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Unsupervised Deep Background Matting Using
Deep Matte Prior

Yong Xu, Baoling Liu, Yuhui Quan* and Hui Ji

Abstract—Background matting is a recently developed image
matting approach, with applications to image and video editing. It
refers to estimating both the alpha matte and foreground from
a pair of images with and without foreground objects. Recent
work has applied deep learning to background matting, with very
promising performance achieved. However, existing deep models
are supervised which require a large dataset with ground truth
alpha mattes for training. To avoid the cost of data collection
and possible bias in training data, this paper proposes a dataset-
free unsupervised deep learning-based approach for background
matting. Observing that the local smoothness of alpha matte can
be well characterized by the untrained network prior called deep
matte prior, we model the foreground and alpha matte using the
priors encoded by two generative convolutional neural networks.
To avoid possible overfitting during unsupervised learning, a two-
stage learning scheme is developed which contains projection-
based training and Bayesian post refinement. An alpha-matte-
driven initialization scheme is also developed for performance
boost. Even without calling external training data, the proposed
approach provides competitive performance to recent supervised
learning-based methods in the experiments.

Index Terms—Background Matting; Deep Prior; Image Mat-
ting; Unsupervised Learning

I. INTRODUCTION

IMAGE matting is an important technique in image editing
and film making. It also has applications to other image

processing tasks such as color correction [1] and all-in-focus
synthetic aperture imaging [2]. In image matting, an image Ī
is modeled by the composite of a foreground layer F and a
background layer B as follows:

Ī = α� F + (1−α)�B, α(j) ∈ [0, 1], ∀j, (1)

where α is the so-called alpha matte that represents the
opacity of the foreground color for each pixel, � denotes the
element-wise multiplication operator, and linear indexing is
applied to Ī,F ,α. The task of image matting is to extract

Yong Xu and Baoling Liu are with School of Computer Science and
Engineering at South China University of Technology, China, and with
Peng Cheng Laboratory, Shenzhen, China. (email: yxu@scut.edu.cn, cs-
blliu@foxmail.com)

Yuhui Quan is with School of Computer Science and Engineering at South
China University of Technology, China, as well as with Guangdong Provincial
Key Laboratory of Computational Intelligence and Cyberspace Information,
China. (email: csyhquan@scut.edu.cn)

Hui Ji is with Department of Mathematics at National University of
Singapore, Singapore 119076. (email: matjh@nus.edu.sg)

*Corresponding author: Yuhui Quan (email: csyhquan@scut.edu.cn).
This work was supported in part by National Natural Science Foundation

of China under Grants 61872151 and 62072188, in part by Science and
Technology Program of Guangdong Province under Grant 2019A050510010,
in part by CCF-Tencent Open Fund 2020, and in part by Singapore MOE
Academic Research Funds R-146-000-315-114 and MOE2017-T2-2-156.

Image Background New Background

Foreground Alpha Matte Composition

1 2

2

Fig. 1: Given a pair of images with and without foreground,
background matting predicts both the alpha matte and foreground
which are used to composite a new image with another background.
The prediction results in the figure are obtained by the proposed
unsupervised learning method which has no requisite on training data.

the foreground layer as well as the alpha matte from a given
image. The extracted alpha matte can be used to combine the
extracted foreground on a different background to produce a
new plausible image.

Notice that for each image pixel, there are three unknowns
in the matting problem (1). Therefore, it is a highly ill-posed
problem, and the main concern in image matting is about
how to resolve the solution ambiguity. Most existing methods
introduce additional external information (e.g. a trimap input
by the user) or constraints (e.g. a green-screen environment)
for reducing the solution ambiguity. The trimap-based methods
require manual annotations from users, which can be labor-
intensive in the batch processing of many images. The meth-
ods assuming a green-screen environment has quite limited
applicability, as such an assumption does not hold true for
many scenarios, especially in urban areas.

In recent years, there has been an increasing interest on how
to automate the task of image matting and make it applicable
to most scenarios. One such work is the so-called background
matting [3], which is trimap-free. To achieve it, the background
matting approach takes a pair of images as the input: one with
foreground objects and the other without foreground objects.
In such a configuration, the problem is then formulated as

Ī = α� F + (1−α)� B̄, α(j) ∈ [0, 1], ∀j, (2)

where Ī denotes the image with foreground objects and B̄
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denotes its counterpart without foreground objects. The aim
of the problem is then about estimating two unknowns: the
foreground F and the alpha matte α.

In comparison to trimap-based image matting, background
matting only requires the user to take one more photo without
the subject of interest, which takes much less effort than
manually creating a trimap. Such a usage convenience is
much more appealing for batch image processing, as well
as for processing multiple frames with a fixed background
but moving/different objects. In addition, the applicability of
background matting is much wider than that of green-screen
environment-based matting. See Fig. 1 for a demonstration of
background matting.

A. Motivations

Background matting is also a challenging ill-posed problem,
as there are two unknowns for each image pixel. In [3], [4],
supervised deep learning methods are developed for back-
ground matting. These studies collected large datasets with
image triplets: images with foreground objects, images without
foreground objects, and manually-crafted alpha mattes. Then
deep networks are trained over such datasets, with state-of-
the-art results achieved.

