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Nonblind Image Deblurring via Deep Learning in
Complex Field
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Abstract—Non-blind image deblurring is about recovering the
latent clear image from a blurry one generated by a known blur
kernel, which is an often-seen yet challenging inverse problem in
imaging. Its key is how to robustly suppress noise magnification
during the inversion process. Recent approaches made break-
through by exploiting convolutional neural network (CNN)-based
denoising priors in the image domain or gradient domain, which
allows using a CNN for noise suppression. The performance of
these approaches is highly dependent on the effectiveness of the
denoising CNN in removing magnified noise whose distribution
is unknown and varies at different iterations of the deblurring
process for different images. In this paper, we introduce a CNN-
based image prior defined in the Gabor domain. The prior not
only utilizes the optimal space-frequency resolution and strong
orientation selectivity of Gabor transform, but also enables using
complex-valued representations in intermediate processing for
better denoising. A complex-valued CNN is developed to exploit
the benefits of the complex-valued representations, with better
generalization to handle unknown noises over the real-valued
ones. Combining our Gabor-domain complex-valued CNN-based
prior with an unrolling scheme, we propose a deep-learning-based
approach to non-blind image deblurring. Extensive experiments
have demonstrated the superior performance of the proposed
approach over the state-of-the-art ones.

Index Terms—Image deblurring, Gabor transform, Complex-
valued CNN, Deep Learning, Inverse problem

I. INTRODUCTION

IMAGE blurring is one prime cause of poor image quality,
which removes important image details such as edges. Let

Y ,X denote an observed blurry image and its latent clear
version respectively. In many scenarios, the formation of a
blurry image can be formulated as a convolution process:

Y = X ∗K + N , (1)

where K,N , ∗ denote the blur kernel, measurement noise and
convolution operation respectively. Image deblurring is about
estimating (deconvolving) X from Y . Such a task is referred
to as non-blind/blind deblurring when K is given/unknown. In
this paper, we focus on the non-blind image deblurring, which
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is not only a critical technique in blind image deblurring,
but also a vital tool in many other image restoration tasks,
e.g. super-resolution. Non-blind image deblurring also has
practical values in the scenarios where hardware-assistant
modules for blur kernel estimation are available.

Owing to its ill-posedness, the non-blind image deblurring
is a challenging problem even with the blur kernel given.
Recovering the high-frequency components diminished or
killed by the blurring process via pseudo inverse inevitably
magnifies the noise. Particularly, when the noise strength
exceeds a certain level, the magnified noise may dominate the
image. Many existing approaches impose certain image priors
to regularize the inversion process for suppressing the noise
magnification. In general, given that N is the additive white
Gaussian noise (AWGN) with standard deviation (s.t.d.) σ,
these approaches consider the following model for deblurring:

min
X

1

σ2
‖Y −X ∗K‖2F + λφ(X), (2)

where φ(·) is the functional w.r.t. certain image prior and λ ∈
R determines the strength of the prior.

In recent years, unrolling-based deep learning approaches
(e.g. [1]–[7]) have shown promising performance in non-blind
image deblurring. In principle, these approaches define φ(·) as
the prior learned by one or more convolutional neural networks
(CNNs) and unroll the optimization process of model (2) into
a trainable neural network (NN). There are two sub-processes
alternating in an unrolling-based approach: at the tth iteration,

(a) Inversion: Estimating the latent image X(t) using both
Y and the output from previous denoising process;

(b) Denoising: Removing the noises (artifacts) from X(t)

output by the previous inversion process, using CNNs.

The main difference among existing unrolling-based ap-
proaches lies in the different designs of the two sub-processes.

The performance of an unrolling-based approach is highly
dependent on the denoising capability of its denoising module.
Nonetheless, the denoising task arising from the unrolled
optimization process is much more difficult than the tradi-
tional ones that focus on the noise with known distribution
(e.g. AWGN). One main challenge comes from that the noise
produced at each iteration of an unrolled process often has
a complex yet unknown distribution. The noise magnified by
the inversion is unlikely to be AWGN, even if the noise N
in the input image is AWGN. Furthermore, such noise may
also have quite discrepant characteristics for different input
images, different blur kernels and different measurement noise
strengths. In many scenarios, there is a lack of sufficient data
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for training a CNN to remove such complex and variable
intermediate noise. A training dataset which covers all kinds
of image patterns, all possible kernels and all possible noise
strengths is indeed very challenging to construct.

Early unrolling-based approaches (e.g. [3]) employ a CNN
pre-trained on AWGN removal (e.g. [8]) as the denoising mod-
ule. However, the CNN trained using AWGN cannot be well
adapted to the noise generated in the unrolled optimization,
and the resulting performance is limited. Many state-of-the-
art (SOTA) approaches (e.g. [6], [7]) train the denoising CNN
together with the inversion process by the end-to-end manner.
One key in these approaches is how to design an effective CNN
with strong expressibility as well as good generalizability, for
overcoming the deficiency of training data.

In addition to the denoising sub-process, the inversion sub-
process also plays an important role in an unrolling-based
approach. The performance of the inversion sub-process not
only relies on the quality of the denoising results, but also
is related to the selection of the prior-related regularization
functional φ(·) that determines the detailed form of inversion.

A. Basic Idea and Motivations

To improve both the denoising and inversion sub-processes,
in this work, we introduce a CNN-based denoising prior
defined in the Gabor domain and investigate the advantages of
complex-valued (CV) representation over the real-valued (RV)
one for non-blind image deblurring. Concretely, we define the
functional φ(·) in the Gabor domain and develop a complex-
valued CNN (CV-CNN) for denoising. The benefits of such a
scheme are discussed as follows.

1) Benefits from Gabor-domain prior: Gabor transform is
known for its optimality on joint space-frequency resolu-
tion and strong orientation selectivity. Many previous studies
(e.g. [9]) have shown that Gabor-based regularizations lead
to noticeable improvement over classic regularizers such as
total variation (TV) and the ones using local discrete cosine
transform or real wavelets. Gabor transform also has deep
connections to visual perception, e.g. both simple cells and
complex cells can be well modeled by Gabor wavelets [10].

2) Benefits from CV representations: Recall that the Ga-
bor coefficients are complex numbers. Complex numbers are
known to have richer representational capacity than the real
ones. It is observed in many studies that the properties of
natural images can be easily captured using complex numbers,
e.g., the local phase of an image often offers detailed infor-
mation of objects on shapes, edges and orientations, and it is
sufficient to use phase to restore the main information in the
image [11]. Therefore, the Gabor-domain CV representation
has the potential to improve the denoising process.

3) Benefits of CV-CNN in terms of generalizability: Using
complex numbers in CNNs also has many benefits. Many
works suggest that owing to the redundancy in CV repre-
sentations, CV-CNNs could have better generalizability [12]
and noise-robust memory mechanisms [13]. Indeed, a CV-
CNN is not a simple double-dimension real-valued CNN (RV-
CNN). The interactions between real parts and imaginary
parts in the CV operations of a CV-CNN encode implicit

connectivity with regularization effects. As a demonstration,
we compare DnCNN [8], a classic denoising CNN, with its
CV counterpart in terms of removing real-world noise on the
DND dataset [14]. Recall that the main ingredients of DnCNN
are convolutional (Conv) layers, batch normalization (BN)
and rectified linear unit (ReLU), all of which deal with real
numbers. The CV counterpart of DnCNN is constructed by
replacing all its Conv layers with the CV ones, with adjustment
on the NN’s width (i.e. number of channels at each layer)
to ensure the same size of two CNNs. The ReLU/BN are
run on the real part and imaginary part separately. These two
versions of DnCNNs are trained with the same training method
used in [8], including the optimizer, initialization scheme and
training data. The AWGN with strength randomly chosen from
[0, 55] is added to the images of the BSD500 dataset [15] for
generating noisy/clean image pairs for training. The results on
the DND dataset which contains 50 images with real noise
of unknown strength are listed in Table I. It can be seen that
CV-DnCNN performs much better with the same model size.
The different characteristics between AWGN and real-world
noise, together with the superior performance of CV-DnCNN
over DnCNN, suggest that CV-CNNs have potentially better
generalizability in handling complex and unknown noise, e.g.
the noise generated in the inversion sub-process of deblurring.

