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Unsupervised Phase Retrieval Using Deep
Approximate MMSE Estimation
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Abstract—Phase retrieval (PR) is about reconstructing a signal
from the magnitude of a number of its complex-valued linear
measurements. Recent rapid progress has been made on the
development of neural network (NN) based methods for PR.
Most of these methods employ pre-trained NNs for modeling
target signals, and they require collecting large-scale datasets
with ground-truth signals for pre-training, which can be very
challenging in many scenarios. There are a few unsupervised
learning methods employing untrained NN priors for PR which
avoid using external datasets; however, their performance is
unsatisfactory compared to pre-trained-NN-based methods. This
paper proposes an unsupervised learning method for PR which
does not rely on pre-trained NNs while providing state-of-the-art
performance. The proposed method trains a randomly-initialized
generative NN for signal reconstruction directly on the magnitude
measurements of a target signal, which approximates the min-
imum mean squared error estimator via dropout-based model
averaging. Such a model-averaging-based approach provides a
better internal prior for the target signal than existing untrained-
NN-based methods. The experiments on image reconstruction
demonstrate both the advantage of our method over existing
unsupervised methods and its competitive performance to pre-
trained-NN-based methods.

Index Terms—Phase retrieval, Inverse problems, Unsupervised
learning, Untrained neural networks

I. INTRODUCTION

In many physical measurement systems, one can only obtain
the magnitude of certain linear measurements of a signal,
e.g., the power spectral density which is the magnitude of
the Fourier transform of a signal. Since the phase encodes a
lot of the structural content of a signal, the lack of phase
will cause the loss of important information. The problem
of reconstructing a signal from the magnitude of its linear
measurements is known as phase retrieval (PR). It can be
expressed as solving the following equation:

y0 = |Ax0|+ n, (1)

where x0 ∈ RN (or CN ) denotes the signal for reconstruction
in vector form, n denotes the measurement noise, A ∈ CM×N

denotes some linear transform, e.g. discrete Fourier transform
(DFT), and y0 ∈ RM denotes the collected measurements
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in vector form. This problem has a rich history and arises
in many areas of engineering and applied physics, such as
diffraction imaging [1], astronomical imaging [2], microscopy
imaging [3], holographic imaging [4], ptychography [5], and
crystallography [6]. For instance, diffraction imaging often
uses the following system for measuring a signal:

A =
[
(FD1)

>, · · · , (FDR)
>]> , (2)

where F is the DFT matrix, and D1, ...,DR are defined as

Drx→ dr � x, r = 1, · · · , R. (3)

The notation � represents the Hadamard product, and dr(r =
1, · · · , R) ∈ CN are illumination masks for coded diffraction
patterns (CDPs).

As a non-linear inverse problem, PR is usually ill-posed
due to the lack of phase information and the insufficiency
of measurements. There is no unique solution in general
since any choice of the Fourier phase will generate a valid
solution which can be far from the original signal [7]. Also,
the inherent ambiguities about shift and flip in the Fourier
measurements make PR very difficult [8]. In certain applica-
tions, e.g. compressive PR [9], [10], under-sampled PR [11],
and super-resolution PR [12], there are additional solution
ambiguities caused by the down-sampling process involved in
the collection of measurements. How to resolve the ambiguity
of solutions and the sensitivity to measurement noise, is a key
issue to address when developing an effective method for PR.

There have been extensive studies on regularization methods
for PR. In a regularization method, certain prior is imposed on
the signal during reconstruction to resolve the solution ambi-
guity and possible noise amplification. A typical regularization
method for PR can be expressed as

min
x
L
(
|Ax|,y0

)
+ φ(x), (4)

where φ(·) is some function derived from the prior on the
signal, and L(·, ·) is the fidelity term which depends on the
statistical characteristics of measurement noise. For instance,
in the presence of Gaussian white noise, we have

L(|Ax|,y0) =
1

2
‖|Ax| − y0‖22. (5)

In the past, one often-seen prior for imaging-related PR is the
sparsity prior on image gradients, which assumes the underly-
ing signal is piece-wise smooth with sparse gradients. Such a
prior leads to the `1-norm-based regularization methods [11],
[13], [14]. Another often-seen prior is the self-recurrence prior
of local image patches, which assumes that each image patch is
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likely to repeat itself many times over the image. Such a global
recurrence prior leads to the so-called non-local methods [10],
[15]–[17].

In recent years, deep learning has emerged as one promising
approach for solving the PR problems in imaging, with an
increasing interest in the community. Many works have been
proposed to replace manually-crafted priors by the NN-based
priors learned from training data. For instance, one approach
is to unroll some iterative scheme for solving (4) and replaces
the steps which involve the regularization term by denoising
NNs. One or more denoising NNs are pre-trained over many
pairs of noisy/ground-truth signals, and then plugged into the
iterative scheme; see e.g. [18], [19]. Given sufficient amount
of training data, such a plug-and-play approach showed its
advantage over traditional regularization methods. Instead of
using denoising NNs, another approach is modeling the signal
by a generative NN, which considers

x0 = Gµ(ε), y0 = |AGµ(ε)|+ n, (6)

where Gµ(·) is an NN parameterized by µ with some seed ε as
input. In [20], [21], a generative adversarial network (GAN),
denoted by GGAN

µ0
, is pre-trained over training samples and

used as Gµ. Then, the PR problem is solved by finding the
seed through

ε? := argmin
ε
L
(
|AGGAN

µ0
(ε)|,y0

)
, (7)

and the signal of interest is finally reconstructed as GGAN
µ0

(ε?).
All aforementioned deep-learning-based methods require an

external dataset with ground-truth signals for the pre-training
of NNs. There are several concerns on such a requirement.
One is that in many scenarios, e.g. scientific imaging and
medical imaging, it is very challenging and sometimes even
impossible to collect many ground-truth signals with a very
high signal-to-noise ratio (SNR). Another issue is the possible
bias introduced by the training dataset. As the NN-based prior
is learned over the training dataset, the reconstructed signal
may be biased to the characteristics of the training samples,
which can be either undesired in scientific imaging whose goal
is for discovery, or very risky for medical imaging whose goal
is for disease diagnosis and examination.

There is certainly a lot of interest in many scenarios to
have a generative-NN-based method for PR that uses an
untrained NN (i.e. not pre-trained but randomly initialized) for
modeling the signal to be reconstructed, while still providing
competitive performance to the methods that call pre-trained
models. Owing to the great challenges raised by the absence of
ground-truth training signals, there have been very few works
on the development of such untrained-NN-based methods. An
available one is Jagatap et al. [22] which introduced an under-
parameterized two-layer decoder as Gµ for modeling the image
prior and solved compressive PR as follows:

min
x
‖|Ax| − y0‖22, s.t. x = Gµ(z0), (8)

where the seed z0 is fixed and the weights encoded by µ need
to be estimated. They also provided theoretical guarantees
that under certain conditions, the solution with such a two-
layer decoder-based prior can approximate the ground-truth

sufficiently. While a heavily under-parameterized decoder can
avoid overfitting such that the output image contains few
artifacts, its modeling capacity is also severely limited. As
a result, it will cause under-fitting such that complex image
patterns (e.g. textures) contained in the ground-truth image
will be erased in the output. Compared to the pre-trained-
NN based methods, the performance of existing untrained-NN-
based methods is not satisfactory. Their performance is even
not as good as traditional handcrafted-prior-based methods.

A. Motivation and Basic Idea

This paper aims at developing an unsupervised deep learn-
ing method for PR, which leverages the image prior induced
by the structure of an untrained NN to provide state-of-the-
art (SOTA) performance, while avoiding the need for pre-
training models or collecting ground-truth data. We consider
training a randomly-initialized generative NN parameterized
by µ, denoted by Gµ, to reconstruct the image by solving

min
µ
L
(
|AGµ(ε0)|,y0

)
, (9)

for some random seed ε0. At a quick glance, there is no
regularization on the prediction of image when solving (9).
As a result, the solution ambiguity is not addressed and thus
the overfitting is likely to occur.

Recently, the so-called deep image prior (DIP) [23] showed
that the architecture of a convolutional neural network (CNN)
itself imposed certain regularization property on the prediction.
It is observed that when training a CNN to reconstruct a
noisy image, regular structures appear before random noise
in the output. Thus, the DIP uses early stopping during the
training to output a noise-free prediction. The DIP showed
fine denoising performance in the absence of external training
samples. Nevertheless, while it is effective on removing noise
from images, the DIP may not handle the severe solution
ambiguity in PR effectively. Avoiding random noise in the
estimation is simply not enough to provide an accurate image
estimate in PR.