While such supervised learning-based methods provided
very promising performance, the prerequisite on a large num-
ber of image triplets makes them very costly to implement
in practice. Recall that the alpha mattes of the training
samples require manual annotations, which can be very time-
consuming to achieve high precision. Also, if the training
samples do not sufficiently cover the variations of foregrounds
and alpha mattes, the trained model can be biased and does not
generalize well on those images not very related to the training
data. This is likely to occur for non-portrait image matting,
as the foreground objects can be arbitrary in terms of types
and appearance. In addition, the training samples for matting
are often generated and augmented by synthesizing images
from different background images and pairs of foreground and
alpha matte, whereas this may generate images with unreal
scenarios (e.g. people on a lake), bringing undesired patterns
and misleading semantics to the training data.

Motivated by the cost and possible bias introduced by the
prerequisite on training datasets of a supervised deep learning-
based method, this paper aims at developing an unsupervised
deep learning-based approach for background matting which
does not require any external training sample. In other words,
no ground truth alpha matte will be called for training, and
the proposed approach only takes an image pair (Ī, B̄) as the
input and directly learns to estimate the corresponding F and
α. Such a training-data-free approach has its great benefits
in practice. In addition, it can also be used for generating
foreground objects and alpha mattes that are close to the
ground truths for boosting the supervised training.

B. Main Ideas

As the network is not exposed to any ground truth alpha
matte, the development of an unsupervised deep learning-
based approach for background matting is technically more

challenging than developing the supervised ones. In this paper,
we tackle challenge by leveraging the generative prior encoded
by an untrained convolutional neural network (CNN). It is
inspired by the deep image prior [5] which empirically showed
that the regular image structures of an natural image can be
more efficiently approximated by a CNN architecture than
the random patterns. We observed that this also applies to
alpha matte, i.e., the generative CNN for approximating the
alpha matte tends to output a structured alpha matte with local
smoothness. This forms a very useful prior for image matting,
as local smoothness is one important property of alpha mattes,
and we refer to such a prior as the deep matte prior.

Based on the deep image prior and deep matte prior, we
adopt two generative CNNs to model the foreground and
alpha matte respectively, and the predictions from these two
CNNs will then be used to reconstruct the background given
by the input image pair. While the deep image/matte priors
partially addressed the possible overfitting arising from the
solution ambiguity, a straightforward training by the standard
procedure will still suffer from the overfitting to undesired
solutions, i.e. the learned CNNs may output foreground and
alpha matte with not very high quality. Therefore, we develop
a two-stage scheme for effectively training such a double
generative CNN architecture. In the 1st stage, the CNNs are
trained with a projection strategy to reduce possible overfitting.
In the 2nd stage, a Bayesian post-refinement is introduced to
address the issue of training asynchronization, which leads to
better performance. In addition, since the optimization over
two deep CNNs is highly sensitive to network initialization,
an initialization scheme driven by the estimated alpha matte
is developed for improvement.

C. Contributions and Significance

To summarize, this work proposes a training-data-free unsu-
pervised deep learning approach for background matting, with
the contributions listed below:
• To the best of our knowledge, this work is the first

available unsupervised deep learning approach for back-
ground matting. While requiring no external training data,
it can outperform state-of-the-art supervised learning-
based methods (e.g. [3]). Such a dataset-free approach
can certainly see its great value in the practice, in terms
of both matting performance and usage convenience.

• The proposed approach leverages the deep image prior
and deep matte prior for the implicit regularizations of
the foreground and alpha matte. Moreover, the possible
overfitting is effectively handled by a two-stage training
scheme, which addresses the solution ambiguity and leads
to good performance. These techniques have potentials in
other layer separation and image decomposition tasks.

While the proposed approach is free from external training
data, we emphasize that it is not against dataset-based learning
methods. Indeed, it provides a complement that addresses the
case where external training data is biased, insufficient or
unavailable. In such cases, the proposed approach can still
learn a good prior on the foreground and alpha matte from the
test image itself for matting. Further, similar to that deep image
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prior [5] has invoked many studies on unsupervised learning
for image recovery, our work can also inspire the development
of other unsupervised learning methods for image matting.

D. Organization and Notations

The rest of this paper is organized as follows. Section II is
devoted to literature review. Section III presents the details of
the proposed approach. Section IV conducts the experimental
evaluation. Section V concludes the paper.

Through the paper, unless specified, linear indexing is used
for images, image patches and maps. Calligraphic letters are
used for operators or distributions, boldfaced letters for vectors
or matrices, and normal letters for scalars.

II. RELATED WORK

While there have been many studies on image matting,
background matting is a new topic in its infancy stage, with
only a little work on it. This section first has a brief review
on existing image matting methods, followed by a detailed
review on background matting. In addition, since our proposed
approach is based on untrained network priors, we also have
a brief review on their related work in image processing.

