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Recurrent Exposure Generation for
Low-Light Face Detection
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Abstract—Face detection from low-light images is challenging
due to limited photons and inevitable noise, which, to make
the task even harder, are often spatially unevenly distributed. A
natural solution is to borrow the idea from multi-exposure, which
captures multiple shots to obtain well-exposed images under chal-
lenging conditions. High-quality implementation/approximation
of multi-exposure from a single image is however nontrivial.
Fortunately, as shown in this paper, neither is such high-quality
necessary since our task is face detection rather than image
enhancement. Specifically, we propose a novel Recurrent Exposure
Generation (REG) module and couple it seamlessly with a Multi-
Exposure Detection (MED) module, and thus significantly improve
face detection performance by effectively inhibiting non-uniform
illumination and noise issues. REG produces progressively and
efficiently intermediate images corresponding to various exposure
settings, and such pseudo-exposures are then fused by MED to
detect faces across different lighting conditions. The proposed
method, named REGDet, is the first ‘detection-with-enhancement’
framework for low-light face detection. It not only encourages
rich interaction and feature fusion across different illumination
levels, but also enables effective end-to-end learning of the REG
component to be better tailored for face detection. Moreover, as
clearly shown in our experiments, REG can be flexibly coupled
with different face detectors without extra low/normal-light image
pairs for training. We tested REGDet on the DARK FACE
low-light face benchmark with thorough ablation study, where
REGDet outperforms previous state-of-the-arts by a significant
margin, with only negligible extra parameters.

Index Terms—Low-light face detection, multi-exposure, gated
recurrent networks

I. INTRODUCTION

As the cornerstone for many face-related systems, face
detection has been attracting long-lasting research attention [22],
[25], [44], [53], [55]. It has extensive applications in human-
centric analysis such as face recognition [10], [60]–[64], person
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re-identification [8], [21], and human parsing [14]. Despite great
progress in recent decade, face detection remains challenging
particularly for images under bad illumination conditions.
Images captured in low-light conditions typically have their
brightness reduced and intensity contrast compressed, and thus
confuse feature extraction and hurt the performance of face
detection. Poor illumination also causes annoying noise that
further damages the structural information for face detection. To
make things even worse, the illumination status may spatially
vary a lot within a single image. For systematic evaluation of
face detection algorithms under adverse lighting conditions,
a challenging benchmark named DARK FACE [56] is re-
cently constructed, which shows clear performance degradation
of state-of-the-art face detectors. For example, DSFD [28]
produces an mAP of 15.3%, in a sharp contrast to above
90% on the hard subset of the popular WIDER FACE [55]
benchmark. The dramatic performance degeneration of modern
face detectors on the DARK FACE dataset clearly shows that it
remains extremely challenging to detect faces under low-light
conditions, which is the main focus of this paper.

Naturally, one may seek help from low-light image enhance-
ment as preprocessing, as evidenced clearly by the experiments
shown in [56]. However, as illustrated in Fig. 1 (b-c), there
is still a large room for improvement. For one reason, image
enhancement aims to improve visual/perceptual quality for the
entire image, which is not fully aligned with the goal of face
detection. For example, the smoothing operations for enhancing
noisy images could compromise the feature discriminability
that is critical for detection. This suggests a close integration
between the enhancement and detection components, and points
to an end-to-end ‘detection-with-enhancement’ solution.

Another reason lies in that the illumination in the original
image may vary greatly in different regions. Consequently, it
is hard to expect a single light-enhanced image to handle well
facial regions under different lighting conditions in terms of
detection. This suggests the use of a multiple enhancement
strategy and brings our attention to the multi-exposure technique.
In particular, when it is difficult to obtain a well-exposed
image with a single shot, the technique takes multiple shots
with varying camera settings. Such multi-exposure images are
then fused for light enhancement. Similarly and intuitively,
we may generate multi-exposure images and then detect faces
from them to cover different exposure conditions. However,
automatically deriving high quality multi-exposure images from
a single image is nontrivial [48], let alone a low-light image –
but such high quality is not required for face detection. It is
the mechanism for capturing information at different exposures
that matters.
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(a) Low-light image (b) KinD [59] (c) LIME [16] (d) Ours

Fig. 1. Detection results of DSFD [28] on a low-light image (a) and its enhanced versions using KinD [59] (b) and LIME [16] (c). Green and red boxes
indicate true positives and missed targets, respectively. It can be seen that the improvement brought by lighting enhancement is very limited. By contrast, our
result in (d) (plotted on the same image of (c) for better visibility) show clear advantages.

