are used for evaluation:
Set12 (Zhang et al, 2017b) with 96 images gener-
ated by the eight motion blur kernels from (Levin
et al, 2011) and noise level σ = 1%, Lai et
al.’s synthetic dataset (Lai et al, 2016) with 100
images generated by the four motion blur kernels
from (Lai et al, 2016) and noise level σ = 1%,
Kohler et al.’s dataset (Köhler et al, 2012) with 48
blurry images generated from twelve motion blur
kernels with certain degree of spatial variation,
and Lai et al.’s real dataset (Lai et al, 2016) with
100 motion blurred images. The inaccurate ker-
nels are obtained by applying some SOTA motion
blur kernel estimation method, i.e., (Yang and
Ji, 2019) for Set12, (Ren et al, 2020) for Lai et
al.’s synthetic dataset, and (Pan et al, 2016) for
both Kohler et al.’s dataset and Lai et al.’s real
dataset. For Kohler et al.’s dataset, we use its offi-
cial benchmark code to calculate the PSNR and
SSIM. For the other three datasets, following the
standard protocol (Levin et al, 2011; Ren et al,
2020), we first align the output images to the
sharp images with sub-pixel shift and then cut off
the boundary pixels for calculating the PSNR and
SSIM. In this experiment, the iteration number of
the proposed method is fixed to 2.5× 104.

The multi-scale SSIM is used in the benchmark of Kohler et
al.’s dataset. For simplicity, we also call it SSIM in the tables.

The representative methods mentioned above
are included for comparison, except DPDNN as
its implementation assumes that the same ker-
nel is used in both training and test. Instead,
we include TLS (Nan and Ji, 2020), a very
recent method specifically designed for NID with
inaccurate kernels. We use its published trained
model for the test with our setting. In addition,
some blind deblurring methods also included for
comparison, including Pan-L0 (Pan et al, 2014),
Pan-DCP (Pan et al, 2016), Yang & Ji (Yang
and Ji, 2019), Anger-L0 (Anger et al, 2019b),
Anger-HN (Anger et al, 2019a), SelfDeblur (Ren
et al, 2020), ASN (Kaufman and Fattal, 2020)
and Cho et al. (Cho et al, 2021). See Table 6
for quantitative comparison and Fig. 10 for visual
inspection. The proposed method outperforms all
other methods, except that it performs slightly
worse than DMSP on Lai et al.’s dataset with less
than 0.2dB PSNR gap.

Table 7 Empirical analysis on the robustness
improvement to kernel error brought by the standard
dropout scheme and the proposed SA droput scheme. The
values in the brackets indicate the drop in PSNR.

Kernels w/o SA w/o Dropout Ours

Perfect 31.51 (↓ 0.05) 29.73 (↓ 1.83) 31.56
Inaccurate 28.28 (↓ 0.51) 26.24 (↓ 2.55) 28.79

To investigate how much the dropout-based
model uncertainty contributes to the robustness of
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the proposed method to kernel error, we conduct
an ablation study by comparing the proposed one
against the same network with the SA dropout
being replaced by the standard dropout, as well
as the same network with dropout being disabled.
See Table 7 for the results on Set 12 in both
cases of perfect kernels and inaccurate kernels.
The first observation is that the model uncertainty
introduced by dropout improves the robustness
to kernel error, as the PSNR gain from introduc-
ing dropout on inaccurate kernels is noticeably
(around 0.72dB) larger than that on perfect ker-
nels. The second observation is that the model
uncertainty implemented using the proposed SA
dropout brings further improvement to the robust-
ness over using the standard dropout, as the
PSNR gain from the SA dropout on inaccurate
kernels is noticeably (around 0.46dB) than that on
perfect kernels. Particularly, the PSNR gain from
the SA dropout is very minor (0.05dB) for the
case of perfect kernels. Such results have clearly
verified that model uncertainty benefits handling
kernel error, for which the SA dropout is more
effective than the standard one.