The DIP can be viewed as a maximum a posterior (MAP)
estimator with implicit image priors induced by the CNN
architecture. It is known that the minimum mean squared
error (MMSE) estimator is another favorite Bayesian estimator
different from the MAP estimator, and one main issue for
the MMSE estimator lies in its computational feasibility.
In this paper, we propose to train a generative NN which
approximates the MMSE estimate of the image. To tackle the
intractability of the posterior distribution of network parame-
ters, we approximate the posterior distribution with a surrogate
distribution parameterized by Bernoulli variables. The main
reason for adopting such a surrogate distribution comes from
the fact that it can be implemented with dropout [24], which
is very computationally efficient and effective on regularizing
the NN. The approximation of the surrogate distribution to the
posterior distribution is done via minimizing the Kullback-
Leibler (KL) divergence between them, which is equivalent
to training the NN with dropout to approximate the given
measurement data under a reconstruction loss.
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Once the surrogate distribution is estimated via the dropout
training, the integral involved in the MMSE estimator is then
approximated by the Monte Carlo method, which is equivalent
to sampling the trained NN with dropout to have multiple
inferences of the image. Then, the final prediction is defined
as the average of these inferences. In the context of Bayesian
inference [25], [26], such an averaging scheme for prediction
is effective on reducing the variance of the estimate, which is
very helpful on resolving the solution ambiguity in PR.

B. Contributions

1) An effective untrained-NN-based method for PR built
upon MMSE approximation: Compared to existing untrained-
NN-based methods for PR, the proposed one exploits untrained
NN priors based on an MMSE approximation framework. This
leads to image (signal) priors with higher accuracy.

2) Competitive performance: Experiments show that our
method bridges the performance gap between untrained-NN-
based methods and pre-trained-NN based methods. It not only
significantly outperforms traditional handcrafted-prior-based
methods and existing untrained-NN-based methods, but also
outperforms recent supervised-NN-based methods.

3) Dropout-based Bayesian approximation technique for
resolving the ill-posedness of nonlinear inverse problems:
This paper presents a technique to resolve the arisen ambiguity
in PR, which implements an approximate MMSE estimation
efficiently based on dropout. Such a technique has possible
applications on solving other non-linear inverse problems.

II. RELATED WORK

The studies on PR started several decades ago; see e.g. [1],
[27]. However, the performance of these methods is unsatisfac-
tory and sensitive to the initialization [28]. Since the publica-
tion of the seminal work [29] which uses convex programming
for solving the problem of PR with theoretical guarantees, PR
has drawn increasing attention from the optimization society
and many subsequent works have emerged; see e.g. [30]–
[39]. Most of these methods focus on the regularization for
solving the problem. With its great success in many image-
related applications, deep learning has been introduced to
tackle the PR problem with very promising performance; see
e.g. [20]–[22], [40]. Owing to the difficulty in training data
collection, the end-to-end NN training is not considered in
existing deep-learning-based approaches for PR in general,
except for very specific scenarios and data. There are a few
deep-learning-based approaches proposed for PR in specific
imaging configurations. For instance, Hyder et al. [8] assumed
that a known reference is added to the signal before capturing
the measurements. In the next, we give a detailed discussion
on recent regularization-based methods and deep-NN-based
methods that are most related to our configurations for PR.

A. Hand-crafted Priors for PR

The most often-seen prior in the regularization methods for
PR is the sparsity prior, which assumes signals are sparsified
in the gradient domain or under some transform or dictionary.

Chang et al. [13] used total variation (TV) regularization on
the latent image for PR in the presence of Poisson noise.
Shi et al. [41] proposed an accelerated algorithm for solving
PR with TV regularization. Instead of using the sparsity prior
on image gradients, Tillmann et al. [42] proposed a dictionary
learning method to regularize the image via `1-regularization
under the learned dictionary. For acceleration, Liu et al. [43]
proposed a parallel algorithm for dictionary-based PR. Qiu et
al. [11] tackled the problem of under-sampled PR using
dictionary learning, and proposed a low-complexity algorithm
for solving the related optimization problem via majorization
minimization. Based on the self-recurrence of image patches,
some methods [16], [17], [44] use the nonlocal sparsifying
frames [45] to regularize the estimation. In [14], the sparsity
of image gradients exploited by TV regularization is combined
with the self-recurrence of image patches exploited by the
spectral sparsity regularization on matched patches.

B. Plug-and-Play Denoising Priors for PR
If an image denoiser can effectively remove random noise

from a noisy image, then it encodes accurate prior knowledge
on noise-free images. Thus, many methods have been proposed
by plugging some existing denoisers into the pipeline of a PR
approach. Most of these methods unroll the iterative scheme
of some regularization approach for PR. By viewing a certain
step as a denoising process, an effective off-the-shelf image
denoiser is then used to replace such a step. For instance,
Metzler et al. [10] incorporated the well-established image
denoiser, BM3D (block matching and 3D filtering) [46], in
an iterative scheme unrolled by the generalized approximate
message passing.

With recent rapid progress on deep-learning-based image
denoisers, some approaches were proposed by plugging the
NN denoiser pre-trained on some denoising dataset into the
unrolled PR process. As long as the dataset for pre-training is
closely related to the data for reconstruction, these methods
benefit from the performance advantage of deep-learning-
based denoisers over the traditional ones such as BM3D
and sparsity-based regularization methods. Metzler et al. [18]
proposed a method named prDeep for PR that leverages the
regularization-by-denoising framework and a pre-trained off-
the-shelf NN denoiser D(·) (e.g. DnCNN [47]) by employing
the explicit regularization term φ(x) = 〈x,x − D(x)〉. The
FASTA (fast adaptive shrinkage/thresholding algorithm) is
used to solve the regularized optimization problem. Shi et
al. [19] proposed to combine the sparsity-based prior under
some frames and an off-the-shelf NN-based denoiser by pe-
nalizing the difference between the frame coefficients of the
image itself and that of its denoised version.

It is noted that the performance of above plug-and-play
approaches highly depends on how well the off-the-shelf de-
noiser performs on target images. In the case of deep learning,
the denoiser should be trained on a dataset where the contained
images are highly related to the data for reconstruction.

C. Deep Generative Priors for PR
Instead of using pre-trained denoising NNs, a few methods

(e.g. [20], [21]) exploit pre-trained generative NNs for PR.
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The basic idea is to find the optimal seed for a pre-trained
generative NN such that the NN’s output fit the constraints
of the magnitude measurements. Hand et al. [20] adopted the
convolutional GAN from [48] as well as a variational auto-
encoder as the generators, while Shamshad et al. [21] used
the convolutional GAN from [40]. These two methods showed
the advantages of deep generative priors over denoising priors
and sparsity-based priors when dealing with images in certain
domains (e.g. face images).

D. Untrained NN Priors for PR
The performance of above generative-prior-based methods

relies on how well a pre-trained model can generalize to
target images. When target images contain structures and
patterns unseen in the samples used for pre-training, such a
pre-trained model would not perform well on target images.
There are several studies exploiting the prior induced by the
structure of an untrained NN for PR; see e.g. [22], [49]–
[51]. Instead of optimizing the input seed for a pre-trained
generative NN, these methods employ an untrained NN with
random input seed and adjust the NN weights to fit the
measurements. Bostan et al. [49] and Lawrence et al. [50]
exploited the untrained deep decoder [52] to solve specific
PR problems. Also based on the untrained deep decoder, the
theoretical work by Jagatap et al. [22] presented a projected
gradient descent scheme with convergence guarantees. Briefly,
the deep decoder is a heavily under-parameterized NN with
only 1 × 1 convolutions. While such an under-parameterized
model induces a strong prior which prefers regular structure
patterns over random noise, it lacks the capability to accurately
represent complex patterns such as textures. In Sun et al. [53],
the untrained normalizing flows rather than the deep decoder
are used for solving non-linear inverse imaging problems,
which allows uncertainty quantization on the result. See also
Liu et al. [51] for an untrained-NN-based framework for
general inverse problems.

III. PROPOSED METHOD

This section presents the proposed method in details. Fol-
lowing the notations in Section I, we use y0,x0 to denote the
phase-less measurement data and the latent image respectively.

A. Model Training for Approximating MMSE Estimation
Given y0, we train a generative NN so that it approximates

the MMSE estimate defined by

x̂ = argmin
u(y0)

E(x0|y0)‖u(y0)− x0‖22

= E(x0|y0)(x0|y0) =
∫
x0p(x0|y0)dx0,

(10)

where p(x0|y0) is the posterior probability density function
(PDF) of the truth image x0. That is, the MMSE estimator is
obtained as the posterior mean of x0. In this paper, we assume
that the image random variable x0 can be re-parametrized by
a CNN Gµ(ε0) with the weight variable µ and a fixed seed
ε0, i.e., x0 = Gµ(ε0). So the MMSE estimate x̂ can be re-
parametrized as follows:

x̂ =

∫
x0p(x0|y0)dx0 =

∫
Gµ(ε0)p(µ|y0)dµ. (11)

Then, x̂ can be calculated via the Monte-Carlo integration if
we have the posterior distribution p(µ|y0) in (11). However,
p(µ|y0) is in general computationally intractable due to the
high dimensionality of µ.