Driven by the above motivations, we propose a novel end-to-
end low-light face detection algorithm named REGDet. REGDet
contains two sequentially connected modules, a Recurrent
Exposure Generation (REG) module and a Multi-Exposure
Detection (MED) module. From an input image, REG generates
a sequence of pseudo-exposures to loosely mimic the effect of
the highly non-linear process of in-camera multi-exposure. This
is done by assembling a set of ConvGRUs marching in two
directions: one direction points progressively and recurrently
to the degree of exposure, while the other guides encoder-
decoder structures to produce exposure compensated images.
Then, these pseudo-exposures are fed into MED, which adapts
generic face detectors so as to fuse ‘multi-exposure’ information
of different pseudo-exposures smoothly. With the two modules
collaborated together, REGDet not only encourages rich
interaction and feature fusion across different illumination
levels, but also enables end-to-end learning of effective low-
light processing tailored for face detection. Moreover, as shown
in our experiments, REG can be flexibly coupled with different
face detectors without extra low/normal-light image pairs. We
tested REGDet on the DARK FACE low-light face benchmark
with thorough ablation study. In the experiments, REGDet
outperforms previous state-of-the-arts by a significant margin,
with only negligible extra parameters.

To summarize, we make the following contributions:

• The first end-to-end ‘detection-with-enhancement’ solu-
tion, REGDet, for face detection under poor lighting
conditions,

• A novel and lightweight recurrent exposure generation
module to tackle the non-uniform darkness issue,

• A flexible framework compatible to existing face detectors,
• New state-of-the-art performance on the publicly available

benchmark.

II. RELATED WORK

The focus in this paper is on developing a learning solution
for low-light face detection. In the following we describe pre-
vious studies from three aspects: low-light image enhancement,
low-light face detection, and gated recurrent networks.

A. Low-Light Image Enhancement

Low-light image enhancement has been a popular topic
recently for improving the perceptual quality of images. Early
solutions often rely on local statistics or intensity mapping,
e.g., histogram equalization [2] and gamma correction [9].
Later solutions are often based on the Retinex theory [26]
which assumes an image as a combination of a reflectance
map that reflects the physical characteristic of scene objects
and a spatially smooth illumination map. Thus developed
solutions focus on resolving the ambiguity between illumination
and reflectance by imposing certain priors on a variational
model based on empirical observations (e.g., [11], [12], [16],
[29], [47]). More recently, deep learning-based solutions boost
further the image enhancement quality. These recent methods
often produce impressive results for enhancing low-light
images (e.g., [46], [49], [51], [59]). However, the performance
gain, when applied to low-light face detection, is still far
from saturated [56]. As discussed in previous section, this is
partly due to their different goal with face detection, dealing
with uneven illumination inside a single image, and weak
collaboration with a face detection module.

The most related work to ours in low-light image enhance-
ment is the multi-exposure fusion-based method BIMEF [57].
BIMEF first synthesizes a brighter image by a Brightness
Transform Function (BTF) with fixed camera parameters, and
then blends it with the original low-light image into a better
one. Our method shares the idea of generating multi-exposure
images, but is driven by a very different goal, i.e., face detection.
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Consequently our model is learned end-to-end for the goal.
Moreover, BIMEF does not consider the inevitable noise in
low-light images and does not leverage the powerful data-driven
modeling capacity of deep learning.

B. Low-Light Face Detection

With the advent of large-scale face detection datasets [22],
[25], [55] and the proliferation of deep learning technolo-
gies [13], [31], [32], [38], face detection in unconstrained
environments (a.k.a. ‘in the wild’) has made remarkable
progress [18], [20], [28], [36], [37], [41], [43], [58]. Most recent
technological developments have focused on robustness to
geometric variance. Typical geometric distortion includes scale
variation, deformation, occlusion and so on. To handle the pose
variation, many effective techniques have been proposed. For
example, synthesizing realistic profile faces for data augmenta-
tion [10], [63], [64], jointly normalizing profile face images to
frontal pose and extracting pose invariant features [60]–[62].
For scale variation, researchers have proposed many effective
strategies based on the idea of multi-scale analysis: designing
image pyramids with different image scales [20], designing
a pre-defined set of anchor boxes with different sizes and
aspect ratios [23], [37], detecting at different layers of the
network [36], [58] and so on. Deformable part-based model
improves deformation invariance by decomposing the task of
face detection into detecting different facial parts [54]. The
idea of face calibration is explored to obtain deformation
invariance in [41]. Spatial context aggregation is a modern
strategy for obtaining invariant features. Existing context
aggregation techniques include enlarging receptive field by
dilated convolution [6], multi-layer fusion [42] and top-down
feature fusion [28], [43].

Low-light face detection has been attracting research at-
tention for a long time. In the era of hand-crafted features,
enduring efforts have been made to understand and handle
the non-uniform illumination issue [17], [27], [52]. Recently,
there are increasing interests in data-driven approaches for face
detection on low-quality images such as low-resolution images
and low-light images [35], [56], [65]. Illumination variation
is known to be a major challenge for modern face detection
algorithms [1], [65]. Pioneering approaches preprocess images
by intensity mapping such as logarithmic transform [1] and
gamma transform [40]. Photometric normalization is another
commonly adopted method that counteracts the varying lighting
conditions in hand-crafted feature [5], [52] and deep learning-
based methods [32], [65]. Hand-crafted feature based methods
derive the illumination invariance from various priors such as
image differences or gradients [1], [17], while deep learning-
based methods use random photometric distortions as augmen-
tation to implicitly enhance the illumination invariance [28],
[43], [58]. Despite previous studies, face detection in extremely
adverse light conditions has been under explored, due partly
to the lack of high quality labeled data. Addressing this issue,
Yang et al. present a large manually labeled low-light face
detection dataset, DARK FACE, and show that existing face
detectors perform poorly on the task [56]. Our work is thus
motivated and evaluated on the benchmark, and outperforms

clearly previous arts. Baseline experiments have shown that,
despite of the outstanding success achieved nowadays, even the
best well-trained face detectors are less than ideal if the images
are simply pre-processed using existing low-light enhancement
methods [56].

