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Abstract

Low-dose CT (LDCT) imaging attracted a considerable interest due
to its reduction of exposure to X-ray radiation. In recent years, super-
vised deep learning has been extensively studied for LDCT image recon-
struction, which trains a neural network (DNN) over a dataset containing
many pairs of normal-dose and low-dose images. However, the challenge
on collecting many such pairs in the clinical setup limits the application
of supervised-learning-based methods for LDCT image reconstruction in
practice. Aiming at addressing the challenges raised by the collection of a
training dataset, this paper proposed an unsupervised deep learning (DL)
method for LDCT image reconstruction, which does not require any exter-
nal training data. The proposed method is built on a re-parametrization
technique for Bayesian inference via a DNN with random weights, com-
bined with total variational (TV) regularization. The experiments show
that the proposed method noticeably outperforms existing dataset-free
image reconstruction methods.
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1 Introduction

X-ray Computed Tomography (CT) has been widely applied in clinical imag-
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ing, for its ability of providing high-resolution images of internal anatomical
structures. High-quality CT images are very useful for prevention, diagnosis
and treatments of human diseases. However, many studies indicated that ex-
cessive exposure to radiation from a X-ray CT scanner may be responsible for
the increasing risk of getting cancer, thus there is the demand for reducing
radiation dose when run CT scanning. There are two main techniques for ra-
diation dose reduction: decreasing the radiation exposure time, i.e. decreasing
the number of projection views [33], and lowering the X-ray tube current [38],
i.e. LDCT. In comparison to normal dose CT (NDCT), the signal-to-noise ra-
tio (SNR) of measurements in LDCT is much lower. As a result, the quality of
images reconstructed using conventional methods is not satisfactory for LDCT.
There are often noticeable streaky artifacts and random patterns appearing in
reconstructed images.

The image reconstruction problem for LDCT can be formulated as solving
a linear inverse problem

y = Ax+ n, (1)

where A denotes the projection matrix of CT imaging, y denotes the available
measurements, x denotes the image to be reconstructed, and n denotes the
measurement noise which is often modeled by i.i.d. random variables. The
inverse problem (1) from LDCT imaging is ill-posed. Certain regularization on
x needs to be introduced to address solution ambiguity and to suppress noise
magnification when solving (1).

In recent years, deep learning has been a very promising tool for developing
effective image reconstruction methods for CT, including LDCT. The majority
of existing deep learning-based methods are built upon supervised learning; see
e.g. [1, 6, 7, 10, 11, 13, 17, 19, 25, 28, 42]. Supervised learning requires a dataset
with many training samples, i.e., the pairs of a low-dose image (used as input)
and a normal dose image (assumed to be ground-truth). The construction of
such image pairs requires two-times scan as well as registration for alignment
of every image/projection pair, which is costly and troublesome in practice. In
addition, the number of real-world images for LDCT is also very limited. As a
result, there is an increasing interest on the development of powerful unsuper-
vised deep learning methods for LDCT imaging which work well in data-limited
environments.

1.1 Related works

In existing literature, many methods, e.g., analytical filtering methods [14,22,26]
have been proposed to improve image quality of LDCT imaging. Due to low
SNR of measurement data, these methods, including the ones equipped with
adaptive filtering [3] and bilateral filtering [30], are not capable of producing
high-quality CT images. Over the past decades, iterative reconstruction algo-
rithm is a popular approach adopted in LDCT imaging, which is derived by
minimizing a cost function. The cost function usually is composed of a fidelity
term determined by statistical characteristics of noise and a regularization term
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induced by some pre-defined prior on the image. In the past, many regulariza-
tions have been proposed for LDCT image reconstruction, e.g., total variation
(TV) [34, 47], wavelet tight frame-based sparsity prior [23], nonlocal total vari-
ation [24], and low-rank based patch prior [5].

In past few years, deep learning has emerged as a prominent tool for de-
veloping powerful image reconstruction methods for LDCT imaging. Earlier
work on DL-based LDCT image reconstruction used DL as a post-processing
tool [6, 7, 25, 28], which trains a deep neural network (DNN) to denoise images
reconstructed from some existing works. The denoising network is trained by
using many pairs of images reconstructed from LDCT and the corresponding
NDCT. Different network architectures have been exploited in these works, e.g.,
convolution neural network (CNN) [7], encoder-decoder CNN [6], residual net-
work [28], and U-Net [25]. As the artifacts in a reconstructed image often cannot
be modeled as independent random noise, the performance gain brought by such
a post-process is limited. A more effective approach is the so-called optimiza-
tion unrolling scheme [1, 10, 13, 17] and plug-and-play [19, 41]. Such a scheme
follows some iterative image reconstruction scheme derived from some regular-
ization methods, and replaces the related regularization steps by a or multiple
learnable/pre-trained denoising DNN. The main difference among these meth-
ods lies in which iterative scheme is used for unrolling and how to train the
denoising network embedded inside the iterations.

