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ABSTRACT
Deep convolutional neural networks (CNNs) have become a promis-
ing approach to no-reference image quality assessment (NR-IQA).
This paper aims at improving the power of CNNs for NR-IQA in
two aspects. Firstly, motivated by the deep connection between
complex-valued transforms and human visual perception, we in-
troduce complex-valued convolutions and phase-aware activations
beyond traditional real-valued CNNs, which improves the accuracy
of NR-IQA without bringing noticeable additional computational
costs. Secondly, considering the content-awareness of visual quality
perception, we include a dynamic filtering module for better extract-
ing content-aware features, which predicts features based on both
local content and global semantics. These two improvements lead to
a complex-valued content-aware neural NR-IQA model with good
generalization. Extensive experiments on both synthetically and
authentically distorted data have demonstrated the state-of-the-art
performance of the proposed approach.
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1 INTRODUCTION
Image quality assessment (IQA) aims at quantifying human percep-
tion of image quality. In the past decades, huge efforts have been
devoted to no-reference IQA (NR-IQA) which is about estimating
the perceived quality of a distorted image without accessing any
information of its pristine counterpart. Such a topic has received
extensive attention from both industry and academic, due to its
great potentials and values in many practical applications [16, 34].

The key of NR-IQA is how to extract quality-related features
from only a single distorted image. Traditional NR-IQA meth-
ods extract such features using hand-crafted statistical models;
see e.g. [11, 21, 53]. In recent years, the great success of con-
volutional neural networks (CNNs) achieved in image recogni-
tion has spawned a series of CNN-based NR-IQA approaches; see
e.g. [42, 50, 60]. Following this line of research, this paper inves-
tigates the further potentials of CNN-based methods for NR-IQA.
We aim to improve the power of CNNs for NR-IQA in the following
two aspects.

Introducing complex-valued representations to NR-IQA
CNNs. Most existing CNN models for IQA are built upon real-
valued operations, while the power of complex-valued transforma-
tions has not been exploited yet. Indeed, complex transforms are
not strangers to IQA. They have been widely adopted for quality-
aware feature extraction, such as Gabor transform [46], discrete
Fourier transform [31], and complex wavelet [58]. Another exam-
ple is phase-related features (e.g. phase congruency), introduced
by complex-valued representation, and they have been widely ex-
ploited in IQA; see e.g. [23, 52]. In the view of biological perception
in human visual system, a visual signal is transmitted to the pri-
mary visual cortex (also called V1) through the lateral geniculate
nucleus for visual abstraction processing, and responses of the cells
in V1 are characterized by the selectivity, orientation and frequency,
which can be modeled by complex-valued transforms [8, 36].

The merits of complex-valued transforms and representations
inspired us to introduce complex-valued convolutions and phase-
aware activations to exploit such merits in IQA-oriented CNNs.
Complex-valued convolutional layers also benefit the model com-
pactness. The information of a real-valued feature tensor can be
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perfectly represented by its complex-valued counterpart while us-
ing one-half channels, as a complex number has its real and imagi-
nary parts. Then, for a real-valued convolutional layer, its complex-
valued counterpart may halve both the input and output channels.
Together with that a 2D complex-valued kernel doubles the weights
over its real-valued counterpart, we have that a complex-valued
convolutional layer can halve the number of parameters over its
real-valued counterpart.

Dynamic filtering for improving content-awareness in fea-
ture extraction. A traditional CNN model is typically content-
agnostic since the spatially-invariant convolutional filters are
shared across different pixels and different input images for a
trained model. However, an ideal IQA model usually demands
content-aware feature extraction. As shown in [20], even for the
same pattern, human perceive different visual qualities when the
content of its neighborhood and the semantics of the image vary.
In general, different image contents may be sensitive to different
distortions, e.g., a flattened area is usually sensitive to noise while a
textured area is sensitive to blur. Consider a large flattened area. It
may be considered a high-quality pattern when it is located in an
image of a clear blue sky, while it is regarded as a serious blurring
in a textured image. Then, the extraction of quality-related features
should be content-aware and the filters should be related to the
image patterns to be analyzed. Due to the diversity of distortion
and the variation of image contents, it is difficult to construct a
fixed set of filters to cover all possible patterns, particularly for
authentically distorted images. To improve the content-awareness,
we introduce the dynamic filtering technique to the complex-valued
NN for NR-IQA, where the filters are conditioned on both the local
contents and global semantics for feature extraction.

Based on the aforementioned two improvements, we develop a
dynamic complex-valued neural model for NR-IQA. Our contribu-
tions in this work are three-fold:

• We introduce complex-valued deep learning for NR-IQA,
which utilizes the merits of complex-valued representations
and transformations for improving the effectiveness of CNN-
based NR-IQA. To the best of our knowledge, this is the first
work to study complex-valued neural models for IQA.