C. Gated Recurrent Networks

Gated Recurrent Networks are the most related work to
ours from the learning aspect. Gated recurrent unit (GRU) in
recurrent networks is a gating mechanism to adaptively control
how much each unit remembers or forgets for sequence mod-
eling [7]. It was first proposed and applied to task of machine
translation. ConvGRU [3] extends the fully-connected layers in
GRU with convolution operations to model correlations among
image sequence. The design of the REG module is greatly
inspired by [30]. However, the learning of the REG module
is performed with a proposed pseudo-supervised pre-training
strategy and the implicit guidance of a follow-up detection
module instead of ground-truth data. Moreover, instead of
predicting rain streak layer by residual learning, REB directly
learns to generate various pseudo-exposures.

III. THE PROPOSED METHOD

As shown in Fig. 2, the proposed REGDet involves two
main modules, the Recurrent Exposure Generation module
(REG) and the Multi-Exposure Detection module (MED). To
loosely mimic the complex and highly non-linear in-camera
multi-exposure process, REG generates progressively brighter
images while encoding historical regional information. These
pseudo-exposures are then fed into MED to produce face
bounding boxes. The two modules are coupled together to
form an end-to-end framework.

A. The Recurrent Exposure Generation Module

To progressively generate T pseudo-exposures from a low-
light input image I0, a natural solution is to generate the next
image It+1 by an NN conditioned on the previous image It.
However, as there exists non-uniform darkness in low-light
images, such strategy could lead to locally over-smoothed or
over-exposed regions, and consequently hurt the face detection
task that relies seriously on discriminative details.

To address the above issue, the proposed Recurrent Exposure
Generation (REG) module leverages historical generated images
to maintain critical region details in a Recurrent Neural Network
(RNN) framework. Starting from I0 and initial hidden state
H0 = 0, REG generates recurrently T intermediate pseudo-
exposures I = {It}Tt=1 formulated as

(It, Ht) = Gω(Fθ(It−1, Ht−1)), t = 1, 2, . . . , T, (1)

where Fθ and Gω denote the encoder and the decoder of the
proposed module, respectively, with corresponding parameters
θ and ω. The encoder consisting of four cascaded convolutional
recurrent layers is responsible for transforming the input image
into features maps of multiple scales (layers), while the decoder
consisting of two convolutional layers learns to decode the
feature maps back to images, as shown in Fig. 2.
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Fig. 2. The main framework of the proposed REGDet for low-light face detection.

At stage t > 0, Ht = {H l
t}
L

l=1 where H l
t denotes feature

map from the l-th layer. Initialized by H0
t = It−1, the feature

maps are produced by our recurrent exposure generation unit
(REGU) F l as

H l
t = F l(H l−1

t , H l
t−1), l = 1, 2, ..., L. (2)

In particular, REGU is designed based on the Convolutional
Gated Recurrent Unit (ConvGRU) [3] for performance and
memory consideration, as shown in the right part of Fig. 2. An
REGU F l in the l-th layer can be described by the following
equations:

Zlt = σ
(
W l
z ∗H l−1

t + U lz ∗H l
t−1
)
, (3)

Rlt = σ
(
W l
r ∗H l−1

t + U lr ∗H l
t−1
)
, (4)

H̃ l
t = tanh

(
W l
h ∗H l−1

t + U lh ∗ (Rlt �H l
t−1)

)
, (5)

Ĥ l
t = (1− Zlt)�H l

t−1 + Zlt � H̃ l
t , (6)

H l
t = ξ(Al(Ĥ l

t)), (7)

where Z and R are update and reset gates, respectively, which
decide the degree to which the unit updates or resets its
historical encoding information, σ(x) = 1

1+e−x is sigmoid
function, � denotes the Hadamard product, ∗ denotes a
convolution operator, filters W and U are for dilated and
regular convolution respectively. ξ denotes leaky ReLU [33]
activation function

ξ(x) =

{
αx, x < 0,

x, x ≥ 0,
(8)

where α = 0.2 denotes the negative slope. Given a feature
map H ∈ RX×Y×C , the channel-wise attention (CA) [45] Al
can be computed as

Al(H) = As
(
σ(W l

a ∗ Ag(H)), H
)
, (9)

where Ag(H) = 1
XY

∑X,Y
i=1,j=1Hij is channel-wise global

average pooling, W l
a denotes a 1D convolution kernel with

kernel size 3 and As denotes channel-wise multiplication
between the feature map and the obtained channel weighting
vector.