4.4 Ablation Study

4.4.1 SA Dropout vs. Regular Dropout

In the previous experiment, we have analyzed the
benefit of SA dropout for handling kernel error. In
this ablation study, we further study the benefit of
the proposed SA dropout over the regular (stan-
dard) one in other NID settings. See Table 8 for
the results. The spatial adaption in SA dropout
leads to improvement in various settings. Overall,
the larger amount of the measurement noise is, the
bigger improvement it can bring. We can also see
that, the PSNR gain obtained by the SA dropout
for Poisson noise (about 0.40−0.47dB), is greater
than that for AWGN (about 0.04− 0.16dB).

An illustration is given in Fig. 11 to give some
insight, where we show the pixel-wise variance
maps of 100 dropout inferences from the models
trained on two blurred images with different noise
levels. The higher the blur degree a region has, the
higher the variance (uncertainty) of the inferences
about the region has. These results have further
demonstrated the effectiveness of the proposed SA
dropout scheme.

Fig. 11 Variance map (right) of 100 dropout inferences
from our dropout-trained model on a blurred image (left).
Brighter color indicates higher variance.

Table 8 PSNR(dB) results in ablation studies on Sun et
al.’s dataset with accurate motion kernels and AWGN
(σ = 5%).

Dropout
Noise Level σ Peak Value

1% 3% 5% 128 256 512 1024

Standard 31.51 28.00 26.40 25.37 26.43 27.52 28.61
SA 31.56 28.09 26.56 25.84 26.84 27.92 29.01

Margin 0.04 0.09 0.16 0.47 0.41 0.40 0.40

4.4.2 Contribution of Each Component

The ablation study conducted in this section is
to evaluate how much the components included
in the proposed method contribute to the per-
formance improvement, which include: (i) the
contribution from using dropout in training; (ii)
the contribution from using dropout-based aggre-
gation in testing; (iii) the contribution from using
pixel replacement for the input seeds; (iv) the
contribution from using the masking in the self-
supervised loss. Such a study is conducted on
Sun et al.’s dataset in NID with accurate motion
kernels, using the following baselines: (i) w/o
Dropout: disabling dropout training and dropout
inference; (ii) w/o Aggregat.: using the model
from dropout training and Eb[θ∗ � b] for predic-
tion, without dropout inference and averaging.
(iii) w/o Replace. : using non-random y with-
out replacement as input (the corresponding loss
is the squared `2 loss w/o masking as no pixels
are replaced) (iv) w/o Masking: using standard
squared `2 reconstruction without masking in (8).

See Table 9 for the results on motion deblur-
ring with AWGN of noise level σ = 5%. Clearly,
each component makes substantial contribution
to the performance. Among them, the dropout-
based aggregation during test contributes the
most (0.93dB for “Ours” over “w/o Aggregat.”)
and the pixel replacement strategy contributes the
least yet noticeably (0.14dB for “w/o Masking.”



Springer Nature 2021 LATEX template

18 Article Title

over “w/o Replace.”). Without aggregation, the
dropout training only serves as a regularization
which yields some improvement (0.31dB for “w/o
Aggregat.” over “w/o Dropout”).

Table 9 Quantitative results in ablation studies on
Sun et al.’s dataset with accurate motion kernels and
AWGN (σ = 5%).

w/o Dropout Aggregat. Replace. Masking Ours

PSNR(dB) 26.51 26.82 27.34 27.48 27.75
SSIM 0.700 0.704 0.733 0.741 0.750

4.4.3 PSNR w.r.t. Inference Number

See Fig. 12 for the graph of performance impact
caused by the number of dropout inferences. Both
the PSNR and SSIM increase very fast when
more predictions are used for aggregation in the
range from 1 to 20, which indicates that there is
sufficient independence among these instances to
improve the prediction on the latent image via
average. After 20 inferences, the gain is much less,
and it saturates with more than 50 inferences.
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Fig. 12 Average PSNR/SSIM versus number of infer-
ences, calculated in the experiment on Sun et al.’s dataset
with accurate motion kernels and AWGN (σ = 5%).

4.5 Limitation Analysis

While exhibiting SOTA performance among the
non-learning-based and unsupervised learning-
based methods in previous experiments, the pro-
posed approach has limitations in comparison
to its supervised counterparts. As discussed in
Remark 3, Proposition 1 is not applicable in the
presence of kernel estimation error. When such
error is large, the performance of the DNN trained
by the proposed loss (8) may not be as good
as some supervised learning-based methods. See
Fig. 13 for such a case where the performance of

the proposed approach is better than TLS (Nan
and Ji, 2020), but is worse than ASN (Kaufman
and Fattal, 2020), a supervised learning-based
kernel-blind method without explicit utilization of
the convolution model of blurring.