TABLE I: Denoising results of DnCNN and its CV counterpart
on DND Dataset [14].

Method DnCNN CV-DnCNN
PSNR(dB)/SSIM 32.90/0.82 34.41/0.86

4) Benefits of CV-CNN in terms of compactness: CV
operations enable effective size reduction on CNN models.
Firstly, the response of a CV filter contains two feature maps
(i.e. real part and imaginary part) whereas they are viewed
as one channel. Thus, we can halve the model by using
CV expression. Consider a 64ch-to-64ch (’ch’ for channels)
RV Conv layer with a 3 × 3 filter. Its parameter number is
64×64×3×3. Then consider a 32ch-to-32ch CV Conv layer.
Its parameter number is 32× 32× 2× 3× 3 where “2” is for
real and imaginary parts of complex number. Therefore, we
can have a 2X model reduction by using the CV expression.
Secondly, we can use the tensor product of two 1D CV filters
to simulate 2D filters with different orientations. See Fig. 1
for an example. The 1D tensor product decomposition enables
compact representation in the block of 2D convolution. All
such advantages not only lead to model reduction (additional
1.5X reduction in the above example), but also helps avoiding
overfitting, particularly when the training data is insufficient,
which is often the case for for deblurring.

To summarize, there are many appealing features of using
Gabor-domain representation and CV-CNN based processing
for constructing the inversion sub-process and the denoising
sub-process. Such features inspired us to develop a Gabor-
domain CV-CNN-based unrolled optimization approach for
non-blind image deblurring.
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(a) Real part (b) Imaginary part

Fig. 1: 2D filters generated by the tensor products of all pairs
of seven 1D Gabor filters in C7. The figure is quoted from [9].

B. Contributions

Motivated by the benefits of Gabor representation and CV-
CNN, in this paper, this paper studied how such complex-
valued representations and CV-CNN can benefit the develop-
ment of more powerful deep learning method for non-blind
image deblurring. The proposed method is built upon a Gabor-
filter-based inversion process and a CV-CNN-based denoising
prior. Extensive experiments on benchmark datasets have
demonstrated the effectiveness of the proposed approach and
its superior performance over existing ones. Our contributions
are three-fold:

• First, the Gabor-domain denoising prior is exploited in
the unrolled optimization model. Compared to the CNN-
based denoising prior defined in image domain or gradient
domain, ours can exploit the strong orientation selectivity
and excellent space-frequency analysis capability of Gabor
transform for better inversion and denoising. In addition,
we develop a channel attention module for better inversion
with the estimated Gabor coefficients of different channels.

• Second, we develop a CV-CNN for the denoising module,
which comprises compact non-separable convolution blocks
implemented by successive 1D convolutions of CV filters.
We also extend the recently-proposed h-swish activation
unit [16] to the CV version, which allows sophisticated
interactions between real parts and imaginary parts in the
CV-CNN. Our CV-CNN has the merits of compactness and
better generalization for unseen noises.

• Almost all the CNNs used in existing image deblurring
approaches and other image recovery tasks are RV-CNNs.
In this paper, we investigate the advantages of CV-CNNs
over RV-CNNs for image deblurring and noise removal.
Considering noise removal is a critical part in many image
inverse problems, our experimental results indeed show the
potentials of CV-CNNs for image recovery.

II. RELATED WORK

In this section, we perform a literature review on non-blind
image deblurring, with a particular focus on the deep-learning-
based methods. A short review on blind image deblurring
is also given. In addition, we have a brief review on the
development of CV-CNNs.

A. Model-Based Non-Blind Image Deblurring

There is abundant literature on developing regularization
models for non-blind image deblurring. What image prior is
used and how its is used outline the main differences among
these regularization-model-based approaches. We only give a
brief review as follows. (a) Sparsity Prior: Assuming natural
images have sparse local intensity variations, many classic
approaches developed `1 regularization models based on TV
(e.g. [17]) or wavelet (e.g. [18]). In [19], the `p(p ∈ (0, 1]) reg-
ularization is used to better model the heavy-tailed statistical
distribution on image gradients. (b) Nonlocal Self-Similarity
(NSS) Prior: The so-called non-local approaches consider
the repeating of similar image patches. IDDBM3D [20] used
a non-local denoising framelet system to exploit the NSS
of patches in the variational deblurring model. NCSR [21]
constructed a sparse-coding-based deblurring model based
on NSS of the input image. LNLFrame [22] incorporated
NSS into wavelet frame for deblurring. (c) Learned Natural
Image Prior: Instead of using pre-defined image priors, some
approaches attempted to learn image priors from a set of
natural images. FoE [23] learned a parametric random field of
image gradients. EPLL [24] learned a mixture of Gaussians
on clean image patches.

B. Deep Learning for Non-blind Image Deblurring

With the revolution of deep learning in recent years, there
have been great progresses on the learning-based approaches
for non-blind image deblurring. In practice, directly learning
a mapping from blurry images to the clear ones using CNNs
of common structures is neither effective nor efficient for non-
blind image deblurring. The reason is, the knowledge on blurry
image formation and blur kernel is not utilized in such a
straightforward way, and the training process would waste its
effort on teaching the CNN such knowledge.

To exploit the knowledge about the blurring process, some
approaches treated the deconvolution problem as denoising a
deblurred image with artifacts. Schuler et al. [25] proposed to
first deblur the input image with regularized inverse filtering
and then use a multi-layer perceptron (MLP) to remove the
artifacts of the deblurred image. Xu et al. [26] concatenated
a deconvolutional CNN and a denoising CNN, both of which
are learnable. The deconvolutional CNN was designed and ini-
tialized so as to simulate the pseudo-inverse filtering which is
factorized into the weighted sum of separable 1D convolutions.
These two approaches need to train their CNNs on individual
blur kernel and noise strength, and thus their practicability is
limited. Ren et al. [27] constructed the deconvolutional layers
based on a low-rank approximation to a large number of blur
kernels, which enables training a universal CNN that can work
on different kernels.

In recent years, the majority of deep learning approaches for
non-blind image deblurring are concentrated on unrolling the
iteration scheme of regularization approaches. As discussed in
Section I, these approaches usually decompose each iteration
step into an inversion (deconvolution) process and a denoising
process. The denoising process with a predefined image prior
is replaced by the one using the prior modeled by a CNN. Such
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unrolling-based approaches allow being trained with images
degraded by different blur kernels and thus can deal with
unseen blur kernels. An inspiring work can be traced back
to CSF [28] which learns filters (convolution) and shrinkage
(activation) functions in the unrolled optimization of half-
quadratic splitting (HQS). Such an approach can be viewed as
using a shallow CNN with specific structure for the denoising
sub-process at each iteration.