A. Traditional Image Matting

Most existing image matting methods introduce additional
information or external constraints to solve (1), such as a
trimap (e.g. [6], [7], [8], [9], [10], [11], [12], [13], [14]),
scribbles (e.g. [15], [16]), and a constrained environment
(e.g. [17]), by which partial entries of the alpha matte become
known. Then the key is introducing priors to further address
the solution ambiguity of the problem. Apart from the often-
used image priors (e.g. local smoothness) on foreground and
background, traditional methods also introduce other priors for
the alpha matte estimation on the unknown regions, e.g., patch-
wise color smoothness for F and B at the boundary of α [7],
proportionality of the gradient between α and Ī which is
also called Poisson matting [6], local linear model encoded by
matting Laplacian [15], [13], non-local smoothness combined
with local smoothness [8], and sparsity priors [18], [19]. These
methods are designed for the regions with partially-known
alpha matte entries. Thus, they often fail or are not applicable
to large unknown areas, e.g. subjects containing large semi-
transparent regions. Also, those handcrafted priors are not
adaptive to the input image. In comparison to these methods,
ours is a background-based approach, and it employs the deep
generative priors encoded by untrained neural networks, which
allows to leverage the modeling power of deep learning to have
a solution with better performance.

B. Deep Learning for Image Matting

In last few years, deep learning has emerged as a powerful
approach for image matting, with noticeable improvement over
traditional methods. Xu et al. [20] proposed a large-scale
data set for image matting as well as an end-to-end CNN
to solve the problem. Wang et al. [21] proposed to use the
high-level features from a deep CNN to calculate the matting

Laplacian. Inspired by the traditional sampling-based methods,
Tang et al. [22] proposed a deep model which consists of both
background and foreground sampling networks and a subse-
quent matting network. Viewing upsampling operators as index
functions, Lu et al. [23] proposed an index-guided encoder-
decoder framework for matting, where self-learned indices are
used to guide the pooling and upsampling operators. Hou et
al. [24] employed two encoder networks to extract local and
global information respectively for matting. Cai et al. [25]
disentangled image matting into two tasks: trimap adaptation
and alpha estimation, which are respectively implemented
with an individual network. Qiao et al. [26] introduced the
spatial and channel-wise attention to the network for better
processing edges and rough shapes. Zhou et al. [27] proposed
an attention transfer network module composed of a feature
attention block and a scale transfer block, to reduce possible
artificial content in the result. Recently, rather than focus on
performance boosting, there are some studies making efforts
on setting image matting free from trimaps. For instance,
Liu et al. [28] showed that is possible to perform trimap-
free matting on portrait images, but not general foreground
objects. They utilized coarse annotations from segmentation
datasets to enlarge the training dataset for matting and train the
network in a semi-supervised setting. All methods discussed
above are based on supervised learning and not for background
matting. In comparison, ours is an unsupervised learning-based
approach for background matting.

C. Background Matting

The background matting studied in [3], [4] solves (2) so as
to avoid the issues arising from using trimaps. Compared to
traditional image matting, the studies on background matting
are still at the infancy stage. Sengupta et al. [3] trained a
deep network with an adversarial loss to predict the alpha
matte using a large set of portrait images with ground truths.
Concretely, they first trained a matting network with a super-
vised loss on annotated data. To bridge the domain gap to un-
annotated real images, they trained another matting network
guided by the first one and by a discriminator that quantifies
the composition quality. Lin et al. [4] proposed a coarse-to-fine
network which first predicts at the coarse scale to estimate the
foreground, the alpha matte and an error map. Then, these
estimations are up-sampled to the fine scale, followed by
the refinement on the hard regions defined as those having
relatively-high error rates in the error map. These two methods
showed better performance over existing non-learning and
learning-based trimap-based methods. However, since these
models require a portrait segmentation map as input [3] or
are trained on portrait images [3], [4], they cannot generalize
well to the images containing other kinds of subjects. In
comparison, our proposed approach has no bias to training
data and can be applied to various types of images, while
having competitive performance as seen in the experiments.

D. Untrained Network Priors for Image Processing

There have been recent interests in using untrained neural
networks as natural image priors. Deep image prior [5] and its
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Fig. 2: Overview of the proposed approach for background matting. The number under each layer denotes the output channel number.

variants such as deep decoder [29] are capable of solving many
image recovery problems without training data. Gandelsman et
al. [30] proposed to train multiple deep networks with deep
image prior for image decomposition and image segmentation.
Currently, there is no published work on applying untrained
network priors to image matting. Our work is the first one and
its proposed learning scheme is specialized for the problem
which also differs from existing work. In addition, alpha matte
is generally not a natural image, and our results demonstrate
that an untrained deep CNN can work as a deep matte prior
that leads to good estimation on the alpha matte.

III. PROPOSED APPROACH

A. Overview

In the proposed approach, we model the foreground layer
F and the alpha matte α as follows:

F → F̂ = Fθ(z0), α→ α̂ = Aω(ε0), (3)

where Fθ,Aω are two generative CNNs parameterized by θ,ω
respectively, and

z0 ∼ N (µz, σz), ε0 ∼ N (µε, σε), (4)

are two input random seeds. The predictions from these two
CNNs are related by

Ī = Aω(ε0)�Fθ(z0) + (1−Aω(ε0))� B̄. (5)

Then, these two CNNs are trained to approximately satisfy (5).
The two CNNs act as natural image and alpha matte models

that incorporate the priors on their intermediate network layers,
i.e., there are regularizations on predictions implicitly imposed
by the CNN architecture. Such deep image prior and deep
matte prior encoded by the CNNs can make the prediction
results satisfy certain image statistics (e.g. local smoothness)
that facilitate background matting.