• We introduce dynamic filtering to the complex-valued CNN
for both locally and globally content-aware feature extrac-
tion, which can better mimic human perception of visual
quality in handling diverse image contents and distortions in
authentic cases. This is also the first work to apply dynamic
filtering to NR-IQA.

• A dynamic complex-valued CNN is proposed for NR-IQA.
Benefiting from its compactness and effectiveness, the pro-
posed model can be trained fast without the need for back-
bone fine-tuning. Its effectiveness is demonstrated by the
extensive experiments on IQA benchmark datasets.

2 RELATEDWORK
2.1 NR-IQA Models
Traditional NR-IQA approaches involve two steps: quality-related
feature extraction done by a hand-crafted process, e.g., using natu-
ral scene statistics (NSS) [11, 29] or local binary patterns [21, 53],
and quality score regression done by a learning-based model, e.g.,

support vector regressor, random forest, and Gaussian process re-
gression. Complex-valued representations are often exploited in
the hand-crafted feature extraction process; see e.g. [31, 46, 58].

In recent years, an increasing number of CNN-based NR-
IQA methods have been proposed with significant improvement
achieved. As IQA is typically a small sample problem due to the
expensive costs of collecting subjective scores of IQA, some stud-
ies (e.g. [2, 42]) focused on addressing the insufficiency of labeled
data for training NR-IQA CNNs by exploring patch-wise pseudo
labels. More studies introduce auxiliary tasks to exploit additional
labeled data from a different source, e.g. distortion type classifi-
cation [26, 54], image quality ranking [24, 55], and quality map
estimation [33].

The network architecture design is another focus for deep NR-
IQA. Most methods utilize the former layers of recognition back-
bones (e.g. VGG16 [39] and ResNet [13]) for feature extraction,
where the backbones pre-trained on recognition tasks are fine-
tuned on the IQA tasks. Note that the fine-tuning procedure is
usually computationally intensive owing to a large number of
trainable parameters in the backbone. Furthermore, a backbone
pre-trained for recognition often lacks the capability in extracting
quality-related features, particularly in a content-aware manner.
Hence, great efforts have beenmade to build content-aware schemes
into pre-trained backbones for improvement. Su et al. [40] proposed
a content-aware regressor whose weights are predicted with image
features. Gu et al. [12] introduced attention to the weight different
image areas with predicted perceptual importance. For improve-
ment, Chen et al. [3] used reinforcement learning to better cap-
ture the attention information in the input image. Note that while
these attention mechanisms generate content-aware weights on
extracted features, the feature extraction process remains content-
agnostic. Ke [17] introduced the transformer architecture to NR-
IQA, where self-attention builds a similarity-based transform for
image-adaptive feature extraction. The transformer architecture
usually requires much more learnable parameters and computation
burden, which limits its applications.

2.2 Complex-Valued CNNs
Complex-valued CNNs have been investigated for a long time.Many
studies focus on theoretical aspects, such as optimization [1, 32],
generalization [14], representational capacity [43], and invari-
ance [5]. Most of these studies were conducted in the context of
image classification. Recently, complex-valued CNNs have been
applied to image recovery [36, 37], with great potentials demon-
strated. However, the potentials of complex-valued CNNs for IQA
have not been investigated yet.

2.3 Dynamic Filtering
Dynamic filtering aims at overcoming the content-agnostic prop-
erty of a standard convolution, so as to improve the capability and
adaptivity of a CNN in handling spatially-varying image struc-
tures or effects. There are a series of works, such as conditionally-
parameterized convolutions [47] and dynamic convolutions [57],
which predict coefficients to combine several expert filters. These
convolutions are still applied in a spatially-shared way. The kernel
prediction network [28] addressed this by generating an individual
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(b) Diagram of complex ResBlock (c) Diagram of complex DF

Figure 1: Proposed DCNet for NR-IQA. Conv for Convolution, ReLU for Rectified Linear Unit, BN for Batch Normalization,
ResBlock for Residual Block, DF for Dynamic Filtering, GAP for Global Average Pooling, and FC for Fully-Connected.

filter for every pixel location. To adjust the filter neighborhoods
dynamically, the deformable convolution [7] adds offsets to the
convolutional neighborhoods. To reduce the computational cost
of kernel prediction, the decoupled dynamic filtering [59] uses a
composite strategy with decoupled spatial and channel dynamic
filters. Aiming at the deblurring problem, Quan et al. propose ker-
nel mixture learning [38] by decomposing the predicted kernels
into a group of spatially-shared bases and some spatially-varying
coefficients, which considerably reduces the model size. All these
works are for image recognition or recovery, not IQA.