Recently, the development of dataset-free DL methods has drawn a lot of
attention for LDCT imaging. By using a generative adversarial network (GAN),
the works [39,40] conducted training on a dataset containing both low-dose and
normal-dose images, but which are not paired. Inspired by recent works on
unsupervised learning for generic image denoising, there are two approaches to
extending these unsupervised learning approaches to inverse problems such as
low-dose CT image reconstruction.

One approach is treating CT image reconstruction as a denoising process
which post-processes the reconstructed images. In [18, 45], the Noise2Noise
(N2N) [27], a denoising network trained over the image pairs with indepen-
dent noise, is introduced to remove artifacts of the reconstructed LDCT images.
In [21], the Noise2Self (N2S) [4], an unsupervised denoising network trained
over noisy images, is extended to the tomography problem by modeling image
artifacts as independent random noise. Such an approach suffers from the same
performance issue as its supervised counterparts that rely on a denoising net-
work for removing artifacts of the reconstructed images. The reason is that the
artifacts of a reconstructed image are indeed highly correlated to the entries
of the image, which cannot be well modeled by simple random variables, such
as i.i.d. noise, assumed by the unsupervised denoising networks. As a result,
the performance of these unsupervised methods, derived from those unsuper-
vised denoising networks above, is not very competitive to the state-of-the-art
supervised methods for LDCT imaging.

Another unsupervised approach is built on the so-called deep image prior
(DIP) [35]. DIP is originally proposed for image denoising. It is empirically
observed that when training a CNN to fit a noisy image, regular image struc-
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tures appear before random patterns. Thus, one can train a denoising network
on a noisy image by early stopping. In other words, early stopping can be an
effective technique for regularizing a denoising network. DIP has been exploited
in various medical imaging tasks, such as PET reconstruction [16,43], MRI [44],
diffraction tomography [48], and compressed sensing [36]. In [2], DIP is com-
bined with TV-based regularization for CT image reconstruction. While DIP is
simple and effective for image denoising, there are issues regarding DIP-derived
methods for CT imaging. The artifacts in a reconstructed images are not ran-
dom noise. They are also regular patterns correlated with the image structures.
As a result, the early stopping adopted in DIP cannot prevent the appearance
of artifacts in the images reconstructed by DIP.

1.2 Our idea

In this paper, we present an unsupervised deep learning method for LDCT im-
age reconstruction, without requiring any external training samples with ground
truths. Such an unsupervised method certainly can see its great value in prac-
tice. The proposed method is built on the Bayesian inference where the prior
distribution of an image is re-parametrized by a DNN with random weights.

Recall that in Bayesian inference, we have two representative Bayesian esti-
mators. One is the maximum a posterior (MAP) estimator:

x
MAP

= arg max
x

p(x|y), (2)

and the other is the minimum mean squared error estimator (MMSE) estimator,
or equivalently the conditional mean estimator:

x
CM

= E(x|y)(x|y) =

∫
xp(x|y)dx, (3)

where p(x|y) denotes the posterior distribution of x given y. The key to both
estimators is about deriving the posterior distribution p(x|y) which models the
data well. A common practice in Bayesian inference is to re-express p(x|y) by
Bayesian rule:

p(x|y) = p(y|x)p(x)/p(y),

where the likelihood term p(y|x) can be expressed as

p(y|x) =
1

2σ2
‖y −Ax‖22,

in the presence of i.i.d Gaussian white noise n ∼ N (0, σ2I). Then, the study of
the estimators turns to defining a prior distribution p(x) that accurately models
statistical characteristics of images for reconstruction.

In traditional regularization methods, to be computationally tractable, the
prior distribution p(x) usually is modeled by mean-field approximation which
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assumes the independence of all image pixels. For instance, the well-known
TV-based regularization assumes

p(x) =
∏
i

q((∇x)i),

where q is the density function of a Laplacian distribution: q(z) ∼ e−
|z|
λ . There

are two concerns in the assumptions of the prior distribution used in TV-based
regularization. One is the mean-field assumption and the other is the Laplacian
assumption.