While deep image and matte priors partially regularize the
CNN’s predictions towards reasonable image statistics, there is

ambiguity in their predictions that may cause likely overfitting
of the CNNs. Thus, more treatments are needed for improving
the prediction accuracy. Towards this end, we develop a two-
stage scheme for the network learning: (i) training with a
projection strategy; and (ii) applying Bayesian post-refinement
for synchronizing the predictions from the two CNNs.

Since the problem (5) is highly non-linear and non-convex
with ill-posedness, the accuracy of the prediction using (5) is
largely dependent on the initialization of network parameters.
Thus, we also develop an alpha map initialization scheme
for initializing the CNNs effectively. In addition, we run the
two-stage training twice. In the first run, we train the CNNs
using an initialized alpha matte. After that, we have a much
refined prediction of the alpha matte, and then we use it to
initialize the CNNs and run the two-stage training again. See
Fig. 2 for an illustration of the proposed approach and see also
Algorithm 1 for the details.

It is hard to design a CNN with specific structure to model
the foreground layer or alpha matte perfectly. For simplicity,
both the CNNs in our method are set to have the same encoder-
decoder architecture. The encoder contains three blocks, and
each block contains two layers of Conv↓23×3-BN-LReLU. The
decoder also has three blocks, and each block has one ↑2-
BN-Conv3×3-BN-LReLU layer and one Conv1×1-BN-LReLU
layer. A sigmoid layer is applied to scaling the final result to
the range of [0, 1]. Since alpha matte is assumed consistent
across color channels, the final convolutional layer of A has
only one output channel and its output is duplicated three
times. In above, Conv is for convolutional layer, BN for batch
normalization, LReLU for leaky rectified linear unit, and ↓2/↑2
for downsampling/upsampling with factor of 2.

B. Network Initialization with Alpha Matte Initialization

Given the image pair (Ī, B̄), it is straightforward to estimate
the pure background area defined by the index set

ΩB = {j : Ī(j) = B̄(j)}. (6)
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Algorithm 1 Unsupervised background matting
Input: An image pair (Ī, B̄)
Output: Foreground F , Alpha Matte α
1. Initialize α[0] via (8).
2. Initialize θ, ω via (11) and (9) respectively.
3. [Stage 1a] Jointly update θ, ω via (12).
4. [Stage 1b] Jointly update θ, ω via (12) and (13).
5. [Stage 2] Calculate FN , αN via (18).
6. Update α[0] via (19), repeat 2∼5 one more time.
7. return F := FN , α := αN .

Inside the pure background area, the corresponding entries in
alpha matte should be zeros. Let P I

j ,P
B
j denote the J × J

patch centered at the jth pixel at the Y channel in the YIQ
color space of Ī and B̄ respectively, where J is set to 5 in our
practice. Before the first run of learning, we first initialize the
alpha value on other pixels based on the normalized correlation
map defined by

S(j) =
(P I

j − 1
J2

∑J2

k=1P
I
j(k))>(P B

j − 1
J2

∑J2

k=1P
B
j (k))

‖P I
j − 1

J2

∑J2

k=1P
I
j(k)‖2‖P B

j − 1
J2

∑J2

k=1P
B
j (k)‖2

.

(7)
This map indicates the similarity between an observed image
patch and the corresponding background patch. If an observed
image patch is highly similar to its background correspon-
dence, it is probably that the center pixel is not a pure
foreground pixel, and we set the alpha value of this pixel to 0.5
which means totally uncertain. In other words, we calculate
the initial alpha matte α̂[0] by

α̂[0](j) =

 0, if j ∈ ΩB,
0.5, if j /∈ ΩB,S(j) > τ,
1, otherwise,

(8)

where τ is simply set to 0.9 in our practice. See Fig. 3 for
three demos of our initialization scheme.

Based on α̂[0], the two CNNs are separately initialized as
follows. The CNN A for alpha matte is directly trained to fit
the initial alpha matte:

min
ω
‖Aω(ε0)− α̂[0]‖1. (9)

Let the pure foreground area defined by the index set

ΩF = {j : α̂[0](j) = 1}. (10)

The CNN F for foreground is trained to fit the image pixels
in the pure foreground area:

min
θ,F̂=Fθ(z0)

∑
j∈ΩF

|F̂ (j)− Ī(j)|. (11)

This can guide the CNN to capture the foreground correctly
and help to alleviate introducing background edges on the
predicted foreground in the subsequent stages.

C. Two-stage Scheme for Network Learning
1) Training with projection: In the 1st stage, the two CNNs

are jointly learned via solving

min
θ,ω
‖(Aω(ε0)�Fθ(z0) + (1−Aω(ε0))� B̄ − Ī‖1.

(12)

Fig. 3: Visual inspection of α̂[0]. Upper row: Input image. Bottom
row: α̂[0].

Note that the `1 norm is used to achieve the robustness to
outliers. We observed that when a foreground pixel is similar
to its background correspondence, the CNNs trained using (12)
with sufficient iterations tend to be lazy, a kind of overfitting
that simply sets the alpha value to zero and the foreground
pixel to arbitrary value. This is probably because zero-valued
alpha allows the corresponding foreground to be arbitrary and
makes the foreground CNN learning easier.