Later, there are some studies along this line. Kruse et al. [2]
extended CSF by replacing the filter learning and shrinkage
learning with the denoising CNN learning. Zhang et al. [1]
used HQS-based unrolling and trained a set of denoising CNNs
on horizontal/vertical image gradients. Zhang et al. [29] also
used HQS for the unrolling and trained a denoising CNN
with residual learning. To improve the efficiency, Dong et
al. [7] proposed to solve the inversion sub-problem from
HQS using single-step gradient descent. The resulting iterative
process is unfolded into a CNN which is composed of multiple
denoising modules interleaved with back-projection modules.
Intead of employing HQS, Meinhardt et al. [3] used the
primal-dual hybrid gradient approach for the unrolling and
replaced the proximal operator by a denoising CNN. In all
above approaches except Kruse et al. [2], the models are
trained on different noise strengths individually. As a result,
they are not good at dealing with varying noise strengths.
Jin et al. [4] unrolled the Bayesian maximum a posteriori
(MAP), which enables estimating the noise strength during
the deblurring process. Also unrolling MAP, Bigdeli et al. [5]
proposed to learn a denoising autoencoder and showed that
their approach corresponds to learning a Gaussian smoothed
version of natural image distribution. Gong et al. [30] unrolled
the gradient descent optimizer and incorporated an NN into it,
which leads to a recurrent gradient descent network with good
generalization for image deblurring. Nan et al. [31] unrolled a
wavelet-based regularization model via variational expectation
maximization. Nan and Ji [32] unrolls a total least squared
estimator for improving the robustness of the network to kernel
error. Rather than unroll to an iterative optimization algorithm,
Gilton et al. [33] proposed to approximate the inversion-based
solution of a regularized least squares deblurring model using
a truncated Neumann series. The regularizer is defined by a
CNN, based on which a novel deep model is constructed.

All the aforementioned approaches use RV-CNNs in image
domain, gradient domain or RV transform domain. In compar-
ison, our approach defines the denoising prior using CV-CNN
in Gabor domain, leading to performance improvement.

C. Blind Image Deblurring

There is also plenty of recent studies focusing on blind im-
age deblurring. Since blind image deblurring is much different
from non-blind deblurring, we only have a brief review on this
line. Blind uniform deblurring often assumes the blur kernel
is also unknown but the noise is not significant. Compared
to the nonblind ones, these blind uniform deblurring methods
aim at estimating the blur kernel; see e.g. [18], [34]–[36]. Once
the kernel is determined, the clear image can be restored by
calling some non-blind deblurring method. Blind non-uniform

deblurring assumes the blurring effect is spatially-varying
which cannot be modeled by convolution. Most existing work
focuses on non-uniform motion deblurring; see e.g. [37], [38].

D. Complex-Valued Convolutional Networks

Recently, an increasing number of studies (e.g. [39]–[43])
have paid attention to CV-CNNs. Most of these studies focus
on the applications of CV-CNNs to recognition. One related
work on image recovery is found in [44], which used a CV
MLP to identify the blur kernel for image deconvolution, and
the deblurring is done by a traditional approach using the
identified kernel. In comparison to this approach, ours is for
image deblurring with a given kernel.

III. MAIN BODY

This section is devoted to describing the proposed deep
NN for non-blind image deblurring. We start from an un-
rolled optimization, based on which a deep NN framework
is developed. Then, the details of each block and training loss
of the framework are presented. Through this section, unless
specified, we use uppercase hollow letters for sets, uppercase
calligraphic letters for operators, uppercase boldfaced letters
for matrices, lowercase boldfaced letters for vectors, and
normal letters for scalars. Let R,C denote the set of real
numbers and complex numbers respectively. Let <(·),=(·)
denote the real part and the imaginary part of a complex
number respectively. Let E{·} denotes the expected value.

A. Unrolled Optimization

The proposed approach unrolls an optimization model built
upon a Gabor-domain CNN-based denoising prior. Recall the
model of (2) is based on a prior φ about the clean image. The
prior usually is imposed on high-frequency image components,
as they are the main parts lost in the blurring process and
to be recovered. Existing approaches often define φ in the
gradient domain, e.g. φ(X) = ‖∆X‖1 for the sparsity prior
and φ(X) = ‖∆X‖p(0 < p < 1) for the hyper-Laplacian
prior. We consider a finer measurement on high frequencies.
Instead of only using first-order derivatives along the x, y axes,
we use a high-pass Gabor filter bank which enjoys optimal
space-frequency resolution and strong orientation selectivity.

Let {Dj}Jj=1 be a set of 2D Gabor filters. In this paper, we
use eight high-pass Gabor filters [9]: {dk1

d>k2
: 1 ≤ k1, k2 ≤

3, k1 ·k2 6= 1}, which are generated by three 1D Gabor filters:

d1 = [

√
2

6
+ 0i,

√
2

3
+ 0i,

√
2

6
+ 0i], (3)

d2 = [−
√

2

8
+

1

2
√

6
i,

√
2

4
+ 0i, −

√
2

8
− 1

2
√

6
i], (4)

d3 = [−
√

2

8
− 1

2
√

6
i,

√
2

4
− 0i, −

√
2

8
+

1

2
√

6
i], (5)

where i=
√
−1. Note that the low-pass filter d1d

>
1 is not used.

Then we consider the following optimization problem:

min
X
‖Y −X ∗K‖2F +

J∑
j=1

λjψ(Dj ∗X), (6)
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where ψ(·) denotes some prior-inducing function.
We adopt HQS for solving (6). By introducing a set of aux-

iliary variables {Aj}Jj=1 which is CV, the solver alternatively
updates X and {Aj}Jj=1 as follows:

X(t) ∈ argmin
X

‖Y −X ∗K‖2F +

J∑
j=1

β
(t)
j ‖A

(t)
j −Dj ∗X‖2F,

A
(t+1)
j ∈ argmin

Aj

‖Aj −Dj ∗X(t)‖2F + α
(t)
j ψ(Aj),∀j. (7)

where {βj}Jj=1, {αj}Jj=1 are two auxiliary parameter se-
quences. In above, the auxiliary variables {A(t)

j }j can be
viewed as the estimation of high frequencies of X . In other
words, there are two iterative steps:

Inversion (INV) : Y , {A(t)
j }j −→X(t),

Denoising (DN) : X(t) −→ {A(t+1)
j }j .

(8)

The inversion step is about deconvolving Y regularized by
estimated high frequencies of X(t). The denoising step aims
at using the prior ψ to remove noise (artifacts) from high-
frequencies of X(t).

B. Overall Structure

We develop a deblurring NN by turning the above inversion
step and denoising step in (8) into two learnable modules: INV
module for inversion and DN module for denoising. See Fig. 2
for an illustration of our NN’s architecture. By sequentially
and alternatively concatenating INVs and DNs, we construct
a CNN for non-blind image deblurring, as shown in Fig. 2(a).
Our CNN accepts a blurry image Y and the corresponding blur
kernel K as input, and outputs a deblurred image. There are
T +1 blocks in the NN. The first block is an INV module that
outputs an initial estimate X(0) with the given initial {A(0)

j }j :

X(0) = INV(Y ,K,A(0)). [Block #0] (9)

Each of the latter T blocks contains one DN and one INV:

A(t) = DN(X(0), · · · ,X(t−1)), (10)

X(t) = INV(Y ,K,A(t)), [Block #t] (11)

for t = 1, · · · , T . The output of the last block, i.e. X(T ),
is used as the final deblurred image of the CNN. Note that
weight sharing is not used across the blocks.

C. Inversion Module

There are two problems in the inversion process: (a) how
to setup the auxiliary parameter sequence {β(t)

j }Jj=1 and (b)
how to solve X(t). The latter has the explicit solution:

X̂(t) =
K̂* � Ŷ +

∑J
j=1 β

(t)
j D̂*

j � Â
(t)
j

K̂* � K̂ +
∑J

j=1 β
(t)
j D̂*

j � D̂j

, (12)

where (̂·), (·)∗, (·)(·) denote the 2D discrete Fourier transform,
element-wise complex conjugate, and element-wise division
respectively. Note that we take the real part after the 2D inverse
discrete Fourier transform to ensure the final result X(t) is RV.