REGU has several extensions compared with the standard
ConvGRU. First, an important component in our REGU is the
channel-wise attention, which is integrated in each unit before
activation except for the last one. Like in other vision tasks [45],
such an efficient mechanism enables appropriate cross-channel
interaction inside a feature map and therefore helps aggregate
spatial global information and recalibrate the feature map
at each step. Second, REGU uses leaky ReLU [33] as the
activation function to alleviate the ‘dying ReLU’ issue, i.e. ,
some neurons going through the flat side of zero slope stop
being updated. Third, to tackle the issue of unevenly distributed
darkness, different dilation rates (2l in the l-th layer) are
used in different convolutional layers of the encoder to obtain
progressively larger receptive fields while maintaining small
parameter cost.

B. Pseudo-Supervised Pre-Training of the REG Module

To enable good diversity and complementarity of the
generated sequence, we adopt a pseudo-supervised pre-training
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strategy which leverages pseudo ground-truth images corre-
sponding to different exposures. The pseudo ground-truth
images {Ît}Tt=1 are generated from I0 by a camera response
model [57] that characterizes the relationship between pixel
values and exposure ratios. A camera response model contains
a camera response function (CRF), i.e., the nonlinear function
relating camera sensor irradiance with image pixel value, and a
brightness transform function (BTF), i.e., the mapping function
between two images captured in the same scene with different
exposures [39]. Once the parameters of CRF corresponding
to a specific camera is known, the parameters of BTF can
be estimated by solving the comparametric equation [34].
However, the information about the cameras to estimate
accurate camera response models is often far from enough in the
publicly available low-light face detection dataset. Therefore,
we adopt the camera response model proposed in [57] that can
characterize a general relationship between the pixel values
and exposure ratios when no camera information is available.
Its BTF is in the form of Beta-Gamma Correction

B(P, k) = eb(1−k
a)P (ka), (10)

where P and k denote the pixel value and the exposure ratio
respectively, and the camera parameters a = −0.3293, b =
1.1258 are estimated by fitting the 201 real-world camera
response curves in the DoRF database [15]. Specifically,
the exposure ratios are k, . . . , kT , where the base ratio is
empirically set as k = 2.4.

The REG module is then guided to generate images cor-
responding to diversified exposures. To measure the distance
between the generated image It and the pseudo ground-truth
Ît produced from I0 with parameter kt, we use a combination
of `1 norm and the Structure Similarity (SSIM) index [50]
that reflects the difference on luminance and contrast, which
is formulated as

Lreg(I, Î) =
1

TN

∑
t

(‖It − Ît‖1 + 1− SSIMt), (11)

and the SSIM measure is defined as

SSIM =
(2µptµp̂t + C1)(2σp̂tpt + C2)

(µ2
pt + µ2

p̂t
+ C1)(σ2

pt + σ2
p̂t

+ C2)
, (12)

where means µ and deviations σ are computed by applying
a Gaussian filter at pixel pt of image It and N denotes the
number of pixels in the image. Following common practice
in image enhancement, we randomly crop 64 × 64 patches
followed by random mirror, resize and rotation for data
augmentation.

As the pseudo ground-truth images have inevitable noise and
artifacts, we adopt the early stopping strategy to prevent over-
fitting to those noise and artifacts. Specifically, the pre-training
stops when the average PSNR of It compared to Ît reaches
around 25. We use the training split of the DARK FACE
dataset to perform the pseudo-supervised pre-training. As our
method does not rely on any external low/normal-light image
pairs, it enjoys good scalability and can be fairly compared to
other approaches. This pre-training practice can be expected to
speedup the joint training process and boost the final detection

performance. The performance comparison can be found in
Table II.

To understand and verify the complementarity of the gen-
erated sequence from the REG module, we visualize them in
Fig. 3. The detection results on the generated images using
the pre-trained DSFD detector in the left four images show
good complementarity between different generated images,
indicating that the REGDet learns to generate a complementary
detection-oriented image sequence to benefit subsequent face
detection.

C. The Multi-Exposure Detection Module

Once the multiple pseudo-exposures I are created by the
REG module, a straightforward strategy is to separately
feed them into a face detector and fuse their corresponding
detected bounding boxes, i.e., late fusion. This is however
computationally expensive as it requires multiple runs of the
detection process. Instead, we introduce a resource efficient
strategy to fuse the low-level features extracted from I in early
stage of detection. Such strategy not only takes advantage
of available pre-trained face detectors, but also allows the
collaboration among different pseudo-exposures.