To address the issue, we split the first stage into two parts.
In the first part, we directly train the CNNs using (12) with a
number of iterations, so as to have an improved alpha matte
estimation from α̂[0], denoted by α̂[1a]. Then in the second
part, we use additional 1000 runs of (12) with projection at
each iteration to address the overfitting and make the CNNs
focus more on boundary prediction. The projection is given as
follows:

F̂ [1b](j) = Ī(j), if α̂[1a](i) = 1. (13)

The rational of the projection comes from that, the pixels with
consistency between their background regions and foreground
regions often have their alpha values set to 1 by the initial-
ization and kept 1 after the training in the first part. During
this period, the initial learning rate on A is set to five times of
the original one to jump out of the local minimum, and then
gradually decreased to the original one.

2) Bayesian Post Refinement: After the 1st stage, we have
the estimations denoted by F ∗ = F̂ [1b],α∗ = α̂[1b]. However,
the two CNNs may not “synchronize” during and after the 1st-
stage training. That is, the alpha matte CNN A may be faster
overfitting than the foreground CNN F , as the alpha matte
generally has simpler structures than the foreground layer but
their corresponding CNNs are set to the same architecture with
the similar training processes. As a result, the predicted alpha
matte may be over-smooth. For improvement, we adapt the
Bayesian post-processing [31] to our case so as to refine the
predicted foreground and alpha matte. It models the variations
among foreground layer and alpha matte with a posterior
probability model and maximizes the posterior probability for
refinement. Concretely, the refinement is done via solving

max
F ,α

p(α,F |α∗,F ∗, B̄) ∝ p(α|α∗)p(F |F ∗)p(α,F , B̄),

(14)
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where the probability components are modeled with Gaussian
distributions as follows:

p(α|α∗) ∝ exp(−‖α−α
∗‖2

2σ2
α

), (15)

p(α,F , B̄) ∝ exp(−‖Ī −α� F − (1−α)� B̄‖2

2σ2
I

), (16)

p(F |F ∗) ∝ exp(−‖F − F
∗‖2

2σ2
F

). (17)

The parameters σ2
α, σ2

F , σ2
I are set to 10, 1, 1 respectively.

Note that σ2
α is set much larger than σ2

F as the overfitting
on alpha matte learning is empirically more severe than that
on foreground layer learning in our framework. Applying an
iterative block solver to (14) yields

Fn+1 =
σ2

I Fn + σ2
F(αn � (Ī − (1−αn)� B̄))

σ2
I + σ2

F(αn �αn)
,

αn+1 =
σ2

I αn + σ2
α((Fn − B̄)� (Ī − B̄))

σ2
I + σ2

α((Fn − B̄)� (Fn − B̄))
,

(18)

for n = 1, · · · , N , where F0 = F ∗ and α0 = α∗.

D. A Second Run of Network Learning for Improvement
The initial alpha matte fed to the CNNs during the training

plays an important role towards the performance. For the
improvement on the initial alpha matte, we run the training
scheme proposed in Section III-C one more time. After the
first run, we have a much refined estimation of alpha matte
denoted by α̂[2]. Then we update α̂[0] by

α̂[0]
new(j) =

 1, if (α̂[0](j) + α̂[2](j))/2 > 3/4,
0, if α̂[0](j) = 0,

0.5, otherwise.
(19)

The threshold value of 3/4 is used, as only the pixels which
are considered as pure foreground pixels in the original ini-
tialization (i.e. α̂[0](j) = 1) and whose alpha values after the
first run are larger than 0.5 (i.e. α̂[2](j) > 0.5), are viewed as
pure foreground pixels in the initialization of the new round.
Afterwards, we initialize the CNNs using (11) and (9) with
α̂

[0]
new and call the two-stage learning scheme again. Then the

output of two trained CNNs are used as the final results.

IV. EXPERIMENTS

A. Experimental Settings and Implementation Details
1) Datasets and metrics: The experimental evaluation is

conducted on the SC (synthetic-composite) Adobe dataset [20]
which provides a set of foreground images, alpha mattes and
background images to synthesize images for evaluating image
matting. Following [3], we first use 11 portraits provided
by the dataset to composite 220 portrait images (resized to
512 × 512) with 20 randomly-selected backgrounds for test.
We also evaluate on 780 non-portrait images (also resized to
512× 512) composited by all 39 different foreground objects
in the test set and 20 backgrounds. The SAD (Sum of Absolute
Differences) and MSE (Mean of Squared Error) between the
whole estimated and ground truth alpha mattes are used as the
quantitative metrics. In addition, we collected a small set of
real images without ground truths for the evaluation, on which
the results are evaluated by visual inspection and user study.

2) Implementation details: In all the experiments, both the
CNNs for foreground and alpha matte are trained using the
Adam optimizer with the learning rate of 0.001. The number
of iterations in the joint training stage is set to 5000. The
number of iterations in the Bayesian post-refinement stage is
set to 20. On the synthesized images (512× 512 pixels), our
PyTorch implementation takes around 4 minutes on average
to process an image using a single RTX 3090 GPU. The code
will be released upon the paper’s acceptance.