The over-simplified mean-field model for the prior distribution p(x) moti-
vates us to study a different approach to modeling the prior distribution p(x) or
the posterior distribution p(x|y). Inspired by the advance of optimization tech-
niques for solving the optimization problems of DNN training, we propose to
adopt a re-parametrization technique for Bayesian inference, which re-expresses
the variable x by a DNN with random weights

x = f(x0;θ),

where x0 is some initial seed and θ are random variables. It can be seen that
after re-parametrization, the prior distribution of p(x) can be very complicated,
even though the variable θ is modeled by mean-field approximation.

After re-parametrization, the variables for inference now are random network
weights θ. Again, the key for a Bayesian inference now is to define an appropri-
ate posterior distribution p(θ|y) for θ. As in general, it is not computationally
tractable in high dimension, we adopt variational approximation to approximate
p(θ|y) by a set of approximation distributions q(θ|µ) parametrized by µ. The
optimal approximation with distribution parameters µ∗ is then estimated by
minimizing the Kullback–Leibler (KL) divergence between two distributions.
Once the approximation to posterior distribution p(θ|y) is obtained, we can
utilize the Bayesian inference to estimate the image.

This paper is organized as follows. Section 2 describes the proposed method
and algorithm, with the NN architecture and implementation details given in
Section 2.4. Section 3 is devoted to the experimental evaluation and comparison
to other methods. Section 4 concludes the paper.

2 Method

In this section, we give a detailed discussion on the proposed self-supervised
method for LDCT reconstruction from noisy measurements, which is built on the
DNN-based re-parametrization for Bayesian inference. Recall that CT recon-
struction problems can be formulated as the following inverse problem: Given
an observed image y ∈ Rm corrupted according to forward model and noise, n,
find the unknown image x ∈ Rn which satisfies the observation

y = Ax+ n. (4)
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Considering a DNN with random weights for the re-parametrization:

x = f(x0;θ).

Then, the inference of x from noisy measurement y is now about inferring
the network weights θ from y. In order to perform Bayesian inference for θ,
the key is to derive the posterior distribution p(θ|y). As p(θ|y) is in general
computationally intractable, we propose to approximate it by the following set
of distributions q(θ|µ) defined by

θ = µ� b : θi = µi · bi, 1 ≤ i ≤ N, (5)

where µi denotes the distribution parameter of θi and bi ∼ B(pi) follows a
Bernoulli distribution with probability pi. In other words, the probability den-
sity function of bi is defined as

p(bi) = pbii (1− pi)1−bi bi = {0, 1}. (6)

In other words, the DNN with random weights used in this paper is the widely
used the network with dropout. It is noted that the idea of using the network
with dropout also has been exploited in S2S [8,29,32] for self-supervised image
denoising and deconvolution.

In the next, we gives a detailed discussion on how to train the network by
minimizing the KL divergence between q(θ|µ), and how to use the trained model
for testing by using Monte-Carlo sampling.

2.1 Training

As we use q(θ|µ) to approximate p(θ|y), the optimal approximation is estimated
by minimizing the KL-divergence between q(θ|µ) and p(θ|y):

min
µ

KL(q(θ|µ)||p(θ|y))

= min
u

Eθ∼q(θ|µ)[log q(θ|µ)− log p(θ|y)]

∝min
µ

Eθ∼q(θ|µ)[log q(θ|µ)− (log p(y|θ) + log p(θ))]

= min
µ

KL(q(θ|µ)||p(θ))− Eθ∼q(θ|µ) log p(y|θ). (7)

For the first term, suppose that p(θ) is a uniform distribution in a sufficient

larger region Ω. Here, we abuse the notion 0
0 = 1. We have q(θi|µi) = p

θi
µi
i (1−

pi)
1− θi

µi , θi = {0, µi} and p(θi) = 1/si, where si is the length of the domain of
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definition about θi. Then,

DKL(q(θ|µ)||p(θ)) =
∑
i

DKL(q(θi|µi)||p(θi)),

=
∑
i

q(θi|µi) log
q(θi|µi)
p(θi)

,

=
∑
i

(1− pi) log (1− pi) + pi log pi + log si.

Finally, we obtain

DKL(q(θ|µ)||p(θ)) = c0, θ ∈ Ω, (8)

where c0 is a constant.
In the second term, suppose that the measurement noise n is Gaussian white

noise such that p(n) ∝
∏
i exp(

−n2
i

2σ̃2 ), we have

log(p(y|θ)) ∝ − 1

2σ̃2
‖Af(x0,θ)− y‖22.