In this paper, we take a variational inference approach [54]
to approximate p(µ|y0) by a surrogate distribution q(µ|α)
parameterized by α. Considering computational efficiency,
we propose the following model of q(µ|α) to approximate
p(µ|y0):

q(µ|α) : µ = α� d, d(j) ∼ B(qj),∀j, (12)

where B(s) denotes the Bernoulli distribution with probability
s, and � denotes element-wise multiplication. The Bernoulli
sampling in (12) equals to running dropout on µ, which enjoys
both high computational efficiency and certain regularization
property. Approximating p(µ|y0) with q(µ|α) is about esti-
mating α, which is done by minimizing their KL-divergence:

min
α

KL(q(µ|α)||p(µ|y0)). (13)

It is equivalent to

min
α

KL(q(µ|α)||p(µ))− Eµ∼q(µ|α) log p(y0|µ), (14)

where p(µ) is the prior distribution of the network parameters
µ. Suppose p(µ) is a uniform distribution on a sufficiently
large bounded set U. Let δU(α) = +∞ if α /∈ U and 0
otherwise. Then KL(q(µ|α)||p(µ)) is equivalent to δU(α) up
to a constant. Therefore, we can rewrite (13) as

max
α∈U

Eµ∼q(µ|α) log p(y0|µ). (15)

The constraint α ∈ U can be omitted in practice, due
to the feasible set U is sufficiently large. Considering the
measurement noise n to be i.i.d. Gaussian white noise, we
have log p(y0|µ) ∝ −‖y0 − |AGµ(ε0)|‖22. Finally, we obtain
the trained model by solving

min
α

Ed∼B(q)
∥∥y0 − |AGα�d(ε0)|∥∥22. (16)

Owing to space limitation, more details are referred to our
supplementary materials.

The training loss in (16) is equivalent to introducing dropout
to the convolutional layers of the NN. Then the model training
can be implemented by training the NN with dropout. Recall
that dropout refers to randomly dropping out some nodes of
an NN during training. It enables a single NN to approximate
numerous NNs of different structures in parallel during train-
ing. In other words, instead of solving (16) multiple times, we
can learn many NN instances in parallel with shared weights
but different dropouts. The training procedure is stopped if
the maximum iteration number is reached or the residual
‖y0 − |AGα�d(ε0)|‖22/R is less than a pre-defined tolerance
defined based on the noise level.

B. Reconstruction via Model Averaging

Once the model training is done with the optimal parameter
α?, we obtain an approximate distribution q(µ|α?) to the de-
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sired posterior distribution p(µ|y0). The approximate MMSE
estimate to x? is then given by

x? =

∫
Gµ(ε0)q(µ|α?)dµ. (17)

The above integration is still intractable, whereas it can be
calculated using Monte Carlo integration:

x? =
1

K

K∑
k=1

Gµ(k)(ε0), µ
(k) ∼ q(µ|α?), (18)

with a sufficiently-large sampling number K. In other words,
the reconstruction is done by averaging the prediction results
from K instances of the dropout-trained NN. Concretely, we
use the trained NN to infer K times, with dropout enabled.
Then, at each inference an instance of the NN with dropout is
generated for prediction. Since the model has been sufficiently
trained with dropout, those instances are very likely to provide
different effective estimators for averaging.

Fig. 1: Effectiveness of the model averaging prior used in the
proposed method for PR. A dropout model is trained with the
proposed scheme on the noisy amplitude measurements of two
images “Boat” (left) and “Barbara” (right) respectively. Then
200 images are reconstructed by 200 tests with dropout from
the dropout-trained model. We use t-SNE to visualize the 200
reconstructed images and their average as well as the ground-
truth. As can be seen, the reconstructed images are randomly
scattered around the ground-truth, and their average is closer
to the ground-truth than each of them.

Model averaging prior for PR. As mentioned before, the
model-averaging-based reconstruction process defined by (17)
is an approximation to MMSE estimate. The concern is then
whether such an approximation can effectively handle the
solution ambiguity and the sensitivity to noise. To answer
this, we trained the models by the proposed method given the
magnitude measurements of two natural images respectively.
For each image, 200 reconstructions are generated via realizing
the trained dropout model for prediction by 200 times. These
200 reconstructions and their average, as well as the ground-
truth image, are projected into a 2D space via t-SNE, as shown
in Fig. 1. We can find that the reconstructions are randomly
distributed around the ground-truth, and their average is closer
to the truth image than any of them. Such results imply that
p(µ|y0) is well approximated by our dropout training and the
model averaging can increase the prediction accuracy.

C. Network Implementation
We adopt the popular U-shape convolutional architecture to

construct our NN. See Fig. 2 for an illustration. To reconstruct
an image of size H ×W × C, we use a random seed of the
same size (i.e. ε0 ∈ RH×W×C) as input, that is

G : RH×W×C → RH×W×C . (19)

The input seed is generated with its entries independently
drawn from the normal distribution N (0, 0.1), and then is
passed to the network as the input. The CNN used in our
method contains six encoder blocks and five decoder blocks.
For the encoder blocks, the first block consists of two C1-
channel convolutional layers. Each of the rest of blocks
sequentially connects a max pooling layer with a window
of size 2× 2 and stride of 2, and a C1-channel convolutional
layer. For the decoder blocks, each of the first four blocks
sequentially connects an upsampling layer with factor of
2 and two C2-channel convolutional layers. The last block
contains an upsampling layer with factor of 2, as well as
three convolutional layers whose numbers of output channels
are C3, C4, C respectively. All the convolutional layers are
equipped with the leaky ReLU activation, except that the last
one which is equipped with the sigmoid activation. The bi-
linear interpolation is used on all upsampling layers.

There are in total 18 convolutional layers in our CNN. We
configure dropout on each of these layers. The dropout prob-
abilities q on the layers are set with an increasing/decreasing
order on the encoder/decoder part. Let qj(j = 1, · · · , 18)
denote the dropout probability on the j-th convolutional layer
and q0 denote the initial point. We set them using the following
symmetric rule: q2 = q1 = q0, qj = qj−1 + 0.075 for
j = 3, · · · , 8, q9 = q8, qj = qj−2 − 0.075 for j =
10, · · · , 16, q18 = q17 = q16. The computational flow for a
convolutional layer with dropout is as follows: d ∼ B(qj),
o = w ⊗ (d � z) + b where o, z,w, b denote the output,
input, convolution kernel and bias respectively, and ⊗ denotes
the convolution operation.

D. Augmentation and Algorithm
Viewing model averaging as an ensemble method, one of its

key is increasing the diversity among the model’s predictions.
Thus, in addition to the utilization of dropout layers, we
introduce more randomness via adding a random soft mask
in the training loss function as follows:

Laug(α) := EωEd
∥∥ ω

‖ω‖1
� (y0 − |AGα�d(ε0)|)

∥∥2
2
, (20)

where each entry of ω is drawn from the normal distribu-
tion N (0.5, 0.1). During training, the soft random masks ω
enforce the model to focus on different spatial locations for
reconstruction with varying weights at each iteration. Note that
the squared `2 loss is not optimal for MAP and MMSE in the
presence of Poisson noise. As the randomized loss Laug can
be viewed as a re-weighted squared `2 loss, it might perform
better in the presence of signal-dependent noise, e.g. Poisson
noise, than the standard squared `2 loss. The experiments show
that the introduction of the soft random masks brings slight
performance gain indeed.
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Fig. 2: Diagram of structure of the CNN used in the proposed method. There are in total 18 convolutional layers in the model,
all of which are equipped with dropout.

To conclude, we present an untrained-NN-based method
for PR which can be viewed as a deep approximate MMSE
estimator, and we call it DeepMMSE through the remaining
of the paper. See Algorithm 1 for its complete description.

Algorithm 1: DeepMMSE for PR

Input: y,A,G,α0, q,K
Output: α?,x?

1 Draw ε0 ∼ N (0, 0.1);
2 α = α0;
3 repeat
4 Draw ω ∼ N (0.5, 0.1);
5 Draw d ∼ B(q);
6 Laug = ‖ ω

‖ω‖1 � (y0 − |AGα�d(ε0)|)
∥∥2
2
;

7 update α via some optimizer on Laug;
8 until iternaion number or tolerance reaches threshold;
9 α? = α,x = 0;

10 for k = 1, 2, · · · ,K do
11 Draw d ∼ B(q);
12 x = x+ Gα?�d(ε0);
13 end
14 x? = x/K;

IV. EXPERIMENTAL EVALUATION

The proposed DeepMMSE is evaluated with several PR
settings, which includes PR from CDPs, compressive PR from
Gaussian measurements and Fourier PR. Specifically, bipolar
masks and uniform masks are used as the CDP masks respec-
tively, and additive white Gaussian noise (AWGN) and Poisson
noise are considered as the measurement noise respectively.
An ablation study is also conducted.