B. Evaluation on Composite Portrait Images

Background matting is a very recent topic in image matting
with few works available. In the experiments, two latest meth-
ods on this topic are included for comparison, i.e., BGM [3]
and BGMv2 [4]. Both of them are based on supervised deep
learning. There are multiple published models for these two
methods, and the best ones are used for performance evalu-
ation. We also include DoubleDIP (DDIP) [30], an untrained
network-based method for general image decomposition, for
comparison. The DDIP is adapted to background matting with
its network on background prediction disabled.

In addition, several trimap-based supervised deep models
are included for a more comprehensive comparison: ATN [27],
IM [23] and CAM [24]. Following [3], their input trimaps
are generated by thresholding the ground truth alpha mattes,
i.e., setting all values in (0, 1) to 0.5, followed by the dilation
with 10 or 20 steps. The results of these trimap-based methods
are quoted from existing literature whenever possible, or re-
produced by the codes published online. Furthermore, con-
sidering their similarity and applicability to matting, we also
adopt two recent still-image salient object detection methods
for comparison: GateNet [32] and SSOD [33]. We tried several
ways to adapt their models to matting, including (a) retraining
or fine-tuning on the matting dataset; and (b) using `1, `2 or
their original cross-entropy loss. As fine-tuning with the cross-
entropy loss shows better performance, it is used for reporting
the results. For convenience, our approach is named as DMP
(Deep Matte Prior) in the remaining discussion.

Method Additional Training SAD↓ MSE ↓
Input (×10−3)

ATN [27] Trimap-10 Supervised 3.55 4.3
Trimap-20 Supervised 4.56 5.7

CAM [24] Trimap-10 Supervised 3.04 4.0
Trimap-20 Supervised 3.12 4.0

IM [23] Trimap-10 Supervised 2.05 1.9
Trimap-20 Supervised 2.25 2.2

GateNet [32] n/a Supervised 26.05 80.6
SSOD [33] n/a Supervised 26.12 81.7

BGM [3] Background Supervised 1.64 1.3
BGMv2 [4] Background Supervised 1.56 1.2
DDIP [30] Background Unsupervised 12.61 18.5

DMP [Ours] Background Unsupervised 1.54 1.7

TABLE I: Evaluation on portrait images of SC Adobe dataset.
Trimap-K: Trimaps generated by ground truth thresholding and
subsequent dilation by K steps.

The quantitative results of all compared methods on portrait
image matting are listed in Table I. Overall, DMP is very
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Image ATN CAM IM GateNet SSOD

Background DDIP BGM BGMv2 DMP [Ours] Ground Truth

Image ATN CAM IM GateNet SSOD

Background DDIP BGM BGMv2 DMP [Ours] Ground Truth

Image ATN CAM IM GateNet SSOD

Background DDIP BGM BGMv2 DMP [Ours] Ground Truth

Fig. 4: Comparison of alpha mattes predicted by different methods on portrait images from the SC Adobe dataset.

competitive to BGM and BGMv2, the supervised background
matting methods, even it never accesses any ground-truth data
during learning. Surprisingly, in terms of SAD, DMP yielded
the best result among all compared methods. In terms of MSE,
DMP performed worse than BGM and BGMv2 with a small
gap, but it showed better performance than other remaining
methods. Particularly, DMP outperformed the trimap-based
methods while avoiding the prerequisite on the annotations
for trimaps. In addition, DMP outperformed DDIP by a large
margin, which indicates that general untrained-network prior-
based methods may not work well for background matting. In

comparison, the special treatments introduced by DMP, e.g. the
initialization and learning schemes, are very effective. Also, it
can be seen that the salient object detection methods did not
perform well on background matting, which is mainly due
to they having less information to utilize, which makes the
problem setting harder than that of the methods specifically
designed for matting. See Fig. 4 for a visual comparison of
the results on some sample images. In comparison to other
methods, DMP can better handle the details in the 1st example,
and it is also good at recovering the semi-transparent part in
the alpha matte in the 2nd example.
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Image ATN CAM IM GateNet SSOD

Background DDIP BGM BGMv2 Ours Ground Truth

Image ATN CAM IM GateNet SSOD

Background DDIP BGM BGMv2 Ours Ground Truth

Fig. 5: Comparison of alpha mattes predicted by different methods on non-portrait images from the SC Adobe dataset.

Method Additional Training SAD↓ MSE ↓
Input (×10−3)

ATN [27] Trimap Supervised 15.64 26.8
CAM [24] Trimap Supervised 9.85 13.3

IM [23] Trimap Supervised 7.75 8.3
GateNet [32] n/a Supervised 36.10 72.8

SSOD [33] n/a Supervised 37.08 89.8
BGM [3] Background Supervised 9.27 13.4

BGMv2 [4] Background Supervised 9.60 11.5
DDIP [30] Background Unsupervised 18.71 28.8

DMP [Ours] Background Unsupervised 7.30 10.0

TABLE II: Evaluation on non-portrait images of SC Adobe dataset.

C. Evaluation on Composite Non-Portrait Images

We also evaluate the performance of DMP on non-portrait
images, and the previously selected methods are used for
comparison. Since BGM needs the human object segmentation
estimated by other deep learning methods as additional input,
we directly call its model trained on portrait images. For
BGMv2, we retrain its model on the non-portrait images. For
ATN, CAM and IM, their published models for general object
images are used. For salient object detection methods, we also
tried several ways to apply these methods to matting and report
the best results achieved by retraining using the cross-entropy
loss (`1 loss works slightly worse in this setting).