3 PROPOSED APPROACH
The proposed NR-IQA model called DCNet (Dynamic Complex-
valued Network) consists of two parts: a static complex-valued CNN
for the pre-stage feature extraction, and a complex-valued dynamic
filtering module for content-aware feature extraction. Finally, a
complex-valued regressor is applied to predict the quality score
with extracted complex features. Similar to existing works, the
DCNet is combined with a pre-trained backbone for improvement.

3.1 Pre-Stage Static Feature Extraction
Given the real-valued feature tensor 𝑿0 formed by the pre-trained
backbone on the input image, we first transform it to a complex-
valued feature tensor by two convolutional layers as follows:

𝑿 = ConvR (𝑿0) + 𝑖 · ConvI (𝑿0), (1)

where ConvR (·), ConvI (·) are implemented as a pair of real-valued
convolutional layers. Here we do not adopt a pre-defined complex-
valued transform but the learnable ones for better adaptivity. Then,
a series of complex-valued blocks shown in Figure 1(a) is applied
to 𝑿 . The involved basic layers are detailed as follows.

Complex-valued convolutional layer. This layer is con-
structed by replacing the real-valued kernel with the complex one
in the convolution process. A standard complex-valued convolution

can be expressed as

(𝑲 ∗ 𝑿 ) (𝑝) =
∑︁

𝑝′∈Ω (𝑝)
𝑿 (𝑝 ′)𝑲 (𝑝 ′ − 𝑝), (2)

where 𝑿 , 𝑲 denote a complex-valued feature map and a complex-
valued kernel respectively, 𝑝 denotes the pixel index, and Ω(·)
denotes convolution window around the 𝑝-th pixel. Considering
the complex-valued product rule, Equation (2) can be rewritten as

(𝑲 ∗ 𝑿 ) (𝑝) =
∑︁

𝑝′∈Ω (𝑝)
[𝑿R (𝑝 ′)𝑲R (𝑝 ′ − 𝑝) − 𝑿 I (𝑝 ′)𝑲 I (𝑝 ′ − 𝑝)]

+ 𝑖 ·
∑︁

𝑝′∈Ω (𝑝)
[𝑿R (𝑝 ′)𝑲 I (𝑝 ′ − 𝑝) + 𝑿 I (𝑝 ′)𝑲R (𝑝 ′ − 𝑝)],

where the superscript R and I denote the real and imaginary part
of a complex variable, i.e., 𝑋 = 𝑋R + 𝑖 · 𝑋 I. By using real-valued
convolutions, we have a more concise form:

𝑲 ∗ 𝑿 = (𝑲R ∗ 𝑿R − 𝑲 I ∗ 𝑿 I) + 𝑖 · (𝑲R ∗ 𝑿 I + 𝑲 I ∗ 𝑿R). (3)

A convolutional layer performs convolution operations in a
multi-channel manner. Given the input 𝑿 ∈ Cℎ×𝑤×𝑐 , the out-
put of a complex-valued convolution, denoted by 𝒀 ∈ Cℎ×𝑤×𝑐′ , is
calculated as

𝒀𝑗 =
𝑐∑︁
𝑖=1

𝑲𝑖, 𝑗 ∗ 𝑿𝑖 + 𝑩 𝑗 , (4)

for 𝑗 = 1, · · · , 𝑐 ′, and 𝑿𝑖 , 𝒀𝑗 denote the 𝑖-th channel of input, 𝑗-th
channel of output, respectively. 𝑩 𝑗 denotes the bias.

Introducing complex-valued representations to convolutional
layers can benefit the model compactness. Consider a real-valued
convolutional layer with kernel size of 𝑘 × 𝑘 , 𝑐1 input channels
and 𝑐2 output channels, which involves 𝑘2𝑐1𝑐2 parameters. To have
the same amount of information, a complex-valued convolutional
layer with 𝑐1/2 input and 𝑐2/2 output channels can be used, which
has only 𝑘2𝑐1𝑐2/2 parameters. In addition, complex-valued convo-
lutions introduce interactions between real and imaginary parts.
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Figure 2: Complex DF module. The complex filter application means applying complex-valued convolution at a single position.

Though such interactions can be implemented in a real-valued one
with additional connections, there is no motivation for such connec-
tions without the interpretation from complex-valued operations.