Specifically, the proposed Multi-Exposure Detector (MED)
module integrates a generic pre-trained CNN-based face detec-
tion algorithm, named base detector with early fusion. We tailor
its first convolutional layer using filter inflation technique [4] in
the channel dimension so that the detector can simultaneously
process multiple images and perform adaptive integration, as
shown in Fig. 2. The weights of the T convolutional layers
are bootstrapped from the first layer in the pre-trained base
detector, by duplicating and normalizing the pre-trained filter
weights T times, which helps maintain better discriminative
and complementary regional clues across different pseudo-
exposures. Formally, MED M simultaneously predicts the
confidences p = {pi}Na

i=1 and the bounding box coordinates
g = {gi}Na

i=1 of anchor boxes indexed by 1, 2, . . . , Na as

(p, g) =M (I) , (13)

where Na denotes the number of anchors, pi measures how
confident the i-th anchor is a face and gi is a vector representing
the 4 parameterized coordinates of the predicted face boxes.
Following [32], we use weighted sum of the confidence loss
and the localization loss:

L (p, p̂, g, ĝ) = 1

Na

∑
i

Lconf (pi, p̂i)+
λ

Np

∑
i

p̂iLloc (gi, ĝi) ,

(14)
where Np denotes the number of positive anchors, λ is used to
balance the two loss terms, the ground-truth label p̂i represents
whether the i-th anchor is positive (a.k.a., is a face), and ĝi
is the ground-truth bounding box assigned to the anchor. The
confidence (classification) loss Lconf (pi, p̂i) is a two-class
(face or background) softmax loss,

Lconf (pi, p̂i) = p̂i log (pi) + (1− p̂i) log (1− pi) , (15)

where the p̂i in the second term means that the localization
loss is only calculated for those positive anchors. Following
[13], the localization loss Lloc (gi, ĝi) is defined as the smooth
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(a) Detect on I1 (b) Detect on I2 (c) Detect on I3 (d) Detect on I4 (e) REGDet
Fig. 3. The left four are detection results on intermediate I1, I2, I3 and I4 generated from the REG module, which show complementarity among the
generated images, supporting the effectiveness of our proposed REG module. Note these ‘images’ are linearly normalized for visualization so that the minimum
(maximum) value corresponds to 0 (255). The rightmost column shows our final detection result, where more faces (14 out of 15) are successfully localized,
showing superiority of the proposed MED module. Green and red boxes indicate true positives and missed targets, respectively. The zoom-in versions on the
second row are enhanced by LIME [16] for better visibility.

`1 loss, i.e., the distance between the predicted box gi and the
ground-truth ĝi measured by Huber norm

Lloc (gi, ĝi) =
∑

j∈{x,y,h,w}

H
(
g
(j)
i − ĝ

(j)
i

)
, (16)

where the Huber norm H(·) is defined as

H (x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise .

(17)

The Huber norm is less sensitive to outliers than the `2 norm.
Being an end-to-end system, REGDet allows joint optimiza-

tion of the REG and MED modules during learning. Intuitively,
MED provides facial location information to guide REG such
that the facial regions could be specially enhanced for the
purpose of detection. An example detection result is shown
in the rightmost column of Fig. 3, and it shows that REGDet
successfully localizes far more faces than simply applying the
base detector on different intermediate images. It is worth
noting that MED is flexible in choosing the base detector. In
our experiments, several state-of-the-art algorithms such as

DSFD [28], PyramidBox [43] and S3FD [58] all demonstrate
clear performance improvement when embedded in REGDet.

IV. EXPERIMENTS

A. Setup

1) Dataset and metric: We adopt the recently constructed
DARK FACE dataset [56] as our testbed. 6,000 real-world low-
light images captured under extreme low-light environment.
The resolution of the images is 1080 × 720. Totally 43,849
manually annotated faces are released. The annotated faces have
large scale variance, ranging from 1×2 to 335×296. There are
usually 1 to 20 annotated faces in an image. Since the original
test split [56] is withheld, we randomly leave 1000 images as
our test set. Figure 5 shows the distribution of face number and
face resolution in the train/test splits. Following prior work [28],
[43], [58], face detection performance is measured by mean
Average Precision (mAP), which is calculated as the area under
precision-recall curve.

2) Network architecture: To benefit from the publicly
available pre-trained models, we build up REGDet on the
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Fig. 5. Face resolution (FR) and face number (FN) distribution in train and
test splits.

base detectors pre-trained on the existing largest dataset for
face detection in the wild, i.e., WIDER FACE [55] dataset.
DSFD [28], PyramidBox [43] and S3FD [58], the state-of-the-
art methods that achieve remarkable performance on WIDER
FACE, are chosen as the base detectors. The weights of REGDet
are initialized and bootstrapped as described in Section III-B
and III-C. For reproducibility, we adopt public implementation
of the base detectors with VGG-16 backbone network, which
are all implemented with the PyTorch library. For scalability, the
configurations of anchor design, sample matching, optimization
and inference for different base detectors are set as suggested
in the original papers [28], [32], [43] unless otherwise specified.
For the proposed REG module, we set the number of stages
as T = 4 and the number of REGU blocks as L = 4.