Then, we have

min
µ
DKL(q(θ|µ)||p(θ|y)) ∝ min

µ
Eθ∼q(θ|µ)‖Af(x0,θ)− y‖22. (9)

It can be seen from (9) that the KL divergence only constrains the estimation
in the range space of the projection matrix A. To avoid possible overfitting,
we introduce an additional regularization on the estimation, and we adopt the
widely-used TV regularization to the loss function. Recall (5) and consider the
definition of q(θ|µ) and B(p), we deduce that

min
µ

Eθ∼q(θ|µ)‖Af(x0,θ)− y‖22

= min
µ

∫
‖Af(x0,θ)− y‖22 q(θ|µ)dθ

dθ=µ�db
======== min

µ

∫
‖Af(x0,µ� b)− y‖22 B(p)db

= min
µ

Eb∼B(p)‖Af(x0,µ� b)− y‖22.

The final loss function for training the network now is

min
µ

Eb∼B(p)‖Af(x0,µ� b)− y‖22 + α‖∇f(x0,µ� b)‖1, (10)

where α is a pre-defined hyper-parameter. When training the network, the loss
function is minimized by using MC dropout [15], i.e., randomly dropping out
nodes during the training with dropout rate p.
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2.2 Testing

Once the NN is trained via minimizing the loss function given in (10), we have
an approximation to the posterior distribution p(θ|y), denoted by q(θ|µ∗). In
our approach, we estimate the image x using conditional mean estimator. Recall
that given the measurement y, its conditional mean estimator for x reads

x
CM

=

∫
xp(x|y)dx.

By re-parametrization: x = f(x0;θ), we have

x
CM

=

∫
xp(x|y)dx =

∫
f(x0;θ)p(θ|y)dθ.

By approximating p(y|θ) using q(θ|µ∗), we have an approximate conditional
mean estimator of x given by

x∗
CM

=

∫
f(x0;θ|µ∗)q(θ|µ∗)dθ. (11)

The integration above is calculated by using Monte Carlo (MC) integration in
practice. That is, after the network is trained, we take K random samples of
the networks with dropout:

f(x0;θk) = f(x0;µ∗ � bk), bk ∼ B(p).

Then, the estimate is defined by taking the the average of these K samples:

x∗ =
1

K

K∑
k=1

f(x0;θk) =
1

K

K∑
k=1

f(x0;µ∗ � bk). (12)

2.3 Discussion

In Section 2.1 and Section 2.2, we present a DNN-based re-parametrization
x = f(x0;θ) for facilitating the Bayesian inference of LDCT image reconstruc-
tion. In the proposed approach, the corresponding posterior distribution p(θ|y)
is approximated by a network with dropout q(θ|µ) via minimizing their KL
divergence. After the network is trained with dropout. The network is sam-
pled with dropout to have a MC-based approximation to the conditional mean
estimator of x.

In addition, as only the noisy measurement y is available which only mea-
sures the image x in the range space of A, a TV-regularization is introduced
in the loss function for regularizing the network to avoid possible overfitting.
As a result, the loss function (10) is closely connected to the non-learning TV
regularization method for solving inverse problems. Indeed, based on the loss
function (10), the proposed method can be viewed as learning multiple solvers
to the TV-regularization model, and each solver differentiate itself from others
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by using different network architectures (by random dropout). From the per-
spective of ensemble learning, the proposed method can be also interpreted as
an ensemble learning method that is built on TV-related regularization. It is
likely that the artifacts from each instance of the solver to TV regularization
have certain degree of independence. Then, the average of the results from these
solvers will benefit such artifact independence to have an estimate with less ar-
tifacts. In short, the proposed method provides an efficient ensemble learning
method for LDCT image via dropout.

2.4 Implementation details

2.4.1 NN architecture

To evaluate the effectiveness of the proposed method, we test it using an encoder-
decoder with skip-connection as the backbone network, whose diagram is illus-
trated in Fig. 1 (a). In the diagram of the network, the notation Di, Ui and Si
represent the downsampling, upsampling and skip-connection blocks in the NNs.
In the decoder-encoder architecture, cu[i], cd[i], cs[i] correspond to the number
of filters at depth i for the upsampling, downsampling, skip-connections respec-
tively. The values ku[i], kd[i], ks[i] correspond to the respective kernel sizes. The
values pu[i], pd[i], ps[i] are the drop probability of dropout for the upsampling,
downsampling, skip-connections respectively. Note that there is no upsampling
layer in U1 and the NN structure is similar to a U-Net.