Complex-valued ReLU. For the activation function, we adopt
complex-valued ReLU throughout our complex-valued CNN. There
are many choices for complex-valued ReLU. Among these, we pro-
posed to use the CReLU [43], which applies separate ReLUs on both
the real and imaginary parts of a complex number:

CReLU(𝑿 ) = ReLU(𝑿R) + 𝑖 · ReLU(𝑿 I) . (5)

The CReLU defined in (5), though simple, performs a phase-aware
activation. Consider the coordinate geometry of a complex number.
CReLU keeps the complex numberwith phase falling in 1st quadrant
and clips that with phase in the 3rd quadrant. For a complex number
located in the 2nd or 4th quadrant, CReLU only keeps either part.
Complex-valued batch normalization The batch normalization
in complex field is done by separately running batch normalization
on the real and imaginary parts of complex features respectively:

CBN(𝑿 ) = BN(𝑿R) + 𝑖 · BN(𝑿 I), (6)

where BN(·) is the standard batch normalization.
Complex-valued residual block. The complex-valued residual

block is a combination of the three modules described above, whose
architecture is illustrated in Figure 1(b). Similar to the real-valued
ones, it adds a skip connection, which addresses the vanishing gra-
dients in the back-propagation during training, as well as benefits
the preservation of image details and feature representations for
IQA by feeding the features of the previous residual block to the
subsequent blocks.

3.2 Dynamic Feature Extraction
To refine the pre-stage features in a content-aware manner, we
follow [6] to construct a complex-valued dynamic filtering module
and stack three to construct a dynamic feature extraction process.
The module is illustrated in Figure 1(c) and Figure 2. For each

channel, we calculate

𝒀𝑗 (𝑝) =
∑︁

𝑝′∈Ω (𝑝)
𝑿 𝑗 (𝑝 ′)𝑫 𝑗 (𝑝 ′, 𝑝) . (7)

where 𝑿 , 𝒀 ∈ Cℎ×𝑤×𝑐 denote the input and output tensors, and 𝑫
denotes the dynamic kernel tensor. Compared to the static convo-
lution defined in (2), the value 𝑫 𝑗 (𝑝 ′, 𝑝) in the dynamic kernel not
only depends on the relative position (𝑝 − 𝑝 ′), but also involves
the absolute position 𝑝 , leading to a spatially-varying processing.
Furthermore, unlike the standard convolution where kernels are
shared across different inputs, the kernels in (7) are predicted based
on the input. For the 𝑗-th channel, the desired complex-valued ker-
nel tensorW = WR + 𝑖 ·WI in the size of ℎ ×𝑤 × 𝑐 × 𝑘 × 𝑘 is first
calculated by

WR = 𝑔R (𝑿R) and WI = 𝑔I (𝑿 I), (8)

where 𝑔R (·) and 𝑔I (·) are learnable functions to predict the real and
imaginary parts separately. Each pixel-wise filter 𝑫 𝑗 (·, 𝑝) ∈ C𝑘×𝑘 is
then extracted from the kernelW𝑗 (𝑝) ∈ C𝑘×𝑘 located at 𝑝-th pixel
and 𝑗-th channel ofW. Note that the outputs of 𝑔R (·) and 𝑔I (·) are
both of a huge size, which unavoidably introduces a large number of
learnable parameters. Evenwith a 1×1 convolution implementation,
𝑘2𝑐2 parameters are needed for 𝑔R (·) or 𝑔I (·). To reduce the number
of parameters, following [59], each prediction function (𝑔R (·) or
𝑔I (·)) is separated into two parts: a spatially-varying channel-shared
part, and a spatially-shared channel-varying part. Regarding the
real part WR, we have

WR
𝑗 (𝑝) = 𝑺R (𝑝) ⊙ 𝑪R

𝑗 , (9)

for each pixel index 𝑝 and channel index 𝑗 , where 𝑺R (𝑝) ∈ R𝑘×𝑘 ,
𝑪R
𝑗

∈ R𝑘×𝑘 are extracted and reshaped from 𝑺R = 𝜙R (𝑿R) ∈
Rℎ×𝑤×𝑘2

, 𝑪R = 𝜓R (𝑿R) ∈ R𝑐×𝑘×𝑘 , and ⊙ denotes the element-
wise product. The same composition strategy is applied toWI.

The spatial filter branch 𝜙R (·) takes a local receptive field and
predicts local-content-aware filters, while the channel filter branch
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𝜓R (·) takes the whole image as receptive field and predicts global-
semantic-aware filters. The composition strategy leads to a locally
and globally content-aware feature extraction process, with greatly
reduced learnable parameters. Specifically, in our model, the spa-
tial filter branch 𝜙R (·) contains one 1 × 1 convolution layer, and
the channel filter branch𝜓R (·) applies the global average pooling
(GAP) to aggregate input features, then involves the stack of two
fully-connected layers and an in-between ReLU, whose number of
parameters are reduced to 𝑘2𝑐 + 2𝑐2.