3) Data augmentation: During training, for all methods we
randomly crop image patches with random scales and then
resize them to 640× 640. To construct a model more robust
to commonly seen variations, we adopt data augmentation
schemes such as random patch sampling and random flipping
following [32]. For our proposed REGDet, the random pho-
tometric distortion in data augmentation is removed as it has
already involved an enhancement module. Note that we keep
the photometric augmentation for the baselines following [28],
[43], [58] for fair comparison.

4) Anchor design: The anchor scales are the same for all
the three base detectors at the inference stage, i.e., 16, 32,
64, 128, 256, and 512. Following the baselines, we set the
anchor ratio as 1:1 for S3FD and PyramidBox, and 1.5:1 for
DSFD. The designed anchors cover a wide range of face scales,
specifically, from faces with around 16 × 16 pixels to faces
with around 512× 512 pixels.

5) Hard negative mining: After the anchor matching step, a
large number of negative anchors are produced, which causes
significant imbalance between the positive and negative training
samples and poor convergence performance. To address this
issue, following [32], hard negative mining is adopted to select
the negatives with highest cost in the training phase and make
the ratio between the negative and positive anchors below 3:1.

6) Optimization: The models are trained with a batch size
of 16 for 120 epochs. We adopt SGD with momentum of 0.9
to train the MED module. Annealing learning rate initialized
with 0.001 and decay factor of 0.1 (decayed at the 64-th and
96-th epoch) are used for training the MED module following
the common practice. The adaptive moments [24] (Adam)
with default parameter setting is adopted for training the REG
module, since it has shown promising results for training NNs
with recurrent architecture.

7) Inference: During inference, the image is first rescaled to
make

√
H ×W = 2000, where H and W denote the height

and width of the test image respectively. The boxes output by
the proposed method are firstly filtered out by a confidence
threshold of 0.01 and keep the top 5,000 boxes before applying
non-maximum suppression (NMS). Then NMS is applied with
Jaccard overlap of 0.3 and the top 750 bounding boxes are
kept.

8) Compared methods: We compare REGDet against var-
ious face detectors with illumination pre-processing using
the state-of-the-art low-light image enhancement approaches
including MF [11], SRIE [12], LIME [16], BIMEF [57],
GLADNet [49], RetinexNet [51], RRM [29], DeepUPE [46],
and KinD [59] to preprocess the images. Baseline denotes
the plain detector fed by the original low-light images as
input. We evaluate all the aforementioned approaches with
both pre-trained and finetuned version. The pre-trained version
directly uses the pre-trained weights on WIDER FACE and
performs inference on pre-processed DARK FACE images
using the aforementioned methods. The finetuned version
further finetunes the model using pre-processed DARK FACE
images as input. As the performances reported in [56] are for
the withheld test data split with only pre-trained version, we
re-train the aforementioned methods on our train split and
fairly compare them on our 1000-image test split.

TABLE I
RESULTS OF ABLATION STUDY ON THE PROPOSED REG MODULE. THE

MAP IS REPORTED AS PERCENTAGE (%).

Method DSFD [28] PyramidBox [43] S3FD [58]

#Params mAP #Params mAP #Params mAP

Baseline 47.49M 71.42 54.53M 72.48 21.42M 54.99
Ours-BEG + 0.09M 75.60 + 0.09M 76.11 + 0.09M 56.78
Ours-CEG + 0.09M 74.07 + 0.09M 73.16 + 0.09M 54.30
Ours-SEG + 0.03M 73.52 + 0.03M 74.19 + 0.03M 52.82
Ours-REG + 0.12M 76.94 + 0.12M 77.69 + 0.12M 57.95

B. Result Analysis

The quantitative comparison of different approaches is shown
in Fig. 6. The three pre-trained baseline detectors achieve results
of 32.69%, 31.00%, and 26.58% mAP respectively. The relative
performance disparity among the three detectors are consistent
with their performance on WIDER FACE. The former two
detectors perform much better as they apply modern context
aggregation techniques such as feature enhancement using two
shots [28] or context assisted pyramid anchors [43]. Compared
with the pre-trained detectors, all finetuned ones achieve much
higher performance, indicating that the existing large-scale
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Fig. 6. Quantitative results of different approaches are shown. All the other approaches have both pre-trained version (marked with subscript ‘P’) and finetuned
version (marked with subscript ‘F’) excepting for ours.
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Fig. 7. Alternative pseudo-exposure generation modules.