A. Implementation Details of Proposed Method

We implemented the proposed method using PyTorch with
parallel computation. Throughout all the experiments, unless
specified, the setting of the proposed method is as follows.
For all convolution layers, the kernel size is set to 3× 3, and
both the stride and padding number are set to 1. The negative
slope is fixed to 0.01 for all leaky ReLUs. All convolution

weights are initialized by Xavier initialization scheme [55],
and all biases are initialized to zeros. The model is trained
by the Adam optimizer [56] with learning rate fixed at 10−4.
The maximum iteration number is set to 105 and the residual
tolerance is set to the maximum between noise variance and
10−5. The sampling number K used in the model averaging
of (18) is set to 40. Our method requires no external training
data but the input measurements themselves. Recall that the
number of CDP masks (i.e. R) varies in different scenarios. To
better deal with the varying value of R, we allow the CNN to
be scalable with the number of measurements, which is done
by setting the number of CNN’s channels to be proportional
to the number of CDP masks using the following rule:

C1 = d24
√
Re, C2 = d48

√
Re, C3 = d32

√
Re, C4 = d16

√
Re.

The implementation using PyTorch v1.7 will be available to
the public at https://github.com/AlanLin1995.

B. Bipolar Masks + AWGN

Bipolar masks are one often-seen type of CDP masks in
realistic experiments due to its easy implementation. A bipolar
mask D has its entries (1 or −1) drawn from a Bernoulli
distribution B(1/2). In this experiment, the AWGN is added
to the clean measurements generated by (2) with a series of
bipolar masks Dr(r = 1, ..., R) to simulate the practical noisy
observations. We follow the simulation scheme from [19]. The
strength (amount) of the AWGN is measured by the signal-
to-noise ratio (SNR) in dB of the input measurements, which
is defined by SNR = 10log10(‖y0 − n‖22/‖n‖22). Concretely,
the clean measurements are corrupted by the AWGN such that
the SNRs of input noisy measurements are 10dB, 15dB, 20dB
respectively. Accordingly, the initial dropout probability q0 in
our CNN is set to 10%, 20%, 30% respectively. The number
of bipolar masks is set to R = 1, 2, 3, 4 respectively.

Three datasets are used for the test, including (a) Natural-6
that contains six “natural” images used in [18]; (b) Unnatural-6
that contains six “unnatural” images (e.g. fractal images) used
in [18]; and (c) Set-20 that contains twenty classic “natural”
images shown in supplementary materials. Such three datasets
cover a wide range of image content for evaluation. Following
the scheme of [18], we resize all images to 128 × 128. The
approaches selected for the performance comparison include
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WF [32], DOLPHIn [42], BM3D-prGAMP [10], ConPR [17],
prDeep [18] and DPSR [19]. Specially, WF is a flow-
based method which has become a common baseline for PR.
DOLPHIn is a sparsity-regularization-based method. BM3D-
prGAMP and ConPR are plug-and-play regularization methods
which exploit the patch recurrence prior of a natural image via
BM3D. DPSR and prDeep are plug-and-play methods.

Recall that DeepMMSE leverages untrained NN priors. To
demonstrate its advantages, we also adopt two deep untrained-
NN-based methods for comparison, including DIP [23] and
Net-PGD [22]. To avoid overfitting, DIP uses early stopping to
regularize the CNN training while Net-PGD employs an under-
parameterized NN. We implement a DIP-based PR method by
using the same cost function as (8), i.e. minµ

∥∥|AGµ(ε0)| −
y0
∥∥2
2
/R. Specially, the CNN used in the DIP-based PR method

is also the same as the original one for super-resolution, i.e. an
encoder-decoder CNN with skip connections. The maximum
iteration number is set to 2× 104 while it is early stopped if
the residual

∥∥|AGµ(ε0)|−y0∥∥22/R reaches the same tolerance
as ours. The input of DIP is jitterred at each iteration, as its
original work did.

The quantitative results in terms of PSNR (peak signal-to-
noise ratio) and SSIM (structural similarity index measure) are
listed in Table I for comparison. For the compared methods,
we quote their results directly from the literature if possible.
Otherwise, we follow the instructions to run their methods
using the codes provided by the authors and make our effort to
tune the parameters to obtain the optimal results. It can be seen
from Table I that DeepMMSE consistently outperforms all
others by a large margin on all Gaussian noise levels across all
datasets, in terms of both criteria. The overall average PSNR
gain of DeepMMSE over the second best performers is about
1.93dB, 1.45dB and 1.56dB for SNR = 10dB, 15dB, 20dB
respectively. Such significant quantitative improvement is also
consistent with the improvement on visual quality. In Fig. 3,
we compare the visual reconstruction results of image “But-
terfly” from different approaches. See supplementary materials
for more visual comparison. We can observe that the results of
DeepMMSE contain more image details than other approaches
and are the most consistent with the original images. The
superior performance of DeepMMSE is mainly attributed to
that the model averaging prior shown in Fig. 1 is effective to
handle overfitting which leads to accurate estimate. It can also
be seen that DeepMMSE outperforms DIP and Net-PGD by a
significant margin in all configurations. This demonstrates the
advantages of the model averaging prior over early stopping
and under-parameterization for avoiding overfitting.

C. Bipolar Masks + Poisson Noise

Poisson shot noise is one of the dominant noise sources
in many PR-related applications. In this experiment, Poisson
noise instead of AWGN is added to the clean measurements
generated by bipolar masks to simulate the practical obser-
vations. Following the scheme of [18], the Poisson noise is
simulated as follows:

|y0|2/γ2 ∼ Poisson(|Ax0|2/γ2), (21)

where the parameter γ controls the noise strength and is set to
9, 27, 81 in the experiment. Smaller (larger) γ indicates lower
(higher) noise strength. The initial probability q0 of dropout
is set to 10%, 30%, 50% accordingly.

The compared methods in the previous experiment are also
selected for comparison in this experiment. The quantitative
results are listed in Table II for comparison. Our DeepMMSE
consistently outperforms all others by a large margin on almost
all noise strengths across all datasets, in terms of both PSNR
and SSIM. The overall average PSNR gain of DeepMMSE
over the second best ones is about 0.78dB, 0.45dB, and 0.27dB
for γ = 9, 27, 81 respectively. Such significant quantitative
improvement is also consistent with the improvement on visual
quality. In Fig. 4, we compare the reconstruction results of
image “Pollen” from different approaches. Visually, it can be
found that the result of DeepMMSE contains more realistic
details than that of other methods. Furthermore, ours is the
most consistent with the original image among the nine com-
pared results. See also supplementary materials for more visual
comparison. The superior performance of DeepMMSE clearly
indicates the capability of the proposed method for handling
non-Gaussian noise in PR-based image reconstruction.

D. Uniform CDPs + Poisson Noise

To see how well DeepMMSE performs on other types of
CDPs instead of that from bipolar masks, in this experiment,
we employ (2) with uniform CDP masks to generate the
clean measurements, followed by contamination of the Poisson
noise. The uniform CDP masks Di (i = 1, ..., R) are defined
as the diagonal matrices with non-zero elements drawn uni-
formly from the unit circle in the complex plane. We follow the
same experimental protocol presented in [57]. The experiments
are conducted on 12 gray-scale images with Poisson noise of
three different strengths and the number of CDP masks is set
to R = 4. We use the same model setting as that used in
Section IV-C.

Seven representative methods are included for comparison,
including HIO [27], WF [32], DOLPHIn [42], SPAR [15]
BM3D-prGAMP [10], prDeep [18] and TFPnP [57]. The quan-
titative results are listed in Table V. It can be seen DeepMMSE
outperforms others at the low and moderate noise levels. This
has indicated the effectiveness of DeepMMSE in dealing with
other types of CDPs. At the high noise level, DeepMMSE is
the second-best performer and its result is only slightly worse
than the best one, TFPnP. In comparison to TFPnP which
needs a large dataset that covers considerable image patterns
relative to the task for training an effective denoising CNN,
DeepMMSE only uses the measurement themselves to recover
the images. In addition, TFPnP needs to train different models
for different types of CDPs. In comparison, DeepMMSE can
handle different types of CDPs directly.

Computational time. For a deep-NN-based method, it is
difficult to have a theoretical computational complexity. For
the empirical computational complexity, the running time of
DeepMMSE in the setting of bipolar/uniform masks with
Poisson noise are listed in Table III. The test environment
includes a Intel Core i7-8700 CPU, DDR4-2666MHz 16GB
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TABLE I: Average PSNR(dB)/SSIM values of PR-based reconstruction using different numbers of bipolar masks in the presence
of different levels of AWGN. The best and second results are marked in blue and green respectively.