3.3 Score Regression
To predict a quality score from the extracted features, GAP is sepa-
rately applied to the real and imaginary parts of each feature map
denoted by 𝑿𝑘 :

𝒛𝑘 = GAP(𝑿R
𝑘
) + 𝑖 · GAP(𝑿 I

𝑘
), ∀𝑘. (10)

Then, a complex fully-connected layer is applied as a regressor:

ℎ = 𝒘𝒛 = (𝒘R𝒛R −𝒘 I𝒛I) + 𝑖 · (𝒘R𝒛I +𝒘 I𝒛R), (11)

where𝒘R,𝒘 I ∈ R1×𝐶 . The quality score is defined as

𝑠 =

√︃
(ℎ𝑅)2 + (ℎ𝐼 )2 . (12)

3.4 Training
Due to its stronger robustness to outliers, we use Huber loss for
training. Let 𝑠∗ denote the subjective score of a training image
measured by human and 𝑠 the corresponding score predicted by
the model. The training loss is defined by

ℓ𝛿 (𝑠, 𝑠∗) =
{ 1
2 (𝑠 − 𝑠∗)2 for |𝑠 − 𝑠∗ | ≤ 𝛿

𝛿

(
|𝑠 − 𝑠∗ | − 1

2𝛿
)

otherwise
. (13)

and 𝛿 is a parameter to choose the way to penalty outliers. In im-
plementation, we set 𝛿 = 1/9 as suggested in [41]. During training,
the pre-trained backbone is frozen and without fine-tuning. This
leads to much faster training with less GPU memory consumed
than existing fine-tuning-based methods.

4 EXPERIMENTS
Following [4, 19, 41], early layers of ResNet-101 [13] are adopted
as the backbone, where the first 3 building blocks (conv1, conv2_x,
conv3_x) are employed to extract low/middle-level semantic fea-
tures. In DCNet, all convolution kernels are set to 3 × 3. In training,
stochastic gradient descent is used as the optimizer, with the mo-
mentum of 0.9 and the weight decay of 1𝑒−4. The learning rate is
initially set to 0.1 and decreased after error plateaus.

4.1 Experimental Setups
Six publicly available natural image quality databases are used for
experimental evaluation, including (i) three artificially-distorted
sets: CSIQ [18], TID2013 [35] and Kadid-10k [22]; and (ii) three
realistically-distorted sets: LIVE-C [10], KonIQ-10k [15] and
SPAQ [9]. See below for their details.
• CSIQ: 30 pristine images and 866 distorted images with 6 dis-
tortion types at 4 to 5 distortion levels.

• TID2013: 25 pristine images and a total of 3, 000 distorted images
with 17 distortion types at 4 degradation levels.

• Kadid-10k: 81 pristine images each of which is degraded by 25
distortions in 5 levels, resulting in 10, 125 distorted images.

• LIVE-C: 1, 162 realistically natural pictures with resized resolu-
tion of 500 × 500 pixels.

• KonIQ-10k: 10, 073 realistically and complexly distorted images
with resolution of 1024 × 768 pixels.

• SPAQ: 11, 125 images captured by 66 smartphones with diverse
resolutions.

Images in their original resolutions are used as input to test gener-
alization to different image sizes. Following [41, 42], we randomly
sample 80% of the images in each database for training and leave
the rest for testing. Specifically, for synthetically-distorted datasets,
we split the training and test sets according to the pristine images
such that the content is not intersected between the two sets. Fol-
lowing [41], data augmentation comprising horizontal flip, vertical
flip, and rotation of ±3◦ is randomly applied to the training im-
ages, which brings a small performance improvement in most cases.
The excess area is removed by cropping when rotation produces
extra borders. For performance comparison, the median values of
evaluation metrics across ten sessions on the test sets are reported.

Two commonly-used evaluation metrics are adopted for perfor-
mance comparison, including Spearman Rank Order Correlation
Coefficient (SROCC) and Pearson Linear Correlation Coefficient
(PLCC). The former measures the prediction monotonicity, while
the latrer measures the linear correlation. An effective IQA metric
is expected to yield high values of PLCC and SROCC.

Two well-known traditional handcrafted NR-IQA models
NIQE [30] and ILNIQE [51] are selected for performance com-
parison. Moreover, recent CNN-based methods are also selected
for comparison, including PQR [50], deepIQA [2], DBCNN [54],
SGDNet [48], CaHDC [45], HyperNet [40], MetaIQA [60],
SiamIQA [56], AIGQA [25], UNIQUE [55] and OLNet [49]. Their
experimental results are quoted from the original papers whenever
possible or otherwise obtained by their codes from the authors.