dataset WIDER FACE dominated by normal-light images
carries very different lighting distribution compared to DARK
FACE dataset. Compared with original image input, many of
the image enhancement approaches improve the face detection
performance. Specifically, the pre-trained detectors equipped
with pre-processing using MF, LIME, BIMEF, DeepUPE,
GLADNet, and SRIE outperform the baseline with respectively
4.87%, 5.08%, 5.33%, 4.60%, and 0.45% performance gain
when using DSFD as the base detector. In the finetuned setting,
MF, LIME, BIMEF, and DeepUPE improve the baseline with
respectively 1.12%, 0.94%, 1.75%, and 1.05% performance
gain when using DSFD as the base detector. While these image
enhancement methods show clear advantages over the baseline
with the pre-trained setting, they achieve less performance gain
in the finetuned setting, as finetuning already greatly reduces
the data distribution discrepancy between normal-light and low-
light images. However, it is noticeable that KinD, RetinexNet,
and RRM cause performance degeneration to different extents
due probably to the severe over-smoothness (KinD, RRM)
or artifacts (RetinexNet) on regions containing faces (also
evidenced by Fig. 4. Among them, the multi-exposure fusion
method BIMEF performs best. The relatively good performance
of BIMEF may also imply that it is promising to adaptively
generate pseudo exposures with different light conditions,
which is consistent with what we explored in this paper. In
particular, compared with the finetuned baseline on original
images equipped with photometric data augmentation [19], the
proposed REGDet shows much higher detection mAP with
respectively about 5.5%, 5.2%, and 3.0% performance gain
using the three base detectors, with negligible extra parameters
(as shown in Table II). The overwhelmingly high detection

rates of REGDet demonstrates its superiority over existing
state-of-the-arts.

The qualitative results of different approaches on sampled
images from DARK FACE are shown in Fig. 4. While those
large and clear faces can also be detected by other methods,
our method has successfully found much more dark and tiny
faces, as pointed out by the red arrows in the presented images.
Although it is hard to detect those faces even by human eyes,
the proposed method is able to localize most of them and
clearly outperforms other approaches.

C. Ablation Studies

1) Model design of the recurrent architecture: To examine
the effectiveness of the proposed recurrent component, variant
generation modules are designed as illustrated in Fig. 7, which
includes
• Branched Exposure Generation (BEG) This module

generates different exposures It parallelly from the origi-
nal image I0 by a module with T branches,

• Chained Exposure Generation (CEG) The t-th image
is generated at the t-th stage of the module with non-shared
weights conditioned on the image It−1 generated at the
(t− 1)-th stage,
• RecurSive Exposure Generation (SEG) Similar with

CEG, except that the module shares parameters at different
stages,

• Recurrent Exposure Generation (REG) The module
used in our proposed method. Different from the aforemen-
tioned modules, REG encodes historical feature maps in
order to alleviate the probable unrecoverable information
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loss caused by the over-exposure and over-smoothness at
the middle stages. The detailed description of the REG
module is provided in Sec. III-A.

We replace REG with BEG, CEG, SEG respectively and
conduct experiments on DARK FACE. As shown in Table II, all
the designed lightweight modules introduce merely a few extra
parameters while they almost all achieve improved detection
results. BEG constructs multiple branches from the original
image I0 to generate different pseudo-exposures in parallel,
and clearly boosts performance, indicating that the MED
module does provide important guidance to the enhancement
module for generating complementary information in different
pseudo-exposures, as illustrated in Sec. III-C. In contrast,
CEG and SEG that generate It conditioned on It−1 with non-
shared and shared weight, respectively, produce not so stable
performance gain, due probably to unrecoverable information
loss caused by the over-exposure and over-smoothness at
the middle stages. This suggests that a proper modeling of
the multi-exposure generation is the key to achieve good
face detection performance. For the performance of using
S3FD as base detector, Ours-CEG and Ours-SEG only achieve
comparable or even decreased detection rates. We conjecture
that the reason of the inferior performance is that S3FD has
much less parameters and consequently much smaller model
capacity compared with DSFD and PyramidBox, resulting in
insufficient guidance effects for the generation modules. By
encoding historical feature maps, the proposed REG alleviates
the issue and performs the best. It indicates that the relationship
between adjacent pseudo-exposures could be well modeled by
maintained memory in the recurrent structure of REG. The
consistent performance boost also demonstrates the scalability
of REG across different base face detectors.

2) Pseudo-supervised pre-training: The REG module is
supervised and guided to generate images corresponding to
diversified exposures with the designed pseudo-supervised pre-
training. We provide experimental comparison on whether
applying the proposed pseudo-supervised pre-training on the
REG module or not. The performance of the resulted REGDet
using PyramidBox as base detector are shown in Table II. When
randomly initializing the REG module (w/o pre-training), the
proposed REGDet remains good performance with an mAP of
76.36%. Equipped with the proposed pseudo-supervised pre-
training technique, our method achieves the best performance
with 1.33% absolute performance gain.

3) Joint training with MED: The ability of generating im-
ages with diverse levels of exposure is not enough. For images
captured under different lighting conditions, the accordingly
proper level of exposure is also different. Moreover, it is not
clear what characteristics of images can help face detection
more. A direct guidance signal coming from the face detector
could be helpful, which can be implemented by jointly training
with MED. To verify its effectiveness, we freeze the weights
of the pre-trained REG module, i.e., without jointly training
with MED. The corresponding result is reported in the third
row of Table II. There is a dramatic performance degeneration
without jointly training, specifically, 70.63% vs.77.69%.

4) Channel-wise attention: In the proposed REGU, channel-
wise attention enables appropriate cross-channel interaction

inside a feature map. As shown in Table II, the channel-wise
attention leads to performance gain of about 1% mAP.