Dataset Natural-6 Unnatural-6 Set-20
SNR(dB) 10 15 20 10 15 20 10 15 20

R
=1

WF 11.8/0.100 12.1/0.106 12.2/0.110 15.0/0.119 15.3/0.121 15.4/0.131 11.5/0.120 11.9/0.133 12.0/0.135
DOLPHIn 19.3/0.394 22.3/0.561 24.8/0.683 22.3/0.512 24.3/0.634 24.5/0.652 18.0/0.367 20.3/0.494 22.6/0.613

BM3D-prGAMP 23.1/0.680 25.1/0.740 27.6/0.809 27.4/0.806 29.6/0.851 31.9/0.888 22.3/0.655 24.6/0.733 26.6/0.797
ConPR 23.1/0.664 25.6/0.762 27.2/0.822 25.5/0.710 27.3/0.772 29.4/0.834 22.3/0.660 24.6/0.751 26.3/0.817
prDeep 21.0/0.563 25.6/0.763 27.7/0.835 27.6/0.770 29.8/0.820 32.3/0.902 19.0/0.500 24.5/0.723 26.4/0.815
DPSR 23.6/0.670 25.8/0.760 27.9/0.822 27.7/0.801 30.1/0.866 32.1/0.899 22.3/0.624 24.5/0.731 26.4/0.801
DIP 23.7/0.653 26.1/0.754 28.6/0.842 28.3/0.816 30.8/0.816 33.2/0.916 23.0/0.664 25.4/0.759 27.9/0.844

Net-PGD 23.0/0.668 25.4/0.753 27.4/0.819 27.5/0.804 29.6/0.857 31.5/0.896 22.4/0.655 24.5/0.756 26.6/0.816
DeepMMSE 24.9/0.710 27.3/0.797 29.5/0.860 29.5/0.846 31.9/0.897 34.4/0.933 24.2/0.706 26.7/0.801 29.0/0.865

R
=2

WF 12.6/0.169 14.3/0.221 15.5/0.274 16.5/0.198 17.7/0.234 17.9/0.247 12.5/0.208 13.9/0.263 14.6/0.288
DOLPHIn 21.5/0.506 25.0/0.692 27.5/0.797 24.0/0.526 26.4/0.668 29.5/0.818 19.9/0.485 23.2/0.654 25.5/0.742

BM3D-prGAMP 24.5/0.737 27.1/0.802 29.6/0.861 29.0/0.851 31.7/0.898 34.4/0.932 23.8/0.720 26.4/0.798 28.9/0.862
ConPR 25.6/0.768 28.5/0.846 31.2/0.903 28.6/0.828 30.7/0.873 32.9/0.904 24.7/0.766 27.6/0.851 30.2/0.906
prDeep 24.9/0.736 27.7/0.827 30.2/0.889 29.5/0.823 31.2/0.850 34.2/0.929 23.8/0.723 26.7/0.824 29.3/0.888
DPSR 25.4/0.749 28.4/0.843 30.9/0.896 30.2/0.874 32.6/0.918 34.9/0.940 24.5/0.744 27.2/0.831 29.5/0.887
DIP 25.5/0.741 28.0/0.828 30.7/0.894 30.2/0.869 32.7/0.926 35.4/0.946 24.3/0.763 27.4/0.832 30.2/0.898

Net-PGD 24.8/0.769 27.5/0.828 29.7/0.878 29.2/0.848 31.5/0.899 33.4/0.929 24.2/0.740 26.6/0.827 29.3/0.887
DeepMMSE 26.7/0.776 29.3/0.855 32.1/0.911 31.4/0.882 34.3/0.932 37.2/0.957 26.1/0.787 28.9/0.863 31.8/0.919

R
=3

WF 15.4/0.275 19.6/0.449 22.2/0.557 20.7/0.369 24.2/0.495 28.5/0.644 15.3/0.329 19.0/0.475 22.5/0.617
DOLPHIn 23.7/0.636 26.8/0.785 30.1/0.868 24.7/0.578 26.7/0.702 29.8/0.834 22.2/0.605 25.7/0.769 29.0/0.858

BM3D-prGAMP 25.3/0.767 28.2/0.833 30.9/0.890 30.0/0.875 32.8/0.917 35.8/0.944 24.5/0.756 27.4/0.831 30.2/0.890
ConPR 26.8/0.808 29.7/0.883 32.9/0.931 29.4/0.854 31.8/0.893 33.9/0.910 25.7/0.802 28.8/0.880 31.8/0.930
prDeep 26.1/0.787 28.7/0.853 31.3/0.909 30.2/0.837 32.1/0.867 35.4/0.941 25.0/0.777 27.8/0.851 30.5/0.910
DPSR 26.6/0.808 29.7/0.877 32.5/0.925 30.6/0.895 34.2/0.936 36.9/0.959 25.7/0.802 28.6/0.873 31.2/0.918
DIP 26.5/0.781 29.3/0.861 32.1/0.919 31.3/0.890 34.0/0.931 32.3/0.801 25.9/0.789 28.6/0.867 31.6/0.924

Net-PGD 25.9/0.783 28.5/0.856 31.6/0.916 30.3/0.875 32.1/0.913 34.5/0.942 25.3/0.782 27.9/0.861 30.7/0.912
DeepMMSE 27.9/0.816 30.7/0.886 33.6/0.934 32.6/0.900 35.7/0.949 38.3/0.970 27.3/0.822 30.2/0.891 33.2/0.939

R
=4

WF 18.1/0.391 23.0/0.595 28.0/0.770 23.7/0.480 28.6/0.654 33.5/0.801 17.7/0.426 22.5/0.616 27.2/0.773
DOLPHIn 24.9/0.689 28.1/0.811 31.3/0.899 25.4/0.624 27.4/0.742 30.0/0.843 23.4/0.659 26.9/0.795 30.4/0.892

BM3D-prGAMP 26.0/0.789 28.9/0.854 31.7/0.904 30.6/0.889 33.6/0.928 36.7/0.953 25.2/0.783 28.2/0.852 31.1/0.905
ConPR 27.4/0.829 30.7/0.901 33.8/0.944 30.0/0.866 32.1/0.899 34.3/0.915 26.3/0.824 29.8/0.898 32.8/0.942
prDeep 26.8/0.808 29.3/0.866 32.2/0.922 30.9/0.858 32.7/0.876 36.2/0.948 26.0/0.809 28.5/0.865 31.4/0.922
DPSR 26.9/0.822 30.2/0.898 33.3/0.939 31.0/0.909 34.8/0.948 37.7/0.966 25.9/0.820 29.3/0.895 32.2/0.935
DIP 27.4/0.813 30.1/0.885 33.2/0.935 32.2/0.907 35.2/0.947 38.4/0.970 26.7/0.817 29.6/0.888 32.7/0.938

Net-PGD 26.6/0.803 29.1/0.869 32.4/0.928 31.1/0.897 34.0/0.935 36.4/0.958 26.0/0.806 28.8/0.880 31.7/0.929
DeepMMSE 28.7/0.841 31.7/0.904 34.7/0.947 33.6/0.925 36.7/0.957 39.5/0.971 28.1/0.846 31.2/0.910 34.4/0.951

Ground-Truth / PSNR WF / 22.29dB DOLPHIn / 24.52dB BM3D-prGAMP / 31.52dB ConPR / 31.32dB

prDeep / 32.09dB DPSR / 33.16dB DIP / 32.84dB Net-PGD / 33.27dB DeepMMSE / 34.01dB

Fig. 3: Reconstructions on image “Butterfly” in the presence of AWGN (SNR=10dB) with R = 3 bipolar masks.
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TABLE II: Average PSNR(dB)/SSIM values of PR-based reconstruction using different numbers of bipolar masks in the
presence of Poisson noise with different strengths. The best and second results are marked in blue and green respectively.

Dataset Natural-6 Unnatural-6 Set-20
γ 9 27 81 9 27 81 9 27 81

R
=1

WF 12.7/0.126 12.6/0.123 12.4/0.119 15.9/0.147 15.5/0.130 14.4/0.100 12.3/0.142 12.2/0.137 12.0/0.135
DOLPHIn 24.9/0.697 22.8/0.585 17.6/0.316 24.4/0.653 23.8/0.597 19.3/0.346 24.0/0.677 21.5/0.555 17.1/0.326

BM3D-prGAMP 32.7/0.913 28.0/0.822 22.1/0.663 34.6/0.930 29.5/0.857 23.7/0.740 31.8/0.910 27.3/0.813 21.7/0.649
ConPR 27.6/0.839 26.6/0.798 21.2/0.571 30.7/0.846 27.2/0.758 21.8/0.525 26.6/0.834 25.4/0.789 20.5/0.573
prDeep 31.6/0.902 24.3/0.666 19.0/0.433 34.3/0.920 24.9/0.602 22.7/0.564 31.3/0.915 24.1/0.700 19.1/0.512
DPSR 30.1/0.871 26.8/0.786 22.4/0.606 32.7/0.905 29.1/0.842 24.4/0.702 28.4/0.850 25.7/0.775 21.6/0.585
DIP 32.3/0.920 27.1/0.796 22.0/0.571 34.4/0.932 28.8/0.821 24.3/0.660 32.1/0.927 26.8/0.813 21.5/0.590

Net-PGD 31.1/0.899 26.3/0.798 21.4/0.603 33.5/0.924 28.4/0.835 23.9/0.666 30.0/0.892 25.9/0.801 21.2/0.607
DeepMMSE 33.6/0.934 28.6/0.840 23.0/0.649 35.7/0.951 30.3/0.865 24.9/0.724 33.4/0.940 27.4/0.813 22.0/0.632

R
=2

WF 15.3/0.270 15.0/0.252 12.5/0.163 18.5/0.271 17.7/0.229 14.5/0.129 15.1/0.304 14.9/0.295 12.5/0.209
DOLPHIn 30.3/0.877 26.0/0.754 17.8/0.344 30.0/0.833 25.9/0.636 21.3/0.409 28.8/0.843 25.1/0.752 17.2/0.355