4.2 Performance Evaluation
4.2.1 Evaluation on individual databases. We first conduct eval-
uation on individual databases including both synthetic and au-
thentic distortions. The results on synthetically-distorted datasets
(i.e. CSIQ, TID2013 and Kadid-10k) are reported in Table 1. It can
be seen that our DCNet outperforms all the state-of-the-art meth-
ods by a large margin on all those three databases, in terms of
both SROCC and PLCC metrics. The larger performance gain is
observed on the TID2013 and Kadid-10k datasets which are two
challenging datasets with diverse contents and complex distortions.
Note that the compared methods perform well on CSIQ but show a
large performance decrease on TID2013 and Kadid-10k. The perfor-
mance gain of DCNet is probably because it is capable of learning
more-accurate content-adaptive filters for quality-related feature
extraction with a compact model, leading to better generalization
on complex distortions.

The results on authentically-distorted databases (i.e. LIVE-C,
Koniq-10k and SPAQ) are reported in Table 2. As the results indi-
cate, our DCNet outperforms all compared methods significantly
on the large-scale dataset KonIQ-10k while achieving comparative
performance to UNIQUE* on LIVE-C. The images in LIVE-C are
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Table 1: Performance comparison on synthetically-distorted
databases. The best result for each metric is boldfaced.

Method CSIQ TID2013 Kadid-10k
SROCC PLCC SROCC PLCC SROCC PLCC

NIQE [30] 0.632 0.726 0.343 0.378 0.374 0.428
ILNIQE [51] 0.832 0.873 0.570 0.598 0.531 0.563
PQR [50] 0.872 0.901 0.745 0.798 - -
deepIQA [2] 0.955 0.973 0.761 0.787 0.628 0.647
DBCNN [54] 0.946 0.959 0.816 0.865 - -
SGDNet [48] 0.883 0.903 0.843 0.861 - -
MetaIQA [60] - - - - 0.767 0.774
CaHDC [45] 0.874 0.915 0.862 0.878 - -
SiamIQA [56] 0.962 - 0.855 - 0.913 -
AIGQA [25] 0.927 0.952 0.871 0.893 0.864 0.863
UNIQUE [55] 0.902 0.927 0.855 0.879 0.876 0.878
OLNet [49] 0.966 0.975 0.863 0.889 - -
DCNet [Ours] 0.974 0.978 0.952 0.954 0.922 0.931

Table 2: Performance comparison on authentically-distorted
databases. The best result for each metric is boldfaced.

Method LIVE-C KonIQ-10k SPAQ
SROCC PLCC SROCC PLCC SROCC PLCC

NIQE [30] 0.464 0.515 0.601 0.597 0.703 0.712
ILNIQE [51] 0.469 0.536 0.552 0.573 0.714 0.721
PQR [50] 0.857 0.882 0.881 0.884 - -
deepIQA [2] 0.671 0.686 0.797 0.805 - -
DBCNN [54] 0.851 0.869 0.875 0.884 0.911 0.915
SGDNet [48] 0.851 0.872 0.897 0.917 - -
MetaIQA [60] 0.802 0.835 0.851 0.887 0.875 0.877
CaHDC [45] 0.738 0.744 - - 0.827 0.834
HyperNet [40] 0.859 0.882 0.906 0.917 0.916 0.918
SiamIQA [56] 0.851 - 0.894 - - -
AIGQA [25] 0.751 0.761 - - - -
UNIQUE* [55] 0.854 0.890 0.896 0.901 - -
OLNet [49] 0.849 0.858 0.877 0.882 - -
DCNet [Ours] 0.860 0.881 0.910 0.924 0.919 0.920

originally resized to a uniform square size, which is inconsistent
with the sizes when capturing them. Thus, the pixel distribution of
different objects is disrupted differently for each image, probably re-
sulting in the generalization problem. Fortunately, content-adaptive
models such as HyperNet [40] and ours still performwell on it. Note
that UNIQUE* [55] is marked because it uses all datasets for training,
while ours use individual ones respectively. Even that, DCNet still
competes against it. The good performance of DCNet on authen-
tic data probably comes from the complex-valued content-aware
filtering performed by the complex dynamic convolution module.

4.2.2 Cross-dataset evaluation. To further evaluate the generaliza-
tion ability of DCNet, we also conduct a cross-dataset experiment
by using the KonIQ-10k as the training set and LIVE-C/SPAQ as the
test sets. Only compared methods with available results are selected
for comparison. See Table 3 for the results, which indicate that our
DCNet has good generalization for predicting the quality score

Table 3: Performance comparison on models trained on
KonIQ-10k and tested on LIVE-C/SPAQ without fine-tuning.
The best result under each setting is boldfaced.