Regarding {β(t)
j }Jj=1, they can be viewed as the attention

weights applied to the feature map (i.e. Aj) of each Gabor
channel respectively. It is a challenging task to have an explicit
formula for determining the optimal values of β(t)

j . In the
next, we consider a simplified case by assuming that the
residuals A(t)

j −Dj ∗X = N
(t)
j independently follow normal

distribution with zero mean and varying variances.

Statement 1. Assuming that Y −X ∗K = N ∼ N (0, σ2),

and A
(t)
j −Dj ∗X = N

(t)
j ∼ N (0, (σ

(t)
j )2),∀j. The optimal

regularization parameter sequence {β(t)
j }Jj=1 is related to the

residual magnitude sequence {γ(t)j = ‖R(t)
j ‖2F}Jj=1 where

R
(t)
j = Dj ∗ Y −K ∗A(t), ∀j, (13)

as follows:

1

N
‖R(t)

j ‖
2
F ≈ σ2(c1 + c2,j/β

(t)
j ) (14)

where c1, c2,j > 0.

Proof. See Appendix for the proof.

Remark 1. Although the formula (14) provides an explicit
definition of the parameters {β(t)

j }Jj=1, it cannot be directly
used in the method as the statistical assumption on A

(t)
j −

Dj ∗X = N
(t)
j is over-simplified. Nevertheless, Statement 1

implies that the measurements {‖Dj ∗Y −K ∗A(t)‖2F }j can
be used for predicting the parameters {β(t)

j }Jj=1.
Based on the remark, we construct a so-called channel

attention (CA) module

CA: Y ,K,A(t) → [β
(t)
j ]Jj=1 ∈ RJ , (15)

which estimates the weights of Gabor channels {β(t)
j }Jj=1

using the residual magnitudes {R(t)
j }Jj=1 defined in (13).

The CA module is implemented with an MLP with ReLU
activation units, whose structure is illustrated in Fig. 3. Given
Y ,K,A(t), the CA module first calculates the residual R(t)

j

for all j using Then it passes {‖R(t)
j ‖2F}Jj=1 to a 3-layer MLP.

The output of MLP is defined as the Gabor channel weights
{β(t)

j }Jj=1.
Based on all above, the INV module is implemented by

combining the learnable CA module that output weights of
Gabor channels and a non-learnable module that calculates
Eq. (12). See Fig. 2(b) for an illustration of INV’s structure.

D. Denoising Module

The DN module first transforms X(t) to the Gabor domain
and then outputs the J-channel denoised Gabor coefficients.
For better performance, we reuse the previous estimates
X(t−1), · · · ,X(0) as additional input which contain extra
information that might be helpful for denoising. Each previous
estimate is also transformed to Gabor domain first. All these
Gabor coefficient maps are fed to a CV-CNN which can deal
with and exploit the Gabor-domain CV representations. See
Fig. 2(c) for an illustration of DN’s structure.

The structure of the CV-CNN used in our approach is illus-
trated in Fig. 4(a). The CV-CNN at the t-th block calculates the
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INV

Block #0

DN INV DN INV

Block #1 Block #T

…

Blurred image Kernel Deblurred image 
CA
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Fig. 2: Diagram of proposed CNN for non-blind image deblurring.
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Fig. 3: Diagram of structure of CA.

Gabor coefficient maps {M (0)
j }Jj=1, · · · , {M

(t−1)
j }Jj=1 (CV)

of X(0), · · · ,X(t−1):

M
(t0)
j = Dj ∗X(t0), ∀t0. (16)

Then it stacks all these maps as input and outputs the
denoised high frequencies A(t) which is CV. The input is
passed to 14 sequentially-connected convolutional units. Each
convolutional unit except the first and last ones contains a
complex-valued Conv (CV-Conv) layer followed by a BN
and a complex-valued h-swish (CV-HS) activation. The first
convolutional unit does not contain BN while the last one only
contains a CV-Conv layer. The CV-Conv layer is implemented
by replacing all the RV convolution operations in a Conv layer
with the CV ones. For a CV feature map F and a CV kernel
G, the CV-Conv is defined by

F ∗G = (<(F ) ∗ <(G)−=(F ) ∗ =(G))

+ (=(F ) ∗ <(G) + <(F ) ∗ =(G))i, (17)

It can be seen that the real part and the imaginary part interact
with each other in CV-Conv. On all CV-Conv layers, the 2D
CV-Conv is implemented by two consecutive 1D CV-Convs:

F ∗G = F ∗ g1 ∗ g2, (18)

where g1, g2 are a horizontal 1D CV kernel and a vertical
1D CV kernel respectively. See Fig. 4(b) for the illustration
of the implementation of the CV-Conv layer. As discussed in
Section I-A, such a factorization can reduce the model size
while keeping the rich expressibility of the NN.

The CV-HS is implemented by extending the h-swish
function (RV) [16]. We use the h-swish function for two
reasons: (a) it is shown in [16] that h-swish brings possible
improvement over other often-seen activation functions such
as ReLU, with negligible computational latency cost; (b) its
simple CV extension involves explicit interactions between

real part and imaginary part. The extension is given as follows:

CV-HS(x) =(
<(x)

ReLU6(<(x) + 3)

6
−=(x)

ReLU6(=(x) + 3)

6

)
+
(
<(x)

ReLU6(=(x) + 3)

6
+ =(x)

ReLU6(<(x) + 3)

6

)
i,

(19)

for any x ∈ C, where ReLU6 denotes the clipped ReLU
with maximal output clipped to 6. It can be seen that the
CV-HS introduces the interactions between real part and
imaginary part. This enables sophisticated nonlinear activation
on the phase of input, improving the expressibility of our CV-
CNN. The BN is applied to the real part and imaginary part
respectively. All CV-Conv layers have 32 output channels.

The middle 8 convolutional units are implemented as 4
residual blocks (RBs) for better performance and faster con-
vergence, whose structure is illustrated in Fig. 4(c). To enlarge
the receptive field for further improvement and higher com-
putational efficiency, a CV-Conv layer with stride of 2 is used
before/after each RB for downscaling/upscaling respectively.
A skip connection is also added from the input of the first RB
to the output of the last RB for preserving the image details.

E. Loss Function
Let {(Xh,Yh)}Hh=1 denote a set of training image pairs

where Xh is a clear image and Yh is the corresponding blurred
image. Let X

(t)
h denote the output of the t-th block in our

CNN. The loss function for training our CNN model is as
follows:

L :=
1

H

H∑
h=1

(
‖X(T )

h −Xh‖2F + µ

T−1∑
t=1

‖X(t)
h −Xh‖2F

)
, (20)

where µ > 0 is the weight to balance the losses of final result
and intermediate results. Note that the output of the first block
is not supervised in the loss.

IV. EXPERIMENTS

This section is for experimental evaluation. The proposed
approach is evaluated on several benchmark datasets with
different noise settings: AWGN with known strengths, AWGN
with varying strengths, and Poisson noise. A robustness test
considering kernel error is also given. Finally, ablation studies
and parameter influence tests are conducted for more analysis.
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Fig. 4: Diagram of CV-CNN.

A. Experimental Setting

1) Data Preparation: The schemes for generating the train-
ing and test data for performance evaluation are as follows:

• Training data. For training, 1473 clear images of size
256× 256 are generated by randomly cropping the images
from the BSDS500 dataset [15] and used as the truth
images. On each truth image, we generate 10 blurry images
by individually applying 10 different blur kernels randomly
selected from the 192 synthetic motion blur kernels used
in [45]. All the resulting 14730 blurred images are then
corrupted with the AWGN of certain strength. Since the
pixel values on the noisy blurry images may exceed the
range [0, 256) and may be not integers, we apply pixel-
wise 8-bit quantization that rounds each pixel value to an
integer and clips them to [0, 256). Different settings on the
strength of AWGN are used in different experiments, which
will be given latter.