BM3D-prGAMP 36.2/0.955 30.1/0.872 23.2/0.717 37.7/0.960 31.4/0.897 24.8/0.779 35.7/0.958 29.8/0.879 23.0/0.712
ConPR 34.2/0.947 28.9/0.865 23.2/0.666 33.9/0.907 29.6/0.835 24.9/0.684 32.8/0.941 28.3/0.866 22.7/0.676
prDeep 36.2/0.960 30.1/0.883 24.0/0.714 37.6/0.953 31.6/0.898 26.3/0.772 35.8/0.961 29.6/0.883 23.4/0.701
DPSR 33.5/0.930 29.1/0.861 24.0/0.690 35.5/0.942 31.0/0.884 26.1/0.771 31.7/0.919 28.3/0.857 23.5/0.697
DIP 34.5/0.947 28.8/0.848 23.8/0.669 33.4/0.903 28.3/0.794 24.4/0.660 34.7/0.927 28.9/0.865 23.8/0.695

Net-PGD 33.5/0.937 28.3/0.849 23.4/0.681 32.2/0.896 28.2/0.815 24.1/0.688 32.6/0.934 28.0/0.853 23.3/0.688
DeepMMSE 36.9/0.966 30.8/0.892 24.5/0.721 38.5/0.968 32.2/0.908 26.5/0.779 36.8/0.970 30.4/0.894 23.7/0.704

R
=3

WF 25.3/0.679 21.0/0.504 14.2/0.235 27.8/0.613 23.2/0.438 15.8/0.185 25.7/0.720 21.2/0.557 14.2/0.289
DOLPHIn 31.2/0.905 27.1/0.779 19.3/0.412 30.1/0.844 26.8/0.695 22.1/0.455 31.3/0.915 26.8/0.791 19.0/0.449

BM3D-prGAMP 38.1/0.969 31.3/0.898 24.0/0.752 39.4/0.970 32.5/0.915 25.3/0.804 37.7/0.972 31.1/0.903 23.7/0.748
ConPR 36.2/0.963 30.1/0.892 24.3/0.722 34.7/0.915 30.6/0.862 25.7/0.729 34.8/0.959 29.5/0.892 23.8/0.727
prDeep 37.8/0.967 31.7/0.911 25.2/0.763 39.0/0.965 33.0/0.916 27.1/0.808 37.5/0.969 31.4/0.917 24.6/0.756
DPSR 35.3/0.951 30.5/0.894 25.0/0.735 37.1/0.957 32.1/0.907 26.8/0.803 33.7/0.946 29.8/0.893 24.3/0.744
DIP 36.2/0.964 30.1/0.883 24.7/0.716 34.7/0.925 29.3/0.828 25.0/0.697 36.5/0.969 30.2/0.897 24.7/0.743

Net-PGD 34.1/0.946 29.3/0.875 24.3/0.721 33.4/0.916 29.1/0.845 24.9/0.702 34.2/0.952 29.4/0.886 24.1/0.733
DeepMMSE 38.5/0.976 32.1/0.917 25.4/0.767 40.0/0.975 33.3/0.921 27.3/0.815 38.5/0.979 31.8/0.921 24.8/0.760

R
=4

WF 34.0/0.917 24.8/0.666 15.7/0.295 34.5/0.847 25.6/0.531 17.5/0.240 34.0/0.926 24.9/0.701 15.8/0.354
DOLPHIn 32.9/0.930 28.3/0.820 20.1/0.450 30.2/0.849 27.2/0.726 23.0/0.499 32.3/0.929 28.0/0.829 19.7/0.486

BM3D-prGAMP 39.4/0.976 32.3/0.912 24.4/0.773 40.6/0.976 33.2/0.926 25.7/0.822 39.0/0.978 32.0/0.918 24.3/0.776
ConPR 37.1/0.969 31.0/0.907 24.9/0.748 34.8/0.917 30.9/0.870 26.0/0.751 35.7/0.965 30.4/0.908 24.3/0.752
prDeep 38.9/0.972 32.7/0.920 25.9/0.796 39.8/0.961 33.9/0.933 27.7/0.812 38.7/0.973 32.4/0.931 25.4/0.806
DPSR 36.6/0.963 30.9/0.909 25.6/0.768 37.9/0.966 32.7/0.920 27.2/0.825 34.9/0.957 30.4/0.907 25.0/0.774
DIP 37.9/0.975 31.3/0.907 24.9/0.741 39.6/0.975 32.9/0.913 27.0/0.807 37.9/0.978 31.1/0.917 24.6/0.760

Net-PGD 36.9/0.972 30.5/0.903 24.1/0.746 38.0/0.966 32.2/0.915 26.6/0.800 36.5/0.971 30.2/0.907 24.0/0.753
DeepMMSE 39.7/0.982 32.9/0.926 26.0/0.785 41.0/0.980 34.2/0.935 27.8/0.831 39.7/0.983 32.8/0.936 25.5/0.797

Ground-Truth / PSNR WF / 17.30dB DOLPHIn / 21.50dB BM3D-prGAMP / 23.34dB ConPR / 24.09dB

prDeep / 24.74dB DPSR / 23.39dB DIP / 24.47dB Net-PGD / 24.09dB DeepMMSE / 25.01dB

Fig. 4: Reconstructions on image “Pollen” in the presence of Poisson noise (γ = 81) with R = 4 uniform masks.
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RAM, a single RTX 2080Ti GPU, and PyTorch v1.7. It can be
seen from the table that our code takes about 4.45 minutes on
average for reconstructing an image of size 128 × 128 using
measurements from one mask. In addition, Table IV gives the
comparison between DeepMMSE and several closely-related
ones in terms of the following metrics: the number of param-
eters, the number of floating-point operations (FLOPs) within
one forward pass, and the average running time on reconstruct-
ing an 128 × 128 image with one bipolar mask and Poisson
noise (γ = 81). It can be seen that DeepMMSE is comparable
to prDeep and Net-PGD in terms of the number of parameters
and FLOPs. The running time of DeepMMSE is higher than
other methods. The reason is that the usage of dropout in the
training requires more iterations to converge, in comparison
to the one without calling dropout. Since the initialization
is very important to the result when solving a non-convex
problem like PR, for more fairness, we restart other methods
using different random initializations until the running time is
comparable, then select the best results. This compensates the
margin of computational cost between DeepMMSE and other
methods. Note that the multiple inferences with dropout does
not bring much time cost in our implementation.

TABLE III: Running time (minutes) of DeepMMSE for re-
constructing an image of size 128 × 128 in the setting of
bipolar/uniform masks with Poisson noise (γ = 81). The
number of masks (i.e. R) varies from 1 to 4 for test.

Mask R = 1 R = 2 R = 3 R = 4
Bipolar 4.452 5.801 7.515 9.127
Uniform 8.192 8.529 10.434 11.017

TABLE IV: Complexity comparison for reconstructing an
image of size 128 × 128 with one bipolar mask and Poisson
noise of γ = 81.

Metric prDeep DPSR DIP Net-PGD DeepMMSE
#Parameters 667.7K 485.4K 2.2M 164.7K 247.8K

#FLOPs 10.9G 2.0G 4.8G 0.3G 0.7G
Time cost 0.51min 0.23min 1.42min 0.71min 4.45min

TABLE V: Average PSNR(dB) values of PR-based reconstruc-
tions using four uniform masks in the presence of Poisson
noise with different γ. The best and second results are marked
in blue and green respectively.

Method γ = 9 γ = 27 γ = 81
HIO 35.96 25.76 14.82
WF 34.46 24.96 15.76

DOLPHIn 29.93 27.45 19.35
SPAR 35.20 31.82 22.44

BM3D-prGAMP 40.25 32.84 25.43
prDeep 39.70 33.54 26.82
TFPnP 40.33 33.90 27.23

DeepMMSE 40.58 33.97 27.12

E. Compressive PR

The DeepMMSE can be straightforwardly extended for
handling compressive PR. Following the experiment on com-
pressive PR conducted in [22], we generate the measurements

using the Gaussian matrix A ∈ RM×N whose entries are
i.i.d. random variables drawn from the Gaussian distribution
N (0, 1/M). The test is conducted on five RGB images from
the CelebA dataset with six compression rates, i.e., M/N ∈
{0.1, 0.2, 0.3, 0.5, 1, 3}. The noise is assumed to be negligible
and the clean measurements are used as input. Since the
measurements are noiseless, the learning rate of DeepMMSE
is changed to 10−5 and the iteration number is set to 1.5×105.
The initial probability q0 of dropout is set to 10%.

TABLE VI: Average PSNR(dB)/SSIM values of compressive
PR on CelebA dataset. The best and second results are marked
in blue and green respectively.