LIVE-C PQR DBCNN HyperNet UNIQUE DCNet
SROCC 0.772 0.755 0.785 0.786 0.805
PLCC 0.817 - 0.818 - 0.827
SPAQ DBCNN CaHDC HyperNet DCNet
SROCC 0.783 0.730 0.807 0.811
PLCC 0.792 0.778 0.818 0.819

for the images that have an arbitrary resolution, varying image
contents, and real-world complicated distortions.

Following [44], a gMAD competition [27] is conducted on the
SPAQ [9] database for direct visualization. The gMAD aims to
efficiently select image pairs with maximum quality difference
predicted by an attacking IQA model to challenge another defend-
ing model which partitions them to the same level of quality. The
selected pairs are shown to the observer to determine whether
the attacker or the defender is robust. In the gMAD competition,
DCNet competes with the best CNN-based competitor (i.e. Hyper-
Net [9]) and the best traditional competitor (i.e. ILNIQE [51]) in
cross-dataset evaluation. The representative gMAD pairs in SPAQ
are shown in Figure 3 and 4, where three models are trained on
Koniq-10k. From Figures 3(a) and 3(b), it can be observed that the
perceptual quality of images in the first row is slightly better on
clear structures than those in the second row, indicating that the
DCNet correctly attacked HyperNet. When we fix DCNet as the
defender, it successfully survived the attack of HyperNet at the low
and good quality levels. See Figure 3(c) and 3(d) for illustration. In
addition, it is worth mentioning that both DCNet and hyperNet
recognize the obvious low-quality images successfully. The similar
observation can be found in Figures 4.

4.2.3 Comparison on diverse distortion types. In order to evaluate
the performance on diverse distortion types, we collect the results
of CNN-based models on diverse categories of TID2013 and CSIQ
in Table 4 and Table 5. As can be seen, DCNet shows competitive
performances on individual distortion types to other methods. It
achieved the best evaluation performance for 17 out of 24 types on
TID2013 and all on CSIQ.

4.3 Ablation Studies
To verify the effectiveness of the complex-valued architecture and
the dynamic filtering module of DCNet, we conduct ablation studies
on the CSIQ, LIVE-C and Koniq-10k databases in terms of SROCCs
under several settings, using the following several baselines of DC-
Net. (i) Baseline-1: using only the pre-trained backbone without
fine-tuning. (ii) Baseline-2: using the pre-trained model with fine-
tuning on IQA datasets. (iii) RealNet: Replacing complex-valued
operations in DCNet with real-valued ones and doubling the chan-
nels. (iv) StaticNet: Removing the complex dynamic filter module
in DCNet. Note that the FC layer is used and trained for the first
two baselines for score regression. The backbones in both RealNet
and StaticNet are not fine-tuned.
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Figure 3: Representative gMAD pairs between DCNet and HyperNet on the SPAQ database. (a) Fixing HyperNet at low quality
level. (b) Fixing HyperNet at high quality level. (c) Fixing DCNet at low quality level. (d) Fixing DCNet at high quality level.

Figure 4: Representative gMAD pairs between DCNet and ILNIQE on the SPAQ database. (a) Fixing ILNIQE at low quality level.
(b) Fixing ILNIQE at high quality level. (c) Fixing DCNet at low quality level. (d) Fixing DCNet at high quality level.

The results are given in Table 6. As can be seen, each component
has a noticeable contribution to the performance of the DCNet: (i)
Compared to Baseline-1, the SROCC gains of RealNet and StaticNet
are over 0.02 and 0.03 respectively, through the datasets. Such im-
provements demonstrated the effectiveness of the complex-valued
architecture and dynamic filtering of DCNet, respectively. (ii) Com-
pared to Baseline-1, the original DCNet shows 0.055 SROCC gain on
average, which demonstrates its effectiveness. Compared with Real-
Net and StaticNet, DCNet still achieved approximately 0.02 SROCC
additional gain on average. Such improvement comes from the
combination of the complex-valued architecture and dynamic filter-
ing over the individual ones. (iii) Compared to Baseline-2, DCNet
achieved better results through all databases, which again demon-
strated its effectiveness. (iv) DCNet with backbone fine-tuning
achieved even further improvement on two datasets, but showed
a certain performance decrease on the LIVE-C database which is

probably due to overfitting. Indeed, DCNet already performs very
well without the time-consuming backbone fine-tuning.

4.4 More Analysis
4.4.1 Model complexity. The model complexity is evaluated in
terms of floating-point operations per second (FLOPS) in processing
a color image of size 1024 × 768. The recent methods including
SGDNet, CaHDC and HyperNet are selected for comparison, using
their released codes implemented by Python. See Table 7 for the
results. Our DCNet is comparable with HyperNet, one of the best
competitors in most experiments, in terms of FLOPS.