• Test data. Three image datasets are used for test: (a) Sun et
al.’s dataset [46] used in [29]; (b) Levin et al.’s dataset [47]
used in [2], [4]; and (c) Set18 that contains 18 classic
images shown in in supplementary materials. The 8 real
motion-blur kernels used in [48], which differ from those
for training, are applied to each test image respectively,
followed by noise corruption and 8-bit quantization for
simulating real scenarios of image storage. Different noise
corruption schemes will be used in different experiments.
In the robustness test, the blur kernels are generated by run-
ning existing kernel estimation methods on input images.

See Table II for the characteristics of the training and test
datasets used in the experiments.

TABLE II: Characteristics of training data and test data.

Dataset BSD500 Sun et
al.’s

Levin et
al.’s Set18

# clear im. 1473 80 4 18
# blur im. 14730 640 32 144
# kernels 192 8
fixed σ 1%, 3%, 5% 1%, 3%, 5%

varying σ [0.5%, 4.5%] 1% ∪ 2% ∪ 3% ∪ 4%

image size 256× 256
≈

900× 700
255× 255

256× 256
512× 512

2) Implementation Details: The proposed approach is im-
plemented using Pytorch with CUDA acceleration. We set
µ = 0.8 in the loss function and T = 3 in the model through

all the experiments. Our model is trained with the end-to-end
manner using Adam, with initial learning rate of 1 × 10−3,
batch size of 8, and 30 epochs. As for initialization, we set
A

(0)
j = 0 for all j and initialize the weights of our CV-CNN

using the Xavier uniform initializer, while the weights/biases
of the CA module are all initialized to 1/0. Run on a desktop
PC with an NVIDIA Titan-RTX GPU, our training process
takes around 98 minutes an epoch.

3) Baselines: The approaches selected for the performance
comparison include the representative ones in regularization-
model-based non-learning approaches and the recent deep-
learning-based approaches. The details on these approaches
will be given in each experiment. Throughout all experiments,
the PSNR and SSIM are used as the quantitative metrics.

B. Performance Evaluation on Deblurring in The Presence of
AWGN With Known Noise Strength

There are some existing non-blind image deblurring ap-
proaches that assume the noise is AWGN with known strength.
These approaches train their CNNs using the data with the
same noise strength as test data. To evaluate the performance
of our approach in this setting, we follow the scheme of [29],
where a model is trained by fixing the strength of AWGN in
training data to σ = 1%, 3%, 5% respectively. We use Ours to
denote our model trained in this setting. The test images are
also corrupted by the AWGN with strength σ = 1%, 3%, 5%
respectively. Each trained model is tested on the corresponding
AWGN strength. The following methods are selected for com-
parison: EPLL [24], IDDBM3D [20], CSF [28], FCNN [1],
IRCNN [29], DMSP [5], DPDNN [7] and VEM [31]. The
results of these approaches are quoted from existing literature
whenever possible, or produced by their published codes under
our same scheme with efforts made on parameter tuning.

The quantitative results are listed in Table III for com-
parison. Our approach consistently outperforms all others by
a large margin on all noise strengths across all datasets, in
terms of PSNR. In Fig. 6(a), we also compare the NN-
based approaches in terms of overall average PSNR on all
datasets versus model size measured by number of parameters.
The model size of our approach is comparable to FCNN
but significantly less than DMSP, DPDNN and VEM. While
having a larger model size, our approach outperforms IRCNN
noticeably. The quantitative improvement of our method is also
consistent with the improvement on visual quality. See Fig. 5
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TABLE III: Average PSNR(dB)/SSIM(×10−4) of deblurred images in image deblurring in the presence of AWGN with known
strengths. The best results are marked in blue and the second best ones are marked in green.

Dataset σ EPLL IDDBM3D CSF FCNN IRCNN DMSP DPDNN VEM Ours

Sun
et al.’s

1% 30.53/8732 32.24/8811 31.04/8633 32.17/8795 30.91/8219 31.79/8639 31.23/8511 32.73/8952 33.10/9022
3% 27.46/7514 28.74/7830 27.84/7345 28.95/7840 27.93/7401 28.26/7715 29.07/8023 29.41/8055 29.54/8094
5% 26.08/6903 27.30/7305 26.53/6630 27.57/7329 27.21/7377 27.54/7440 27.91/7574 28.04/7502 28.07/7503

Levin
et al.’s

1% 32.03/9198 33.75/9244 29.85/8776 32.25/9108 32.66/8746 32.62/9107 31.14/8912 34.31/9382 35.44/9467
3% 28.31/8360 29.26/8500 27.28/7800 29.30/8573 29.15/8220 29.30/8433 28.93/8540 30.50/8798 30.85/8829
5% 27.15/7510 27.33/7938 26.25/7208 27.63/8114 27.56/8035 27.75/8172 27.54/8148 28.52/8348 28.80/8381

Set18
1% 29.35/8429 31.65/8565 29.79/8491 31.08/8562 31.93/8217 31.35/8329 30.52/8398 32.07/8790 32.79/8849
3% 26.65/7562 27.77/7782 26.82/7346 27.90/7803 28.76/7540 29.31/7895 28.49/7900 28.99/8025 29.40/8044
5% 25.73/7178 26.15/7316 25.49/6827 26.48/7290 27.21/7299 27.23/7503 27.38/7520 27.54/7561 27.86/7563

Input (σ = 5%) EPLL / 25.84dB IDDBM3D / 26.51dB CSF / 26.28dB FCNN / 25.13dB Ground Truth

IRCNN / 27.02dB DMSP / 27.03dB DPDNN / 26.64dB VEM / 27.14dB Ours / 27.68dB Ground Truth

Fig. 5: Visual comparison of deblurring results on image ’Butterfly’ in the presence of AWGN with fixed strength.
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Fig. 6: Scatter plots of overall PSNR versus number of
parameters on different deep models in two AWGN settings.

for the images deblurred by different approaches on a blurry
image ’Butterfly’. It can be found that our result contains more
details than other approaches. For instance, the antennae of
the butterfly is clearer in our deblurred image than in other
approaches. Also, compared to others, the patterns on the but-
terfly’s body and wing recovered by our approach are clearer
with less artifacts. The superior performance of our approach is
mainly attributed to the better image characterization provided
by the Gabor-domain prior for inversion, as well as the power
of the CV-CNN for denoising.

C. Performance Evaluation on Deblurring in The Presence of
AWGN With Unknown Noise Strength

In practice, the noise strength is usually unknown and an
approach blind to the noise strength is more appealing. This
setting aims at evaluating the performance of our approach
in handling the AWGN with strength varying within a certain
range. We follow the scheme of [4], where a universal model
is trained with the strength of AWGN randomly chosen from
[0.5%, 4.5%]. We use Ours* to denote our model trained in
this setting. The test images are corrupted by AWGN with
σ = 1%, 2%, 3%, 4% respectively. The trained model is then
tested on all the test images. The following approaches are se-
lected for comparison: IDDBM3D [20], FDN [2], GradNet [4],
EPLL+NA [4], DMSP [5], RGDN [30] and VEM [31]. The
results of these approaches are quoted from existing literature
whenever possible, or produced by their published codes in
our setting with efforts made on parameter tuning.

The quantitative results are listed in Table IV for compari-
son. In Fig. 6(b), we also compare the NN-based approaches
in terms of overall average PSNR on all datasets versus model
size measured by number of parameters. Overall, our approach
performs better than other compared ones in terms of PSNR,
with a moderate model size. The VEM method performs
slightly better than ours in some settings, but its model size
is much larger than that of our model. See Fig. 7 for the
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TABLE IV: Average PSNR(dB)/SSIM(×10−4) of deblurred images in image deblurring in the presence of AWGN with
unknown strengths. The best results are marked in blue and the second best ones are marked in green.