Another limitation is the higher computational
cost for testing in comparison to supervised learn-
ing methods, as supervised learning allows one to
use a pre-trained model to process all test data,
rather than perform training on test data.
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Input & Accurate Kernel Ours & Inaccurate Kernel

TLS & Inaccurate Kernel ASN (Blind to kernel)

Fig. 1 Failure case of the proposed method when deblur-
ring an image from Lai et al.’s synthetic dataset in the
presence of large kernel error.

Fig. 13 Failure case of the proposed method when deblur-
ring an image from Lai et al.’s synthetic dataset in the
presence of large kernel error.

5 Conclusion

While deep learning over a large dataset is an
effective approach to NID, its practicability is
limited in the scenarios where training sam-
ples are hard to collect. In this paper, based
on untrained DNNs and model uncertainty, we
proposed a dataset-free deep learning approach
for NID which has no dependence on external
training samples. The main idea is to introduce
model uncertainty implemented by a specific SA
dropout scheme to handle the solution ambigu-
ity and a self-supervised loss to deal with the
measurement noise. The prediction is obtained
by averaging multiple outputs of the DNN with
model uncertainty, which can be viewed as an
approximate MMSE estimator of the problem
in Bayesian inference. The proposed approach
achieved noticeable performance improvement
over existing non-learning-based methods and
unsupervised learning-based methods in extensive
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experiments, and it also competed well against
recent supervised deep learning-based methods.

The techniques developed in this paper have
potential applications to other image recov-
ery problems. The proposed self-supervised loss
can be extended to handle the measurement
noise in other imaging models. The SA-dropout-
based scheme that leverages model uncertainty
to address solution ambiguity can be applied
for further improvement when using untrained
DNNs to solve the inverse problems where the
observations only provide partial information of
the latent image, e.g., image super-resolution
and compressed sensing. We will investigate such
extensions in the future.

There are two limitations in the proposed
approach. One is its weak robustness to large ker-
nel error. The other is its higher processing time
than supervised learning-based methods, which is
a common weakness of existing dataset-free learn-
ing methods. In the future, we would like to study
how to introduce specific mechanisms to handle
large kernel errors better. Also, we would like
to study how to improve the computational effi-
ciency. One possible approach we will investigate
is to quickly adapt some pre-trained model for the
self-supervised learning process.

A Proof of Proposition 1

First, we rewrite the loss function as follows.∑
`

‖k ∗ fβ(ŷ`)− y‖2m`

=
∑
`

‖k ∗ fβ(ŷ`)− k ∗ x‖2m`
+
∑
`

‖n‖2m`

− 2n>
(∑

`

(1−m`)� (k ∗ fβ(ŷ`)− k ∗ x)
)
.

(16)

The expectation of the second term is given by

En
[∑

`

‖n‖2m`

]
= En

[∑
`

‖(1−m`)� n‖22
]

=
∑
`

‖(1−m`)� σ‖22 =
∑
`

‖σ‖2m`
.

(17)

Regarding the last term, for simplicity we define

r =
∑
`

(1−m`)� (k ∗ fβ(ŷ`)− k ∗ x)

=
∑
`

(1−m`)� (k ∗ fβ(m` � (k ∗ x) +m` � n

+ (1−m`)� (A ◦ (m` � y)))− k ∗ x).

(18)

It can be seen that k∗fβ(m`� (k∗x)+m`�n+
(1−m`)�(A◦(m`�y))) contributes to r(i) only
if m`(i) = 0. But in this case, n(i) is erased by
m`(i). This means that n(i) has no contribution
to r(i). Together with that n(i) is independent of
n(j) for any i 6= j, It is concluded that r(i) is
independent to n(i) for all i. Therefore, we have

En
[
n>r

]
= (En

[
n
]
)>(En

[
r
]
) = 0. (19)

Combining (16), (17) and (19) gives that

En[
∑
`

‖(1−m`)� (k ∗ fβ(ŷ`)− y)‖22]

=
∑
`

‖k ∗ fβ(ŷ)− k ∗ x‖2m`
+
∑
`

‖σ‖2m`
.