See Table II for the quantitative comparison, where DMP

outperformed all other methods except IM in terms of MSE,
and it outperformed IM in terms of SAD. See also Fig. 5
for the visual results on two non-portrait images, where DMP
achieved higher accuracy in comparison to other methods. The
superior performance of DMP over other supervised learning-
based methods is probably due to its learning is not dependent
on external training data which may be biased, but dependent
on the test image itself, which leads to better adaption. This has
demonstrated the benefit of dataset-free unsupervised learning
for background matting. The DMP also outperformed DDIP
by a large margin this round, which again demonstrates the
benefit from our specific design on untrained-network-based
background matting. Note that similar to previous experi-
ments, without additional input, the saliency detection methods
GateNet and SSOD did not perform well either.

D. Evaluation on Real Data

To evaluate the performance of DMP on images taken in real
scenarios, we collected 30 image/background pairs with 20
portrait images and 10 object images, using a smartphone with
a tripod. The image resolution is fixed at 1920×1080. We run
background matting methods BGM, BGMv2, DDIP and DMP
on these images. Then, we use each of their predicted alpha
mattes and foregrounds to composite a new image on a green
background for easy inspection. In addition, we also include
the trimap-based methods ATN, CAM and IM for comparison,



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

Input ATN CAM IM DoubleDIP BGM BGMv2 DMP [Ours]

Fig. 6: Comparison of compositions by several methods on some portrait images from our real data.

and we made the effort to do manual annotation to obtain the
accurate trimaps required by these methods. Furthermore, the
saliency detection method SSOD is also included.

See Fig. 6 and Fig. 7 for the visual examples of predicted
alpha mattes and extracted foregrounds. Unlike synthetic data,
the two captures have certain discrepancy in exposure, focus
and noise. As a result, background matting becomes more
challenging. Nevertheless, DMP still performed better than
BGM and outperformed DDIP noticeably. In addition, DMP is
robust to certain degradation effects of real data. For instance,
due to the deep priors that the CNNs prefer smooth output,

DMP shows good noise resistance, as long as the noise
level is modest. For the background illumination change due
to automatic exposure, it is usually not significant, and we
manually change the exposure setting to have the noticeable
ones, as shown in the last samples of Fig. 6 and Fig. 7. Due
to the certain robustness of the similarity measurement in (7),
there is only a little graying effect on background areas in
our results. While BGMv2 shows better visual effects than
other methods, DMP remains a very competitive performance
in terms of visual quality, even it does not call any external
sample for training.
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Input ATN CAM IM DDIP BGM BGMv2 DMP [Ours]

Fig. 7: Comparison of compositions by several methods on some non-portrait images from our real data.

To have a quantitative evaluation, a user study was con-
ducted in the form of electronic questionnaire. Totally 50
persons were invited as the users, including 22 males and 28
females, with ages ranging from 18 to 50. Each time a user
was given the composited images on a real sample generated
by different methods respectively. Multiple times were run to
cover all the real samples. Both the order of the composited
images in the set and the order of the sets were random. Each
user was asked to give each composited image a score varying
from 1(worst) to 5(best). The results in terms of the average
score over all samples are listed in Table III. Our DMP is

competitive, as it is one of the three performers with scores
larger than 3 and outperformed DDIP, ATN, CAM and BGM.

ATN [27] CAM [24] IM [23] SSOD [33]

2.866 2.912 3.238 2.474

BGM [3] BGMv2 [4] DDIP [30] DMP [Ours]

2.734 3.618 2.204 3.132

TABLE III: Average subjective scores of different methods in the
user study on our collected real images.
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Image Ground truth Ours Simple α̂[0] init. Image Ground truth Ours Simple α̂[0] init.
(a) Comparison of alpha mattes using original and simple initialization scheme of α̂[0].

Image Ground truth w/ Projection w/o Projection Image Ground truth w/ Projection w/o Projection
(b) Comparison of alpha mattes w/ and w/o using projection at the 1st stage.

Image Ground truth w/ Refinement w/o Refinement Image Ground truth w/ Refinement w/o Refinement
(c) Comparison of alpha mattes w/ and w/o Bayesian post-refinement.

Fig. 8: Some visualization of Ablation study.

E. Ablation Study

Recall the key steps in the learning scheme i DMP: (i) ini-
tialization of alpha matte before learning; (ii) using projection
to avoid lazy learning in the 1st stage; and (iii) Bayesian post-
refinement in the 2nd stage. To analyze the contribution of each
of these steps, we form the several baselines by modifying
and disabling one of the steps to conduct ablation study, with
results summarized in Table IV. See below for the details of
the baselines and the related analysis.

Method SAD↓ MSE (×10−3)↓
Our full version 1.54 1.7

Simple α̂[0] init. 3.85 4.3
w/o Projection 1.77 1.9

w/o BPR 1.78 1.9
1 round 1.60 1.8

3 rounds 1.54 1.7
Simple α̂[0] update 1.59 1.8

TABLE IV: Results in ablation study.