5) Filter inflation: We tailor the first convolutional layer
of the detector using filter inflation technique [4] in the
channel dimension so that the detector can simultaneously
process multiple images and perform adaptive integration. The
weights of the T convolutional layers are bootstrapped from
the first layer in the pre-trained base detector, by duplicating
and normalizing the pre-trained filter weights T times. The
corresponding ablation is shown in Table II. Applying filter
inflation results into 0.54% mAP gain.

TABLE II
RESULTS OF ABLATION STUDIES ON DIFFERENT COMPONENTS OF THE

PROPOSED METHOD.

pseudo-supervised
pre-training

joint training
with MED

channel-wise
attention

filter
inflation

mAP
(%)

" " " " 77.69
% " " " 76.36
" % " " 70.63
" " % " 76.70
" " " % 77.15

D. Hyper-Parameter Analysis

1) Numbers of REGU blocks: There are L = 4 REGU
blocks in the REG module. Generally, increasing the number
of REGU blocks increases the capacity of the model as well as
the computational costs associated with the model. Moreover,
overfitting might occur when L is too large. To study the effect
of the hyper-parameter L, we conduct several experiments
using PyramidBox as base detector. The results are shown in
Figure 8a. We find that increasing L consistently improves the
results when L < 5, and achieve a best mAP of 78.79% when
L = 5. To tradeoff between effectiveness and efficiency, we
set L = 4 in all other experiments.

2) Numbers of stages: We conduct experimental comparison
of different numbers of stages T for the REG module using
PyramidBox as base detector. The results are shown in Fig 8b.
Setting T = 1 is equivalent to a special case of REGDet,
namely, a single-exposure ‘detection-with-enhancement’ model.
It achieves much higher detection performance (mAP) than
the finetuned baseline (72.48%), but achieves inferior result
than the multi-exposure frameworks (T > 1). On one hand, it
supports the claim that jointly performing enhancement and
detection is superior compared to plain detection for low-light
face detection. On the other hand, it verifies the superiority of
the proposed multi-exposure framework over single-exposure
framework. Setting T = 4 achieves the best performance,
indicating that it is a good practice.

E. More Analysis

1) Results on WIDER FACE: In this paper, we aim at
face detection in low-light conditions, which might be the
most commonly seen one among various poor visibility
environments. However, the proposed method is also applicable
for more general cases, e.g., a model with robustness to
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Fig. 8. Sensitivity studies on the hyper-parameters.

TABLE III
TRAINING AND TESTING COMPUTATIONAL COMPLEXITY.

Base Detector Training time (h) Test time (ms) FLOPS (G)

DSFD [28] 22.59 341 520.92
PyramidBox [43] 21.89 338 715.04

S3FD [58] 13.24 301 435.32

large illumination variation. To evaluate the performance of
the proposed method for real-world scenarios covering more
general lighting conditions, we use a mixture of the WIDER
FACE dataset (normal-light) and the DARK FACE dataset
(low-light) to train our REGDet with PyramidBox as base
detector.

The results on the WIDER FACE dataset are shown in
Figure 9. Our method is denoted as ‘REGDet-PyramidBox’.
The corresponding baseline model is denoted as ‘PyramidBox-
VGG’, which is re-implemented based on the same VGG-16
backbone and test protocol as our method for fair comparison.
Intuitively, REGDet cannot be expected to outperform the
latest methods that are built upon backbone with larger
model complexity, e.g., ResNet-152, or multi-scale testing,
and trained on the pure WIDER FACE train split that have
much smaller distribution discrepancy with the test data.
Still, our proposed model achieves comparable or even better
performance compared to the baselines ‘PyramidBox-VGG’.
Specifically, compared to the baseline, the proposed method
bring a performance gain of 1.1%, 0.8%, and 0.7% mAP
respectively on the easy/medium/hard subsets of WIDER FACE
despite of the discrepancy of data distribution. On the low-
light dataset DARK FACE, REGDet-PyramidBox achieves an
mAP of 73.86%. The empirical performances indicate that our
proposed REGDet has good robustness to large illumination
variation.

2) Training and testing computational complexity: For
training, it takes about 22 hours on a server with 8 Tesla
V100 GPUs when using a batch size of 16 for 120 epochs. For
testing, it takes about 0.3s to process an input image of VGA-
resolution (640×480). The computational complexity based on
different base detectors is summarized in Table III. The test
time is obtained by averaging from 10 runs on a single Titan
RTX GPU.

V. CONCLUSION

In this work we proposed an end-to-end face detection
framework, named REGDet, for dealing with low-light input
images. The key component in REGDet is a novel recurrent
exposure generation (REG) module that extends ConvGRU

to mimic the multi-exposure technique used in photography.
The REG module is then sequentially connected with a multi-
exposure detection (MED) module for detecting faces from
images under poor lighting conditions. The proposed method
significantly outperforms previous algorithms on a public low-
light face dataset, with detailed ablation study further validating
the effectiveness of the proposed learning component.
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