(20)

The proof is done.

B MMSE Approximation

The derivation is based on the theory of vari-
ational inference; please see (Blei et al, 2017)
for a comprehensive introduction. First, we take
p(β) as a uniform distribution on a sufficiently
large bounded set S = [−C/2, C/2]d, where C
is a sufficient large positive number and d is the
dimensionality of β. Additionally, the entries of
the noise n are assumed to be i.i.d. variables fol-
lowing the Gaussian distribution of mean zero and
variance σ2. The KL divergence between p(β|D)
and q(β|θ) is given by

KL(q(β|θ)‖p(β|D))

=Eq(β|θ) log q(β|θ)− Eq(β|θ) log p(β|D)

=Eq(β|θ) log q(β|θ)− Eq(β|θ)
(

log p(β)

+ log p(D|β)− log p(D)
)

=KL(q(β|θ)‖p(β))− Eβ∼q(β|θ) log p(D|β)

+ Eβ∼q(β|θ) log p(D).

(21)
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Since log p(D) is irrelevant to the model parameter
β, we have Eβ∼q(β|θ) log p(D) = log p(D) which is
a constant. Therefore, we have

KL(q(β|θ)‖p(β|D)) =

KL(q(β|θ)‖p(β))− Eβ∼q(β|θ) log p(D|β) + const.,

(22)

where the KL divergence between q(β|θ) and p(β)
can be written as

KL(q(β|θ)‖p(β)) =

Eq(β|θ) log q(β|θ)− Eq(β|θ) log p(β).
(23)

The first term on the right hand of the above
equation is the negative entropy of q(β|θ). Recall
that q(β|θ) is the probability of Bernoulli:

β = θ � b, where b(i) ∼ Bernoulli(pi). (24)

Its entropy is given by

− Eq(β|θ) log q(β|θ) =

−
∏
i

(
pi log pi + (1− pi) log(1− pi)

)
, (25)

which is a constant irrelevant to the parame-
ter θ and can be ignored during training. Since
p(β) = 0 outside S, log p(β) = −∞ outside S.
Then

∫
q(β|θ) log p(β) = −∞ if

∫
Rd\S q(β|θ) 6= 0

(which means that θ /∈ S). When θ ∈ S, we have∫
S q(β|θ) = 1 and thus

Eq(β|θ) log p(β)

=

∫
q(β|θ) log p(β) =

∫
S
q(β|θ) log

1

Cd

= log
1

Cd
.

(26)

It yields that∫
q(β|θ) log p(β) =

{
log 1

Cd
, θ ∈ S

−∞, θ /∈ S. (27)

Finally, we obtained that

KL(q(β|θ)‖p(β)) = δS(θ) + const, (28)

where

δS(θ) =

{
0, if θ ∈ S,
+∞, otherwise.

(29)

Recall that the samples in D = {ŷ`, (1−m`)�y}`
are related by

(1−m`)�y = (1−m`)� (k ∗ fβ(ŷ`) +n). (30)

Roughly, we assume these samples are indepen-
dent from each other. Then we can obtain

Eβ∼q(β|θ) log p(D|β)

=Eβ∼q(β|θ)
∑
ŷ`∼Ω

log p((1−m`)� y|β, ŷ`)

+ Eβ∼q(β|θ)
∑
ŷ`∼Ω

log p(ŷ`|β)

=− 1

2σ2
Eb
∑
ŷ∼Ω

C(y,k ∗ fθ�b(ŷ)) + const.

(31)

Finally, we have

KL(q(β|θ)‖p(β|D)) =

1

2σ2
Eb
∑
ŷ∼Ω

C(y,k ∗ fθ�b(ŷ)) + δS(θ) + const.

(32)

Thus, minimizing the KL divergence between
p(β|D) and q(β|θ) is equivalent to

min
θ∈S

Eŷ∼ΩEb C(y,k ∗ fθ�b(ŷ)). (33)

Since the feasible set S is sufficiently large, the
constraint θ ∈ S can be omitted in practice, which
results in the our training loss in (5).
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