1) Initialization: We replace the initialization scheme of
α̂[0] in (8) by a simple scheme: α̂[0](j) = 0.5,∀j. The
resulting model is denoted by ’Simple α̂[0] init.’. It can be
seen that the initialization plays a critical role in DMP with a
significant impact to the results. This is not surprising as the
learning process is highly non-convex and non-smooth whose
performance heavily relies on the quality of initialization. A
visual comparison is given in Fig. 8(a). Without the proposed
initialization, the model tends to believe the background image
more and the opacity values of a large part of non-transparent
pixels will approach to zero.

2) Projection in 1st-stage training: We remove the projec-
tion step defined by (13) in the 1st stage. The resulting model
is denoted by ’w/o Projection’. The projection strategy has
a noticeable contribution to the performance. See Fig. 8(b)
for a visual inspection, where training with the projection
can suppress sparse errors and induce better local smoothness,
leading to better quality.

3) Bayesian post refinement: We disable the Bayesian post-
refinement (BPR) during training, and the resulting model
is denoted by ’w/o Refinement’. It can be seen that BPR
does improve the performance. This is probably that the
refinement allows the synchronization of the two CNNs which
compensates some fine structures to the estimated alpha matte.
See Fig. 8(c) for a visual comparison, where BPR brings more
details of the hair in the alpha matte.

4) The second round: We run only one round as well as
three rounds respectively of the two-stage learning scheme,
and the resulting models are denoted by ’1 round’ and ’3
rounds’. It can be seen that the 2nd round is necessary as it does
bring performance improvement. The performance saturates
after the 2nd round. This is probably because the alpha matte
outputted by the 2nd round differs not much from that by the 1st

round, unlike that of 1st round versus initialization. Thus, the
re-initialization in the 3rd round helps little. We also replace
the α̂[0]-update in (19) with a simpler one which only relies
on current estimate: setting α̂[0]

new(i) to 1 if α̂[0]
new(i) > 0.95, 0

if α̂[0]
new(i) < 0.05, and 0.5 otherwise. The resulting model is

denoted by ’Simple α̂[0] update’, which shows a performance
decrease. This is probably because such a scheme enlarges
the errors when the predictions of some pixels are unreliable.
The original scheme combines current prediction with the
initialization, which increases the reliability.
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Image-Background DDIP BGM BGMv2 DMP [Ours] Ground Truth

Fig. 9: Comparison of alpha mattes predicted by different methods on selected key frames from a video.

F. Evaluation on Background-based Video Matting

The proposed DMP is also applicable to video matting
on the video sequences whose frames share a given single
background image [3], [4]. Let T denote the number of frames
in the input video. The background image is also duplicated
with T times as the input. The processing on the video then can
be simply done by setting the output channel dimension of the
foreground CNN as well as that of the alpha CNN to T . The
resulting DMP takes around 33 minutes to process 30 video
frames of size 512×512 on a single RTX 3090 GPU. Such an
extension also applies to DDIP. Following [4], the evaluation is
done on the test set of VideoMatte240K provided by [4], which
provides portrait foreground videos and alpha matte videos
extracted with green screens. Those videos are combined with
the background images randomly selected from PASCAL VOC
2007 [34] to construct the videos for evaluation.

Method Video 1 Video 2 Video 3 Video 4 Video 5

BGM [3] 38.71/1.8 44.55/2.4 27.17/1.0 28.73/1.5 47.98/2.6
BGMv2 [4] 8.43/0.2 12.44/0.4 7.55/0.2 3.34/0.1 7.79/0.3
DDIP [30] 148.91/8 168.87/10 160.89/3.5 128.38/2.9 117.83/6.6

DMP [Ours] 32.42/1.6 24.71/1.2 18.85/0.3 10.52/0.3 14.41/1.0

TABLE V: Evaluation on portrait videos from VideoMatte240K in
terms of SAD/MSE(×10−3).

We compare DMP with the video matting models of BGM,
BGMv2 and DDIP. Note that the trimap-based methods are
not used for comparison as manual trimap annotation of video
sequences is very challenging. See Table V for the quantitative

results. Without calling any external video dataset, DMP
outperformed the supervised learning-based method BGM. It
also noticeably outperformed DDIP which is also dataset-
free as ours. Some results are visualized in Fig. 9. It can be
seen that BGM produced over-smooth results while our DMP
produced the results with more details. However, since such a
straightforward extension has no specific designs for making
full use of the temporal properties of videos, its results are not
as good as BGMv2.

V. CONCLUSION

As a newly developed approach for image matting, back-
ground matting has attractive features over traditional trimap-
based methods. Its task is about estimating the alpha matte and
foreground from a pair of observed image and background
image. This work showed that background matting can be
done effectively using unsupervised deep learning without any
prerequisite on training data, which provides a complementary
approach to existing supervised learning-based methods. There
are two key parts in the proposed approach: deep image and
matte priors for modeling the foreground and alpha matte re-
spectively, and a well-designed two-stage unsupervised learn-
ing scheme for overcoming overfitting. The experiments has
demonstrated that, in comparison with the latest supervised
background matting method, ours performed competitively on
portrait images and exhibited superior performance on non-
portrait images. It also outperformed supervised trimap-based
methods in some settings. We will study further extensions to
video matting with improvement in future.
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