Dataset σ IDDBM3D FDN EPLL-NA GradNet7S DMSP RGDN VEM Ours*

Sun
et al.’s

1% 32.24/8811 32.30/8837 32.18/8820 31.75/8730 31.76/8637 31.29/8926 32.73/8952 32.75/8983
2% 29.95/8234 30.12/8206 30.08/8260 29.31/7980 29.62/8040 29.66/8385 30.57/8412 30.61/8430
3% 28.74/7830 28.97/7785 28.77/7750 28.04/7500 28.68/7743 28.72/8034 29.41/8055 29.45/8041
4% 27.93/7483 28.21/7480 27.81/7360 27.81/7330 28.06/7508 28.04/7760 28.65/7812 28.49/7634

Levin
et al.’s

1% 33.75/9244 33.65/9300 32.16/9230 31.43/9120 32.61/9101 33.47/9378 34.31/9382 34.86/9429
2% 30.96/8809 31.18/8924 30.25/8880 28.88/8410 30.40/8648 31.19/9004 32.02/9063 32.37/9092
3% 29.26/8497 29.79/8641 28.96/8560 27.55/7970 29.31/8432 29.75/8712 30.50/8798 30.78/8811
4% 28.17/8120 28.84/8391 27.85/8240 26.96/7830 28.52/8269 28.67/8433 29.42/8563 29.45/8474

Set18

1% 31.65/8565 31.54/8618 31.41/8559 -/- 31.68/8488 31.16/8729 32.07/8790 32.32/8803
2% 29.18/8105 29.38/8122 29.60/8190 -/- 29.55/8170 29.50/8280 30.14/8342 30.43/8327
3% 27.77/7782 28.31/7745 28.61/7915 -/- 28.54/7852 28.54/7970 28.99/8025 29.29/7992
4% 26.85/7459 27.52/7503 27.46/7478 -/- 27.84/7500 27.81/7666 28.18/7778 28.34/7630

Input (σ = 3%) IDDBM3D / 27.83dB EPLL-NA / 28.45dB DMSP / 29.12dB VEM / 29.50dB Ours* / 29.95dB Ground Truth

Input (σ = 4%) FDN / 26.72dB DMSP / 27.59dB RGDN / 28.01dB VEM / 28.33dB Ours* / 28.60dB Ground Truth

Fig. 7: Visual comparison of deblurring results on images ’Boat’ & ’Couple’ in the presence of AWGN with unknown strength.

deblurred images of different approaches on two blurry images
’Boat’ and ’Couple’, where the improvement of our approach
over others can also be observed from the visual quality of
the deblurred images. Regarding ’Boat’, the characters on the
boat in our deblurred image are the clearest to be identified.
Regarding ’Couple’, the flowers in our deblurred image are
clearer with more details than those of other approaches. One
source of the superior performance of our approach in noise-
strength-blind deblurring comes from the good generalizability
of CV-CNN when handling unseen noise distributions.
Remark 2. The method with the closest performance to ours
is VEM. The visual results from VEM contain more details
but also more artifacts. In comparison, our results have less
artifacts. The main reason for such a visual difference comes
from the different implementations on the inversion process
and different schemes for handing varying noise level. Our
network adopts Gabor filters for regularizing the inversion
process, while VEM uses RV wavelet filters. Since Gabor
filters have better orientation selectivity which lead to better
treatment on oriented edges [9], our network produces less
artifacts than VEM. The reason why VEM keeps more details
is due to its under-estimated noise level by its noise level
estimator [32]. As a result, the denoising in VEM for removing
artifacts is done less aggressively than that in our network,

leading to more details but also more artifacts. Roughly, our
method prefers artifact reduction while VEM prefers detail
preserving. In terms of quantitative metrics, our results are
overall better than that from VEM.

D. Test on Deblurring in The Presence of Poisson Noise

We also evaluate the effectiveness of our model trained
on AWGN in handling unseen noise types (i.e. non-Gaussian
noise). With this purpose, the Poisson noise instead of AWGN
is added to the blurry images in the test datasets. Two kinds
of implementations are used for simulating Poisson noise:
(a) The common sampling-based scheme with noise strength
characterized by the peak values. The peak value is set
to 1, 2, 4 respectively; (b) The scheme from [49], that is,
Y 2 = |Z|2 + N with N ∼ N (0, α2Diag(|Z|2)), where
Z = X∗K and Diag(|Z|2) is a diagonal matrix with diagonal
elements |Z|2. The scalar α controls noise strength and is
set to 1%, 5%, 10% respectively. The methods for comparison
include the ones specifically designed for deblurring images
with Poisson noise: RW2L [50] and VST-BM3D [51], as well
as three deep learning methods: FDN [2], DMSP [5] and
VEM [31]. Instead of being trained on Poisson noise, all the
compared deep models are directly called from those trained
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TABLE V: Average PSNR(dB) of deblurred images in image deblurring in the presence of Poisson noise with different
strengths. Best results are marked in blue and the second best ones are marked in green.

Dataset Peaks RWL2 VSTBM3D FDN DMSP VEM Ours* α RWL2 VSTBM3D FDN DMSP VEM Ours*

Sun
et al.’s

1 27.23 27.33 27.78 27.63 27.91 28.03 1% 27.57 27.61 33.15 33.06 34.81 34.45
2 27.43 27.57 28.91 29.05 29.00 29.48 5% 27.34 27.51 28.93 29.03 29.88 29.97
4 27.55 27.60 29.89 29.77 30.01 30.49 10% 26.51 24.02 26.72 26.68 27.84 27.39

Levin
et al.’s

1 27.60 28.12 27.94 29.11 27.08 29.52 1% 28.23 29.57 31.67 34.45 36.22 36.95
2 27.93 29.15 28.80 30.53 28.84 30.97 5% 27.90 28.17 28.69 30.98 31.07 31.36
4 28.09 29.41 29.78 31.67 30.81 32.50 10% 26.52 21.31 26.62 28.17 28.03 27.48

Set18
1 26.69 26.65 27.32 27.25 27.32 27.88 1% 27.25 27.10 32.72 32.98 33.79 33.69
2 27.00 27.00 28.15 28.32 28.44 29.23 5% 27.09 27.01 28.73 29.10 29.48 29.80
4 27.13 27.07 29.60 29.87 29.54 30.22 10% 26.39 23.97 26.88 26.86 27.37 27.10

Input (Peak=1) VST-BM3D / 27.78dB FDN / 27.34dB DMSP / 28.42dB VEM / 28.57dB Ours* / 28.97dB Ground Truth

Input (α = 25.5) RWL2 / 23.55dB FDN / 24.87dB DMSP / 25.21dB VEM / 25.24dB Ours* / 25.55dB Ground Truth

Fig. 8: Visual comparison of deblurring results on images ’Man’ & ’Zebra’ in the presence of Poisson noise.

in the experiment about AWGN with varying strength. This
can indeed test the generalization in handling unseen noise.

The PSNR results are listed in Table V for comparison.
It can be seen that our approach consistently outperforms
most compared methods in all cases of both noise simu-
lation schemes and it outperforms VEM in 13 out of 18
noise strengths. This clearly indicates the capability of our
approach for handling non-Gaussian noise. See also Fig. 8
for the deblurred images generated by different approaches
on two degraded images including ’Man’ and ’Zebra’ in the
experiment. Regarding ’Man’, the man’s face in our deblurred
image is clearer than that of other compared approaches.
Regarding ’Zebra’, the stripes on the zebras in our deblurred
image contain more details in comparison to other approaches.