M/N DPR Net-GD Net-PGD DeepMMSE
0.1 23.59/0.837 22.59/0.784 26.50/0.897 28.65/0.938
0.2 23.83/0.837 27.92/0.927 28.37/0.935 31.13/0.962
0.3 24.21/0.853 28.53/0.937 28.64/0.937 31.96/0.967
0.5 24.21/0.849 29.24/0.946 28.39/0.936 31.95/0.968
1 24.08/0.851 29.25/0.944 27.64/0.927 32.73/0.972
3 24.16/0.850 29.60/0.950 25.85/0.890 32.97/0.974

Three recent methods especially designed for compressive
PR are used for comparison, including DPR [20], Net-GD [22]
and Net-PGD [22]. See Table VI for the quantitative compar-
ison in terms of PSNR and SSIM. Surprisingly, DeepMMSE
outperforms other methods with a large margin across all com-
pression rates. The results of DeepMMSE at the compression
rate of 0.2 are even comparable to others at the compression
rate of 1. Such results show that DeepMMSE can also be
capable of dealing with compressive PR. See also Fig. 5
for some visual comparison, where the images recovered by
DeepMMSE is visually better than others.

Since there is no noise in this experimental setting, the
results in this part have demonstrated that the model averaging
prior used in DeepMMSE can well address the influence from
the compressive measurement process. In other words, the
advantages of DeepMMSE are not only about handling the
ambiguity arising from noise, but also about overcoming the
ambiguity of the measurement system in the PR problem.

F. Fourier PR

We follow [18] to conduct an experiment on Fourier PR in
the presence of Poisson noise with three different strengths,
using the Natural-6 and Unnatural-6 datasets. The magni-
tude measurements are generated based on Fourier transform
without any masking and pre-processing, and 4X sampling is
done by zero-padding the latent image to four times of its
original size. See [18] for the detailed description on the ex-
perimental setting. Eight representative methods are included
for comparison, including WF [32], DOLPHIn [42], BM3D-
prGAMP [10], ConPR [17], prDeep [18] and DPSR [19],
DIP [23] and Net-PGD [22]. Following [18], the results of
HIO are used for the initialization in each compared method.
Specifically, we use the `1 loss between the NN’s output and
the HIO result for training our NN at the first 500 epochs. The
same scheme is employed for DIP and Net-PGD.

The quantitative results are listed in Table VII. DeepMMSE
consistently outperforms all others by a large margin on almost
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DPR Net-GD Net-PGD DeepMMSE DPR Net-GD Net-PGD DeepMMSE DPR Net-GD Net-PGD DeepMMSE Ground Truth

Compression Rate: 0.1 Compression Rate: 0.3 Compression Rate: 1

Fig. 5: Visual reconstruction results of compressive PR on CelebA dataset by different methods at different compression rates.

Ground-Truth / PSNR WF / 21.24dB DOLPHIn / 21.96dB BM3D-prGAMP / 21.87dB ConPR / 21.45dB

prDeep / 23.53dB DPSR / 21.60dB DIP / 22.40dB Net-PGD / 20.79dB DeepMMSE / 23.73dB

Fig. 6: Reconstructions on image “Boat” from 4× oversampled Fourier magnitude measurements with Poisson noise (γ = 3).

all noise strengths across all datasets, in terms of PSNR. The
overall average PSNR gain of DeepMMSE over the second
best ones is about 0.3dB, 0.2dB, and 0.2dB for γ = 2, 3, 4
respectively. Such significant quantitative improvement is also
consistent with the improvement on visual quality shown in
Fig. 6. As can be seen, our result contains fewer artifacts than
that of other methods, and it is the most consistent with the
original image. See supplementary materials for more results.

G. PR on Measurements from a Physical System

The proposed method is also evaluated on the test set from
Metzler et al. [58]. It provides noisy magnitude measurement
samples captured based on a calibrated amplitude-only spa-
tial light modulator. The associated measuring (transmission)
matrix estimated by the prVAMP method proposed in [58] is

used for PR. In this experiment, the prVAMP method [58] is
also included for comparison. See Fig. 7 and supplementary
materials for the visual inspection on some results. Overall,
the performance of all PR methods decreases in comparison to
their performance on the previous synthetic datasets. One rea-
son is that the estimated transmission matrix is not error-free,
and the noise distribution is unknown. Among all compared
methods, DeepMMSE remains one of the good performers in
terms of recovering structure and suppressing noise.

H. Uncertainty Quantization

Uncertainty quantification on the reconstruction is a prop-
erty welcomed in many applications, e.g. scientific imaging.
The nature of DeepMMSE, i.e. the estimate over multiple
inferences, enables us to quantify the uncertainty of the recon-
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WF DOLPHIn BM3D-prGAMP prVAMP ConPR prDeep DPSR DIP Net-PGD DeepMMSE

Fig. 7: Visual comparison of the results of different PR methods from the public dataset from [58]

TABLE VII: Quantitative results in Fourier PR in terms
of average PSNR(dB) (odd rows) and SSIM (even rows),
using 4× over-sampled Fourier magnitude measurements with
Poisson noise of different strengths. The best and second
results are marked in blue and green respectively.

Method
Natural-6 Unnatural-6

γ = 2 γ = 3 γ = 4 γ = 2 γ = 3 γ = 4

WF
22.57 20.91 19.13 24.07 22.30 21.56
0.596 0.492 0.433 0.580 0.500 0.455

DOLPHIn
25.00 23.45 20.69 25.72 23.82 23.62
0.733 0.671 0.559 0.707 0.631 0.619

BM3D-prGAMP
24.41 21.51 19.23 25.09 22.87 21.77
0.718 0.559 0.467 0.693 0.606 0.550

ConPR
22.64 20.99 18.93 23.30 21.38 20.86
0.627 0.515 0.443 0.589 0.507 0.482

prDeep
30.54 29.23 26.27 30.83 27.57 26.29
0.861 0.823 0.732 0.811 0.692 0.652

DPSR
22.40 20.94 18.83 22.72 20.66 20.31
0.629 0.519 0.442 0.554 0.470 0.450

DIP
25.53 23.70 20.39 25.03 23.83 22.83
0.770 0.685 0.553 0.759 0.694 0.640

Net-PGD
21.50 20.86 18.89 19.80 18.81 18.81
0.587 0.512 0.440 0.468 0.422 0.418

DeepMMSE
30.85 29.48 26.51 31.24 27.97 26.53
0.884 0.845 0.744 0.854 0.737 0.679

structed image. See Fig. 8 for an illustration. It shows pixel-
wise statistics over 100 inferences in terms of mean, standard
deviation, and fractional standard deviation (i.e. standard de-
viation over mean) [53]. It can be seen that, one can estimate
the uncertainty on the reconstructed image in the framework of
DeepMMSE, where flat regions have lower uncertainty while
structure regions (e.g. edges) have higher uncertainty.

I. Ablation Study

For further analyzing DeepMMSE and verifying the effec-
tiveness of its main components, the following ablation studies
and experiments are conducted.

1) Effectiveness of Model Averaging: Recall that our Deep-
MMSE method uses the dropout-based model averaging to
have an accurate estimate. To verify the benefit of such a
mechanism in DeepMMSE, we construct a baseline (“w/o
MA-1”) of DeepMMSE by removing the model averaging step
in test and only using the output of the dropout-trained model
for reconstruction. We also construct a baseline (“w/o MA-2”)
by further removing the dropout during model training from

Mean (Reconstruction) Standard deviation Standard deviation / Mean

Fig. 8: Pixel-wise statistics over 100 predictions on image
“E.Coli” and “Starfish” with four bipolar masks. See more
results in supplementary materials.

“w/o MA-1”. These two baselines share the same architecture
and stopping criteria as DeepMMSE. The baseline methods are
tested in the PR-based reconstruction using four bipolar masks
in the presence of AWGN and Poisson noise respectively.

The quantitative comparison of DeepMMSE versus the
baselines is given in Table VIII. It can be seen that Deep-
MMSE with model averaging performs better than the two
baselines which do not use model averaging. Such a perfor-
mance gain has clearly justified the necessity of the introduc-
tion of the model averaging mechanism on handling the ill-
posedness in PR-based reconstruction. We can also see that
the “w/o MA-1” using dropout training performs sometimes
better and sometimes worse than “w/o MA-2” which uses no
dropout in both training and reconstruction. This is probably
because dropout training helps to reduce the overfitting during
learning (for better performance) but meanwhile it reduces the
capacity of a CNN.

We also test how the value K (i.e. the number of models
for averaging) affects the reconstruction accuracy. The test is
conducted using four bipolar masks with AWGN and Poisson
noise respectively. The quantitative results are given in Ta-
ble IX. See also Fig. 9 for the PSNR of the individual/average
reconstructed image vs K. As K increases from 1 to 8,
the average PSNR of the reconstructed images increases fast
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TABLE VIII: Average PSNR(dB) values of PR-based re-
construction using the proposed method and two baselines
(w/o MA-1 and w/o MA-2) respectively. Four bipolar masks
are used. The noise is set to AWGN with different amount
(measured by SNR(dB) of input measurements) and Poisson
noise with different amount (measured by γ). The best results
are marked in blue.