4.4.2 Performance with different backbones. Using different back-
bone models may influence the performance of the DCNet. Table 8
lists the results of DCNet using ResNet152, ResNet101, ResNet50
and VGG16 as the backbone, respectively. Comparing these results
with those of previous experiments in Table 1 and 2, we can see that
DCNet using different ResNet backbones still shows state-of-the-art
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Table 4: SROCC results on diverse distortion types of TID2013.
The best result for each distortion type is boldfaced.

Distortion DBCNN MetaIQA HyperNet AIGQA DCNet
AGN 0.790 0.947 0.769 0.932 0.956
ANC 0.700 0.924 0.613 0.916 0.929
SCN 0.826 0.955 0.918 0.944 0.961
MN 0.646 0.728 0.448 0.662 0.784
HFN 0.879 0.952 0.839 0.953 0.968
IN 0.708 0.866 0.758 0.911 0.906
QN 0.825 0.745 0.828 0.908 0.909
GB 0.859 0.977 0.873 0.917 0.974
DEN 0.865 0.938 0.804 0.914 0.955
JPEG 0.894 0.934 0.860 0.945 0.948
JP2K 0.916 0.957 0.888 0.932 0.960
JGTE 0.772 0.931 0.723 0.858 0.922
J2TE 0.822 0.903 0.846 0.898 0.919
NEPN 0.270 0.729 0.369 0.130 0.747
Block 0.444 0.391 0.428 0.723 0.711
MS -0.009 0.402 0.424 0.554 0.629
CTC 0.548 0.764 0.740 0.830 0.850
CCS 0.631 0.829 0.710 0.689 0.841
MGN 0.711 0.939 0.767 0.948 0.954
CN 0.752 0.952 0.786 0.886 0.951
LCNI 0.860 0.978 0.879 0.897 0.983
ICQD 0.833 0.859 0.785 0.908 0.854
CHA 0.732 0.927 0.739 0.889 0.931
SSR 0.902 0.974 0.910 0.908 0.967

Table 5: SROCC results on diverse distortion types of CSIQ.
Bold on digits denote the best result for each distortion type.

Distortion PQR DBCNN HyperNet OLNet DCNet
GB 0.921 0.947 0.915 0.965 0.968

AWGN 0.915 0.948 0.927 0.945 0.964
JPEG 0.934 0.940 0.934 0.968 0.972
JP2K 0.955 0.953 0.960 0.945 0.966
APN 0.926 0.941 0.931 0.953 0.958
CTD 0.837 0.872 0.874 0.925 0.931

Table 6: Ablation study on three IQA databases in terms of
SROCC. The best SROCC result for each dataset is boldfaced.

Model TID2013 LIVE-C KonIQ-10k
Baseline-1 0.881 0.803 0.872
Baseline-2 0.937 0.832 0.909
RealNet 0.924 0.823 0.907
StaticNet 0.932 0.840 0.902
DCNet 0.952 0.860 0.910

DCNet + Finetune backbone 0.961 0.835 0.929

Table 7: Comparison of model complexity in terms of FLOPS

SGDNet CaHDC HyperNet DCNet
1.23 × 1011 0.37 × 1011 1.98 × 1011 1.73 × 1011

performance. Using a larger backbone such as ResNet152 may lead
to further improvement in some cases.

Table 8: Performance on different backbones

Backbones TID2013 KonIQ-10k
SROCC PLCC SROCC PLCC

ResNet152 0.954 0.946 0.901 0.914
ResNet101 (Ours) 0.952 0.954 0.910 0.924
ResNet50 0.942 0.931 0.908 0.919
VGG16 0.901 0.891 0.809 0.839

4.4.3 Visualization of learned filters. We show the 3 × 3 filters
output by the complex dynamic filtering module on two distorted
images in Figure 5.

(a) Image (b) Real part (c) Imaginary part
Figure 5: Examples of filters output by the complex dynamic
filtering module.

5 CONCLUSION
This paper improved the effectiveness of CNNs for NR-IQA by in-
troducing a complex-valued architecture and a dynamic filtering
module, based on which a complex-valued dynamic neural NR-IQA
model is developed. Such a model has its key operations defined in
a complex field, so as to exploit the merits of complex-valued trans-
forms in the IQA realm. The dynamic filtering module further im-
proves the content-awareness during the feature extraction process
in the CNN. Extensive experiments on six publicly datasets have
demonstrated the superior performance of the proposed model over
the state-of-the-art ones in handling both synthetically-distorted
images and authentically-distorted images. In future, we would like
to further investigate other merits of complex-valued CNN mod-
ules for the improvement of NR-IQA, as well extend the proposed
approach to other IQA tasks, such as full-reference or reduced-
reference IQA. In addition, the connection between complex-valued
convolution and dynamic filtering will be further studied.
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