2.4.2 Implementation

For the implementation of the network, the number of layer N is set to 5. For
the layers from i = 1, · · · , N , the filter numbers are set as cd[i] = cu[i] = 128
and cs[i] = 4. All Conv layers are with kernel size of kd[i] = ku[i] = 3 and
kd[i] = 1, strides of 1, and reflection padding of length 2 with i = 1, · · · , N .
LeakyReLU [20] is used as each non-linear activation unit where the slop is set
to 0.1. Max pooling is used for downsampling, and bi-linear interpolation is
used for upsampling. There is no dropout in downsampling and upsampling
blocks, i.e. the dropout probability of Di and Ui are set to 0. For the other
blocks, the dropout is conducted element-wisely with dropout probability set to
ps[i] = 0.3.

For the initial value x0, we adopt the J -invariant transform of the FBP
reconstructed image x

FBP
as [4],

x0 = b� x
FBP

+ (1− b)� s(x
FBP

),

where � denotes the element-wise multiplication, b denotes a binary Bernoulli
vector whose entries are independently sampled from a Bernoulli distribution
with probability p = 0.3, and the function s(·) is set to the convolution with ker-
nel 1

6 [ 12 , 1,
1
2 ; 1, 0, 1; 1

2 , 1,
1
2 ]. Note that such an initialization can be implemented

by adding a Conv Layer with enabled dropout and a pre-defined low-pass filter.
For the MC sampling in testing, we set K = 50.
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(a) Overall architecture used for performance evaluation.

cd[i]

pd[i] kd[i]
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(d) Upsampling Block Ui (e) Legend

Figure 1: Diagram of the network used for evaluating the proposed method.
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3 Experiments

The proposed method is implemented in PyTorch [31] interface on a NVIDIA
Titan GPU. Adam optimizer is used with the momentum parameter β = 0.9,
and the learning rate is set as 10−5.

3.1 Methods for comparison

To evaluate its performance on LDCT image reconstruction, the proposed method
is compared to several representative non-learning methods, including TV-based
penalized weighed least squares method (PWLS-TV), KSVD [46] and BM3D [9].
The PWLS-TV uses the following regularization model for reconstructing the
image from the measurement:

arg min
x
‖Ax− y‖22 + α‖∇x‖1, (13)

where α is the regularization parameter. It is solved by the ADMM method in
our experiments.

Also, the proposed method is compared to two recent unsupervised learning
methods and a supervised learning method. Two unsupervised learning meth-
ods include S2S for denoising-based post-process and DIP+TV for direct image
reconstruction. S2S is a recent unsupervised learning method which also uses
a dropout-based network for denoising an image. We used it as a post-process
to denoise the image reconstructed by the FBP method, where the denoising
NN is trained using the S2S method with the same configuration as the pro-
posed method. The DIP+TV [2] combines the DIP approach and TV-based
regularization for CT, whose loss function is defined by

L(θ) = ‖Af(z;θ)− y‖22 + α‖∇f(z;θ)‖1. (14)

The DIP+TV is related to the proposed method. Indeed, the proposed method
is degenerated to the DIP+TV by setting the dropout probability p to 1 and
using the same input z. In the DIP-based denoising network, a random noise
is used as the initial seed. In this paper, the initial seed for the DIP+TV is
also set to x0, the same as the proposed method. DIP+TV is trained using the
Adam optimizer with the momentum parameter set as 0.9. The learning rate is
set as 10−2.

In addition, for the dataset of prostate images, we also compare the proposed
method with a supervised learning method, FBPConvNet [25]. FBPConvNet is
one of a representative deep learning methods for CT reconstruction that uses
the deep NN as a post-processing technique. In FBPConvNet, U-net architec-
ture is trained with low-dose and normal-dose image pairs to directly denoise
the image reconstructed by the FBP method.