E. Test on Deblurring With Kernel Uncertainty

For evaluating the robustness of the proposed approach to
kernel error, we deblur blurry images using the estimated
blur kernels from three existing kernel estimation approaches,
including Perrone and Favaro [52], Pan et al. [53], and Yang
and Ji [36]. We select EPLL [24], IRCNN [29], FCNN [1]
VEM [31] for comparison. The noise in test is configured
as AWGN with strength σ = 1%. The results are listed in
Table VI. It can be seen that our approach performs better
than all other compared methods. See Fig. 9 for some visual
results on a blurry image ’Lena’. It can be found that the hair

of Lena in our deblurred image is more similar to ground truth,
compared to other approaches. Notice that the hair restored by
VEM is over-sharpened; see Remark 2 for a discussion.

TABLE VI: Average PSNR(dB)/SSIM(×10−4) of deblurring
results on Set18 with estimated kernels estimated by three
approaches, in the presence of AWGN with σ = 1%. Best
results are marked in blue.

Method Perrone and Favaro Pan et al. Yang and Ji
EPLL 26.07/7812 26.24/7875 26.71/8027

IRCNN 27.00/7906 25.90/7819 26.25/7984
FCNN 26.85/7881 26.79/7948 27.39/8057
VEM 27.02/7925 26.46/7949 26.94/8045
Ours 27.38/7990 27.05/8003 27.66/8164

F. Ablation Study and More Analysis
For further analyzing the proposed approaches and verifying

the effectiveness of each of its main components, the following
ablation studies and experiments are conducted.

1) CV-CNN vs. RV-CNN: To verify the benefit of using
CV-CNN in our approach, we construct an RV counterpart
(RV-CNN) of our CV-CNN and form a baseline by replacing
our CV-CNN with the RV-CNN in our model for comparison.
The RV-CNN is constructed as follows. By viewing the Gabor
coefficient map (CV) as a two-channel RV feature map, we re-
place all the CV-Conv and CV-HS layers in our CV-CNN with



IEEE TRANSCATIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

Kernel Input EPLL / 26.85dB IRCNN / 25.36dB FCNN / 26.56dB VEM / 27.43dB Ours / 27.88dB Ground Truth

Fig. 9: Visual comparison of deblurring results on image ’Lena’ in the presence of kernel error. The first column contains
ground truth kernel (top) and estimated kernel from Yang and Ji (bottom).

their RV counterparts, and scale up the numbers of all channels
so as to ensure the generated RV-CNN has the same model
size as our CV-CNN. The baseline is tested using AWGN with
varying strengths, under the same training and test protocols
in the previous experiments. The quantitative comparison of
using CV-CNN vs. using RV-CNN is given in Table VII. It
can be seen that using CV-CNN performs consistently better
than using RV-CNN on all noise strengths across all datasets.
Such results have demonstrated the benefits from using the CV
representation and CV-CNN-based processing in our approach.
Also, even only using RV-CNN, the results are competitive to
the previous compared approaches. This is attributed to the use
of Gabor-domain prior and CA module for better inversion.

TABLE VII: Average PSNR(dB) of deblurred images of
proposed approach using RV-CNN and CV-CNN respectively
on image deblurring in the presence of AWGN with varying
strengths. Best results are marked in blue.

Dataset Sun et al.’s Levin et al.’s Set18
CNN RV CV RV CV RV CV
σ = 1% 32.40 32.75 34.29 34.86 32.05 32.32
σ = 2% 30.18 30.61 31.73 32.37 30.15 30.43
σ = 3% 29.16 29.45 30.28 30.78 29.10 29.29
σ = 4% 28.24 28.49 28.98 29.45 28.06 28.34

2) CV-HS vs. CV-ReLU: To verity the effectiveness of h-
swish over the often-seen ReLU in CV-CNN, we construct a
baseline by replacing the CV-HS activation function with the
CV-ReLU activation function [41] defined by applying ReLU
on the real part and imaginary part respectively. The baseline’s
performance is evaluated on image deblurring in the presence
of AWGN with varying strengths, using the same training and
test protocols in the previous experiments. The quantitative
comparison between the baseline and our approach is given in
Table VIII. Overall, our approach with the CV-HS performs
better than the baseline using the CV-ReLU. Such results have
demonstrated the effectiveness of CV-HS over the CV-ReLU.

3) Gabor vs. wavelet vs. learned filters: To verity the
benefits of using the Gabor-domain prior in the proposed
approach, we construct two baselines by replacing the Gabor
filters with the linear spine wavelet filters (RV) [54] and
learned filters respectively. In the first baseline, the wavelet has
the same number of high-pass filters as the Gabor transform
we use. The CV-CNN is run by viewing its RV input from
wavelet transform as the CV ones with imaginary parts set to
zeros. In the second baseline, the replaced filers are also CV
with the same number as our Gabor filters, and they are jointly

TABLE VIII: Average PSNR(dB) of deblurred images using
CV-ReLU and CV-HS activation functions respectively on
image deblurring in the presence of AWGN with varying
strengths. Best results are marked in blue.

Dataset Sun et al.’s Levin et al.’s Set18
Activation ReLU HS ReLU HS ReLU HS
σ = 1% 32.51 32.75 34.43 34.86 32.13 32.32
σ = 2% 30.25 30.61 31.90 32.37 30.22 30.43
σ = 3% 29.20 29.45 30.49 30.78 29.14 29.29
σ = 4% 28.33 28.49 29.07 29.45 28.16 28.34

initialized and learned with the NN model. The performance
of the baselines is evaluated on the image deblurring in the
presence of AWGN with varying strength, using the same
protocols in the previous experiments.

The quantitative comparison between the baselines and our
approach is given in Table IX. In all the tests, our approach
with Gabor filters performs better than the baseline using
wavelet filters, particularly when the noise strength is not
high. This is mainly due to that the used Gabor filters have
optimal orientation selectivity, i.e. the filters are oriented along
different directions. Compared to RV wavelet filters which
only fit horizontal and vertical oriented edges well, the Gabor
filters can better fit image edges with different orientations.
As a result, Gabor filters provide a more refined prior for the
inversion process. Moreover, our approach with Gabor filters
also performs better than the baseline using learned filters.
Indeed, the learned filters even yield worse results than wavelet
filters. The reason is probably that the learned filters are not
guaranteed to becoming band-pass filters with good properties
for the inversion process and therefore they may limit the
model’s generalizability.

4) CA module vs. predefined weights: To evaluate the
performance gain brought by the CA module, we remove
CA and replace its output with a predefined constant β after
fine tuning. The quantitative comparison of using CA module
vs. using predefined constant is given in Table X, which
is on the image deblurring in the presence of AWGN with
known strengths. We can see that the auxiliary parameter
sequences {β(1)

j , · · · , β(T )
j } for all j in the inversion process

are important for the deblurring, and our CA module works
very well to estimate proper parameter sequences. See Fig. 10
for the visualization of the estimated auxiliary parameters
of the trained model when being used to deblur one image
w.r.t. different noise strengths. It can be observed that the
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TABLE IX: Average PSNR(dB) of deblurred images using
learned filters, wavelet filters and Gabor filters respectively
on image deblurring in the presence of AWGN with varying
strengths. Best results are marked in blue.

Dataset σ Wavelet Learned Gabor

Sun et al.’s

σ = 1% 31.98 31.29 32.75
σ = 2% 30.38 29.92 30.61
σ = 3% 29.24 28.96 29.45
σ = 4% 28.33 28.19 28.49

Levin et al.’s

σ = 1% 34.08 31.70 34.86
σ = 2% 31.02 30.38 32.37
σ = 3% 30.47 29.33 30.78
σ = 4% 29.14 28.39 29.45

Set18

σ = 1% 31.59 30.56 32.32
σ = 2% 30.29 29.43 30.43
σ = 3% 29.18 28.55 29.29
σ = 4% 28.23 27.79 28.34

higher the noise strength is, the larger the magnitudes of the
auxiliary parameters are. This is reasonable, since for higher
noise strength, the deblurring should rely more on the denoised
part while less on the noisy input.