Natural-6 Unnatural-6 Set-20
SNR(dB) 10 15 20 10 15 20 10 15 20

w/o MA-2 26.8 29.6 32.6 32.0 34.7 37.5 25.9 28.8 31.7
w/o MA-1 26.5 29.6 33.3 31.0 34.7 38.1 26.6 29.7 33.0
Original 28.7 31.7 34.7 33.6 36.7 39.5 28.1 31.2 34.4

γ 9 27 81 9 27 81 9 27 81
w/o MA-2 36.3 30.4 24.7 39.1 32.9 27.0 36.4 30.3 24.0
w/o MA-1 38.3 31.0 23.4 39.1 32.3 25.7 37.8 31.1 23.3
Original 39.7 32.9 26.0 41.0 34.2 27.8 39.7 32.8 25.5

TABLE IX: Average PSNR(dB) results of DeepMMSE and
“Simple” with varied K (i.e. the number of models for aver-
aging) on Set-20. Four bipolar masks are used. The noise is set
to AWGN with SNR=10dB or Poisson noise with γ = 81. The
total running time (minutes) for K = 50 models is reported
in the rightmost column. The best results are marked in blue.

K 1 2 4 8 16 32 50 Time
Deep AWGN 26.6 27.1 27.6 27.9 28.0 28.0 28.1 10.4

MMSE Poisson 23.3 24.7 25.0 25.2 25.4 25.4 25.5 9.1

Simple
AWGN 26.5 27.3 27.6 27.7 27.7 27.7 27.8 241.7
Poisson 23.8 24.7 25.0 25.1 25.2 25.2 25.2 203.3

(a) Average result on “Boat” (b) Average result on “Barbara”

Fig. 9: PSNR of individual/average reconstructed images vs
K. The average reconstruction is improved as K increases.

and noticeably, which has verified the effectiveness of model
averaging. The increase becomes saturated after K = 32. In
addition, DeepMMSE is compared to a baseline (“Simple”),
which runs model averaging by using the models trained with
random initializations. That is, we use the NN in such a simple
method by removing all dropouts in our NN model. Then
in total K models are separately trained by using different
random initializations. Finally, the prediction is the average
of the predictions from these K trained models. The results
from the baseline are included in Table IX for comparison, in
terms of both PSNR and time cost. Take γ = 81 for instance.
The running time of the baseline is about 20 times as that of
DeepMMSE, while its PSNR result has 0.3dB gap towards
ours. Such results have demonstrated the advantages of the
dropout model averaging in DeepMMSE over the model av-
eraging with random initializations, in terms of computational

efficiency and estimation accuracy.
2) Effectiveness of loss augmentation: To verify the benefit

of the loss augmentation strategy employed by DeepMMSE,
we construct a baseline named “w/o LA” which does not
use the loss augmentation in DeepMMSE. The baseline uses
the same architecture and stopping criteria as DeepMMSE.
The quantitative comparison is given in Table X, which is
conducted using four bipolar masks with AWGN and Poisson
noise respectively. It can be seen that the loss augmentation
brings slight performance improvement.

TABLE X: Average PSNR(dB) values of PR-based reconstruc-
tion using DeepMMSE and the baseline “w/o LA” respec-
tively. Four bipolar masks are used. The noise is set to AWGN
with strength measured by SNR(dB) of input measurements or
Poisson noise with strength measured by γ. The best results
are marked in blue.

Dataset Natural-6 Unnatural-6 Set-20
SNR(dB) 10 15 20 10 15 20 10 15 20
w/o LA 28.4 31.4 34.4 33.2 36.4 39.1 27.8 31.0 34.1
w/ LA 28.7 31.7 34.7 33.6 36.7 39.5 28.1 31.2 34.4
γ 9 27 81 9 27 81 9 27 81

w/o LA 39.2 32.6 25.7 40.6 34.0 27.4 39.3 32.4 25.1
w/ LA 39.7 32.9 26.0 41.0 34.2 27.8 39.7 32.8 25.5

J. Impact of Certain Parameters to Performance

The impact of the setting of various parameters to the per-
formance is analyzed, which includes the maximum iteration
number, tolerance threshold, and dropout pattern/ratios. The
experiments are conducted on Set-20 dataset using four bipolar
masks in the presence of AWGN with SNR=20dB. Regarding
the maximum iteration number and tolerance threshold, we run
DeepMMSE without using the stopping criterion and plot the
PSNR values w.r.t. iteration number in Fig. 10. In Fig. 10, five
points with the corresponding tolerances are marked out. It can
be seen that the performance of DeepMMSE increases very
fast at the beginning and saturates before the stopping criterion
(i.e. iteration number or tolerance) is satisfied. Afterwards,
the performance with further iterations starts to decrease.
This is because the model becomes overfitting with the loss
being close to 0. Overall, the performance of DeepMMSE is
not sensitive to the maximal number and tolerance threshold
within a reasonable range.
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Fig. 10: Influence of iteration number and tolerance threshold.
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TABLE XI: Average PSNR(dB) results of DeepMMSE using
two dropout probability setting schemes on Set-20 using four
bipolar masks in the presence of AWGN with SRN=20dB.

q0 10% 20% 30%
Proposed Dropout 34.2 34.3 34.4
Constant Dropout 33.9 33.7 33.2

For the setting of dropout pattern/probabilities, two config-
urations are used for the experiments. The first setting uses a
varying dropout probability defined by the proposed symmetric
rule with initial point q0. The second setting uses a constant
dropout probability across all dropout layers, i.e. qj = q0,∀j.
On both settings, we evaluate the performance of the models
trained with q0 = 10%, 20%, 30% respectively. See Table XI
for the comparison of the results using different settings. The
performance from the proposed symmetric rule for setting the
varying dropout probability is significantly better than that
from the constant rule. The main reason is that different layers
in the NN have different capacities due to their differences in
feature size and channel number. As different dropout prob-
abilities will reduce the model capacity by different degrees.
Thus, different dropout probabilities need to be imposed on
different layers to fit the model capacity of the layers. In
addition, it can be seen that the performance of DeepMMSE is
not sensitive to the initial point q0 within a reasonable range.

V. CONCLUSION

In this paper, we proposed to solve the problem of PR using
the deep prior provided by an untrained NN. The proposed
approach used an over-parameterized deep generative CNN
for reconstructing the unknown image from the input measure-
ments, which is trained without any training samples, which
may avoid possible bias introduced by external training data
and cut the cost of data collection in the meanwhile. To seek
for an approximation to the MMSE estimator, we used dropout
model averaging and demonstrated it as a powerful prior to
overcome the overfitting to noise and resolve the ambiguity
caused by the lack of phase information. The effectiveness of
proposed approach was justified on extensive experiments with
various configurations. In future, we will study the extension to
handle other nonlinear inverse problems in signal processing.

APPENDIX

A. Implementation Details of Compared Methods

1) Regarding all experiments except the one on the real
dataset from [58]: Following the experimental protocol
in DPSR [19], the HIO, WF, DOLPHIn, BM3D-prGAMP,
ConPR, and DPSR run with the suggested parameters in their
public official implementations. The results of DPR, Net-GD
and Net-PGD are also obtained using its official code with
suggested parameters. The results of SPAR and TFPnP are
quoted from [57]. For prDeep, its official implementation
with suggested parameters is used in the experiments on
CDP measurements and Fourier magnitude measurements. See
Section IV-B for the implementation details of DIP.

2) Regarding the experiment on the real dataset from [58]:
The results of prVAMP are produced by the official imple-
mentation from [58]. For other methods, their implementations
and parameter settings for bipolar masks and AWGN are used.
Since the implementation of prVAMP provides the noise level
parameter tuned by the dataset provider, we use it for the
methods (e.g. prDeep) which require noise level as input.
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“Phase retrieval with holography and untrained priors: Tackling the
challenges of low-photon nanoscale imaging,” 2021. 4

[51] J. Liu, M. M. Balaji, C. A. Metzler, M. S. Asif, and P. Rangarajan,
“Solving inverse problems using self-supervised deep neural nets,” in
Computational Optical Sensing and Imaging. Optical Society of
America, 2021, pp. CTh5A–2. 4

[52] R. Heckel and P. Hand, “Deep decoder: concise image representations
from untrained non-convolutional networks,” in Proc. ICLR, 2018. 4

[53] H. Sun and K. L. Bouman, “Deep probabilistic imaging: Uncertainty
quantification and multi-modal solution characterization for computa-
tional imaging,” in Proc. AAAI, vol. 9, 2021. 4, 12

[54] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An
introduction to variational methods for graphical models,” Machine
learning, vol. 37, no. 2, pp. 183–233, 1999. 4

[55] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. ICAIS. JMLR Workshop and
Conference Proceedings, 2010, pp. 249–256. 6

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 6

[57] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schnlieb, and H. Huang,
“Tuning-free plug-and-play proximal algorithm for inverse imaging
problems,” in Proc. ICML, 2020. 7, 14

[58] C. A. Metzler, M. K. Sharma, S. Nagesh, R. G. Baraniuk, O. Cossairt,
and A. Veeraraghavan, “Coherent inverse scattering via transmission
matrices: Efficient phase retrieval algorithms and a public dataset,” in
Proc. ICCP. IEEE, 2017, pp. 1–16. 11, 12, 14