3.2 Data simulation

We adopted the proposed method to LDCT reconstruction, in which A is set
as the projection matrix. By using a monoenergetic source in CT imaging, the
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measurements from CT scan follow Poisson distribution which can be expressed
as [12]:

ȳi ∼ Poisson{Ii exp(−[Ax]i)}+N(0, σ2
e), (15)

where N refers to normal distribution, x denotes the attenuation map with xj
being the linear attenuation coefficient in the j-th pixel for j = 1, · · · , n and n
denotes the total number of pixels; ȳ represents the measured projection. The
matrix A is the m× n system matrix with entries aij , and [Ax]i =

∑n
j=1 aijxj

denotes the line integral of the attenuation map x along the i-th X-ray with
i = 1, · · · ,m. Ii is the incident X-ray intensity incorporating X-ray source
illumination and the detector efficiency. The noise level is controlled by Ii, i.e.,
the noise of measures data becomes larger when the dose level Ii decreases.
The scalar σ2

e denotes the variance of the background electronic noise. To
reconstruct the attenuation map x, we take the logarithm transform on the
noisy measurements ȳ to generate the noisy sinogram y.

3.3 LDCT reconstruction result

For quantitative analysis of image quality, three indices: peak signal to noise
ratio (PSNR), root mean square error (RMSE) and structural similarity index
measure (SSIM) [37] are compared for different reconstruction methods.

NDCT LDCT KSVD BM3D

S2S PWLS-TV DIP+TV Proposed

Figure 2: Reconstruction results of phantom.
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NDCT LDCT KSVD BM3D S2S PWLS-TV DIP+TV Proposed

Figure 3: Zoom-in results of Phantom in Fig. 2.

LDCT(FBP) KSVD BM3D S2S PWLS-TV DIP+TV Proposed
PSNR 25.2472 26.9100 29.8907 34.0764 35.4817 40.5554 42.3255
RMSE 0.0273 0.0226 0.0160 0.0099 0.0084 0.0047 0.0038
SSIM 0.3604 0.4642 0.4453 0.8343 0.9805 0.9861 0.9949

Reconstruction Time 0.01s 145.80s 23.61s 40.07min 3.24s 13.52min 55.22min

Table 1: Quantitative reconstruction results of phantom in Fig. 2.

3.3.1 Phantom image reconstruction

To evaluate the effectiveness of the proposed method, we simulated the digital
phantom of size 256 × 256 and the corresponding noisy sinogram. The LDCT
projection data was simulated by adding Poisson noise and the background
electronic onto the normal-dose projection data with Ii = 1× 103 and σ2

e = 10.
The simulated geometry for projection data is as follows: fan-beam CT scanner,
flat-panel detector of 0.388 mm × 0.388 mm pixel size, 600 projection views
evenly spanning a 360◦ circular orbit, 512 detector bins for each projection
with 1mm pixel size, 100.0cm source to detector distance and 50.0 cm source
to isocenter distance. The hyper-parameter α was set to 0.02, 0.2 and 0.2 for
PWLS-TV, DIP+TV and the proposed respectively.

Fig.2 shows the images reconstructed by different methods, and their zoomed-
in images of boxes in Fig. 2 are displayed in Fig. 3. With low-dose measure-
ments, LDCT image reconstructed by FBP present large noisy and streaky
artifacts. In comparison to the zoomed-in NDCT image, the results of KSVD,
BM3D and S2S have more streaky artifacts than that of the proposed method.
In the proposed method, PWLS-TV and DIP+TV, TV regularizer can help
suppress the noise and remove the artifact in the reconstructed image. Further-
more, the proposed one has a better performance in structure preservation and
noise suppression.

Table 1 shows quantitative comparison of the results shown in Fig. 2. The
proposed method has the best performance in terms of three metrics PSNR,
RMSE and SSIM. Both PWLS-TV and DIP+TV improves upon the conven-
tional LDCT result as expected, and the proposed outperformed DIP+TV by a
noticeable margin, i.e. 1.8dB advantage in PSNR. Table 1 shows the compari-
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Figure 4: Fig.4(a): Profile of the line labeled in red in Fig.2 NDCT. Fig.4(b):
PSNR versus prediction times K. Fig.4(c) and Fig.4(d) are the two single pre-
dictions of the image. Fig.4(e): the average of multiple predictions.

son of running time for the proposed method and the other methods. With an
NVIDIA A100 graphics card, the reconstruction time of the proposed method
is comparable with S2S. For fewer iterations, DIP+TV has the advantage over
the proposed method.