TABLE X: Average PSNR(dB) of deblurred images of pro-
posed approach using CA module and fixed weights respec-
tively for setting {β(t)

j }j,t on image deblurring in the presence
of AWGN with known strengths. Best results are marked in
blue. The fixed weights are tuned for performance, which are
0.01, 0.05, 0.10 for σ = 1%, 3%, 5% respectively.

Dataset Sun et al.’s Levin et al.’s Set18
{β(t)

j }j,t Fixed CA Fixed CA Fixed CA
σ = 1% 32.36 33.10 34.19 35.44 32.17 32.79
σ = 3% 28.79 29.54 30.16 30.85 28.42 29.40
σ = 5% 27.50 28.07 28.15 28.80 27.45 27.86

0.44 0.28 0.48
0.49 0.34 0.56
0.50 0.26 0.46
1.20 0.59 0.82
1.21 0.51 0.80
0.48 0.35 0.59
0.95 0.71 1.04
0.81 0.66 1.04

0.11 0.09 0.21
0.11 0.08 0.20
0.10 0.28 0.19
0.28 0.28 0.29
0.32 0.25 0.26
0.12 0.10 0.12
0.30 0.18 0.57
0.32 0.16 0.54

0.81 0.60 0.96
0.75 0.52 0.85
0.84 0.55 0.80
2.13 1.38 1.82
2.39 1.51 1.16
0.79 0.55 0.95
2.62 1.12 1.50
2.34 1.22 1.10

Fig. 10: Estimated auxiliary parameters {β(t)
j }j,t on a blurry

image w.r.t. different noise strengths. Longer green bars cor-
respond to larger values.

5) Performance gain vs. number of blocks: By varying the
number of blocks in our approach, we study its influence to
the deblurring performance. Our test in conducted in image
deblurring in the presence of AWGN with known strength.
The PSNR results are shown in Fig. 11. It can be seen that
the performance of our approach has a significant growth with
the increase of number of blocks when T ≤ 3. After T = 3,
the performance saturates.

32
.5

8

28
.7

5

27
.2

34
.6

5

29
.8

2

27
.7

7

32
.3

28
.6

1

26
.9

3

32
.9

7

29
.3

4

27
.8

5

35
.2

6

30
.6

28
.5

3

32
.6

7

29
.2

27
.6

4

33
.1

29
.5

4

28
.0

7

35
.4

4

30
.8

5

28
.8

0

32
.7

9

29
.4

27
.8

6

33
.1

2

29
.5

7

28
.1

1

35
.4

6

30
.8

9

28
.8

4

32
.8

3

29
.4

5

27
.9

26

28

30

32

34

36

1% 3% 5% 1% 3% 5% 1% 3% 5%

t=1

t=2

t=3

t=4

Sun et al.’s Levin et al.’s Set18

PSNR(dB)

σ

Fig. 11: PSNR(dB) of proposed approach using different
numbers of blocks in image deblurring in the presence of
AWGN with known strength on three test datasets.

6) Influence of number of Gabor filters: Recall that our
results in the previous subsections are based on L = 8 Gabor
filters. It is interesting to see how the number of Gabor
filters affects the deblurring performance. Thus, we generate
L = 3, 15 two-dimensional high-pass Gabor filters via the
scheme of [9] and adopt them in our approach respectively
with evaluation in image deblurring in the presence of AWGN
with known strength. The PSNR versus number of Gabor
filters is illustrated in Fig. 12. It can be seen that using
only 3 Gabor filters leads to noticeable performance decrease,
while further improvement over 8 Gabor filters is observed
when using 15 Gabor filters. Note that the complexity of our
approach does not increase much with more filters used, as
only the input layer and output layer of the CV-CNN, as well
as the CA module is enlarged accordingly.
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Fig. 12: PSNR(dB) of proposed approach using different
numbers of filters in image deblurring in the presence of
AWGN with known strength on three test datasets.

7) Study of the cases that challenge our method: In Fig. 13,
we show a couple of less-successful cases from the results
of our method. In the first case, our result has some details
lost on the chair’s texture. In the second case, our result still
has certain blurring effect. The reason for both the cases is
probably that the denoising of CV-CNNs is overdone. See
also the supplementary file. We will further investigate how to
handle these cases in our future study on non-blind deblurring.
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VEM / 30.82dB Ours / 30.50dB Ground Truth

VEM / 28.31dB Ours / 28.16dB Ground Truth

Fig. 13: Illustration of some less-successful results from the
proposed method and the visual comparison to other methods.

V. CONCLUSION

In this paper, we proposed a non-blind image deblurring
approach which is built upon the unfolded optimization of a
deconvolution model equipped with a Gabor-domain denoising
prior. In the unrolling, a CV-CNN is developed to implement
the Gabor denoising prior. The proposed approach gains
many benefits from the Gabor-domain representation such as
strong orientation sensitivity and optimal joint space-frequency
resolution. Furthermore, the developed CV-CNN can well
exploit the CV representation from the Gabor transform for
better handling the unseen noise distributions presented in the
inversion process of deblurring. We tested the performance of
the proposed approach in non-blind image deblurring with dif-
ferent noise settings. The effectiveness of proposed approach
has been demonstrated by its superior performance over the
SOTA ones. In future, we would like extend our approach to
handle other image recovery tasks.

APPENDIX

Proof of Statement 1. The optimization model

min
X
‖Y −X ∗K‖2F +

J∑
j=1

β
(t)
j ‖A

(t)
j −Dj ∗X‖2F (21)

can be interpreted as an MAP estimator, which is calculated
by (12) with β(t)

j := (σ
(t)
j )−2σ2. Then we have

E{|R(t)
j [k]|2} = E{|(Dj ∗ Y )[k]− (K ∗A(t)

j )[k]|2}

= E{|(Dj ∗K ∗X)[k]− (K ∗A(t)
j )[k] + (Dj ∗N)[k]|2}

= E{|(K ∗N (t)
j )[k] + (Dj ∗N)[k]|2}

= c1σ
2 + c2,j(σ

(t)
j )2, (22)

where c1, c2,j > 0 are two constants determined by K,Dj

respectively. Therefore,

1

N
‖R(t)

j ‖
2
F ≈ E{|R(t)

j [k]|2} =c1σ
2 + c2,j(σ

(t)
j )2 (23)

=σ2(c1 + c2,j/β
(t)
j ), (24)

which completes the proof.

Back-propagation in CV-CNNs. The back-propagation about
the CV convolution kernels is similar to that of their RV
counterparts, except that the related operations are defined
on complex numbers. Specifically, let K,F denote a CV
kernel and an input CV feature map respectively. Let B =
F ∗K and f(B) is a scalar function on B. This sufficiently
covers the calculation of the gradients encountered in the
training of CV-CNNs. By the chain rule in complex analysis,
we have ∂f(B)

∂K = ∂f(B)
∂B

∂B
∂K = ∂f(B)

∂B ∗ F . Since ∂f(B)
∂B

and F are both CV. Thus, ∂f(B)
∂K is also CV with the

form: ∂f(B)
∂K = <(∂f(B)

∂K ) + i · =(∂f(B)
∂K ). Then we have

<(∂f(B)
∂K ) = <(∂f(B)

∂B ) ∗ <(A) − =(∂f(B)
∂B ) ∗ =(A) and

=(∂f(B)
∂K ) = <(∂f(B)

∂B ) ∗ =(A) + =(∂f(B)
∂B ) ∗ <(A).
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