Fig. 4(a) shows the profile outlined in red in Fig. 2, where the results of
PWLS-TV, DIP+TV and the proposed method are compared. It can be easily
seen that the cyan line is more close to the ground truth (red line). See Fig.
4(b) for the illustration of how the value of K, the number of predictions for
averaging, impacts the performance of the simulated phantom. It shows that the
PSNR value steadily increases with the value of K until it hits 15. Afterward,
the improvement brought by more predictions is rather small. See Fig. 4(c) and
Fig. 4(d) for the visualization of two single predictions of the image. It can be
seen that there is a noticeable difference between two single predictions in certain
regions. Fig. 4(e) visualizes the average of multiple predictions, which contains
fewer artifacts than the two predictions shown in Fig. 4(c) and Fig. 4(d). In
other words, the average of multiple predictions from the proposed dropout-
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based method indeed can reduce the artifacts in the reconstructed image.

3.3.2 Reconstruction from different noise levels

We evaluated the proposed method with different noise levels. For patient’s
normal dose prostate image with size 256 × 256, we simulated the low-dose
measurement with dose levels Ii = 1×103, 5×103, 1×104, 5×104 and σ2

e = 10.
Then, the sinograms of different noise levels were obtained by taking logarithm
on projection data. The simulated geometry for projection data is the same as
that of phantom data simulation.

Fig. 5 demonstrates the NDCT image and the zoomed region for comparison.
Fig. 6 shows the images reconstructed by different methods of different dose lev-
els, and their zoomed-in images of boxes in Fig. 5 are displayed in Fig. 7. The
displayed window is set to [−150, 200]HU for all figures with µair = −1000HU.
For all the reconstruction methods, the image quality decreases with the lower
dose level. The recovered images by BM3D are not visually satisfactory. The
images by S2S are blurry that some image details are missing. The proposed,
PWLS-TV and DIP+TV are the three best performers among all methods with-
out dataset. For the three methods with TV regularizer, the proposed method
achieved the be image quality with preserved image structure and less noise.
In this experiment, the values of α are adjusted to the noise level of the data.
For PWLS-TV, DIP+TV and the proposed method, α = 0.1, 0.1, 0.1 with
I = 1 × 103; α = 0.05, 0.05, 0.05 with I = 5 × 103; α = 0.02, 0.03, 0.01 with
I = 1× 104 and α = 0.01, 0.01, 0.001 with I = 5× 104.

In this prostate dataset, there are 6400 normal-dose prostate CT images. We
adopted FBPConvNet with 80% of low-dose and normal dose image pairs. It is
shown in Table 2 and Fig. 6 that supervised method has the best performance
in comparison with non-learning methods and unsupervised DL methods. With
the dose I = 5 × 103 and I = 1 × 103, FBPConvNet gained 1-2dB advan-
tage over the proposed method. The proposed method and DIP+TV achieved
higher PSNR and SSIM, and smaller RMSE among all unsupervised methods.
Moreover, the proposed method outperformed DIP+TV by 1.0-1.3dB in PSNR.

NDCT ROI

Figure 5: Normal dose CT image and a zoomed region (ROI).
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Figure 6: Reconstruction results at different dose levels by different methods
with σ2

e = 10
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1× 103

5× 103

1× 104

5× 104

I NDCT LDCT KSVD BM3D S2S PWLS-TV DIP+TV Proposed

Figure 7: Zoomed-in results corresponding to Fig. 6 at different dose levels by
different methods with σ2

e = 10.

Dose Level Index LDCT KSVD BM3D FBPConvNet S2S PWLS-TV DIP+TV Proposed

1× 103
PSNR 16.0859 16.7163 19.9995 29.6054 25.7518 25.8050 25.3503 27.5996
RMSE 162.8839 151.4813 103.8002 34.3481 53.5282 53.2013 56.0607 43.2707
SSIM 0.2744 0.2841 0.4379 0.8159 0.5893 0.7001 0.6739 0.7675

5× 103
PSNR 24.3676 24.9922 26.2975 33.2609 30.3793 30.0352 30.8064 31.9237
RMSE 62.7758 58.4203 50.2687 26.3339 31.4200 32.6897 29.9125 26.3018
SSIM 0.5510 0.5805 0.6622 0.8762 0.8086 0.8535 0.8544 0.8722

1× 104
PSNR 27.4944 27.5416 29.1881 33.3785 31.3774 31.3655 32.4104 33.5989
RMSE 43.7979 43.5605 36.0386 22.2457 28.0094 28.0477 24.8687 21.6883
SSIM 0.6834 0.7024 0.7808 0.8943 0.8702 0.8612 0.8894 0.9070

5× 104
PSNR 33.1157 32.5643 33.6708 36.9016 34.3365 35.0872 35.4009 36.1700
RMSE 22.9291 24.4320 21.5097 14.8283 19.9226 18.2731 17.3623 16.1314
SSIM 0.8861 0.8894 0.9166 0.9518 0.9301 0.9234 0.9220 0.9408

Table 2: Quantitative reconstruction results of Fig. 6.
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3.3.3 Clinical Data Reconstruction

(a) (b)

Figure 8: Two normal dose CT images from mayo dataset.

To evaluate the performance of the proposed method under realistic condi-
tions, a clinical image was used, which was established by Mayo Clinics for “the
2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”. We aimed to
reconstruct the image with size 512× 512 from the projection data of full dose
CT images of 3mm thickness. The projection data is composed of projection
data from 600 projection views evenly spanning a 360◦ circular orbit, 768 detec-
tor bins for each projection, 100.0 cm source to detector distance and 50.0 cm
source to isocenter distance.

Fig. 8 shows two normal dose mayo image slices and two ROIs of each slice
are labeled by blue and green boxes. Fig. 9 and Fig. 10 demonstrate the zoomed
region of interest corresponding to Fig. 8(a) and Fig. 8(b) respectively. The
displayed window is set to [−200, 400]HU for all figures with µair = −1000HU.
LDCT image is reconstructed by FBP with heavy noise and artifacts. Both
post-processing-based type methods BM3D and S2S are not able to remove the
streaky artifacts. TV and DIP+TV could reduce noise and remove artifacts,
but the image details are smoothed out. The proposed method achieves the
image result with better structure preservation and noise suppression. For the
image in Fig. 8(a), the hyper-parameter α was set to 0.5, 0.3 and 0.3 for PWLS-
TV, DIP+TV and the proposed method respectively for optimal performance.
For the image in Fig. 8(b), the hyper-parameter α was set to 0.3 for all the
TV-based methods.

Quantitative reconstruction results corresponding to the image in Fig. 8(a)
and Fig. 8(b) are given in Table 3. The proposed method has the best per-
formance in terms of the metrics than the other methods. In comparison with
DIP+TV, the proposed method outperforms DIP+TV in PSNR about 1dB.
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NDCT LDCT KSVD BM3D S2S PWLS-TV DIP+TV Proposed

Figure 9: Zoomed-in results of Mayo image corresponding to Fig. 8(a) .

NDCT LDCT KSVD BM3D S2S PWLS-TV DIP+TV Proposed

Figure 10: Zoomed-in results of Mayo image corresponding to Fig. 8(b) .

Index LDCT KSVD BM3D S2S PWLS-TV DIP+TV Proposed

Fig. 8(a)
PSNR 30.0174 29.9941 30.4400 30.1597 34.3136 34.7112 36.4061
RMSE 42.4475 42.5617 40.4317 41.7577 25.8847 24.7265 20.3432
SSIM 0.9098 0.9113 0.9398 0.9138 0.9475 0.9518 0.9577

Fig. 8(b)
PSNR 31.011 31.0529 31.6613 31.3406 33.9875 33.7172 35.2124
RMSE 41.9409 41.7388 38.9155 40.3789 29.7721 30.7134 25.8562
SSIM 0.8921 0.8950 0.9273 0.9095 0.9276 0.9192 0.9461

Table 3: Quantitative reconstruction results of Fig. 8(a) and Fig. 8(b).
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4 Discussion and Conclusion

In this paper, we proposed an unsupervised learning method for LDCT image
reconstruction, which is based on a re-parametrization via the network with
random weights for Bayesian inference. The proposed method does not require
any external training samples, which is flexible and easy to use in practice. The
experiments showed that the proposed method outperformed the representative
non-learning-based methods and two recent unsupervised deep learning meth-
ods. The proposed method can be potentially adapted to other medical image
reconstruction problems, where the training samples are costly or difficult to col-
lect, e.g. sparse-view CT reconstruction and image reconstruction from sparse
samples in MRI. In the future, we would like to investigate better data-driven
regularization for avoiding the possible over-fitting caused by the absence of
ground-truth. In this paper, the values of the regularization parameter and
dropout probability are manually tuned up for optimal performance. How to
automate the setting of these parameters remains a question to be studied in
future work. In addition, unsupervised deep learning methods canot pre-train
a model such that it can be called to process test images without training.
Computational efficiency is important for practical usage. It will be our future
work on how to address such an issue. One direction is to study a light-weight
network with few parameters for LDCT. Another direction is to study test-time
adaption which uses an unsupervised method to quickly adapt a pre-trained
model to process test data.
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