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Abstract

Phase retrieval (PR) is a challenging nonlinear inverse prob-
lem in scientific imaging that involves reconstructing the
phase of a signal from its intensity measurements. Recently,
there has been an increasing interest in deep learning-based
PR. Motivated by the challenge of collecting ground-truth
(GT) images in many domains, this paper proposes a fully-
unsupervised learning approach for PR, which trains an end-
to-end deep model via a GT-free teacher-student online dis-
tillation framework. Specifically, a teacher model is trained
using a self-expressive loss with noise resistance, while a stu-
dent model is trained with a consistency loss on augmented
data to exploit the teacher’s dark knowledge. Additionally, we
develop an enhanced unfolding network for both the teacher
and student models. Extensive experiments show that our pro-
posed approach outperforms existing unsupervised PR meth-
ods with higher computational efficiency and performs com-
petitively against supervised methods.

Introduction
Phase retrieval (PR) refers to reconstructing the phase of a
signal from its intensity measurements, which finds a wide
range of applications in scientific imaging. Formally, PR re-
quires solving a nonlinear ill-posed problem as follows:

y = |Axgt|+ n, (1)

where xgt ∈ CN denotes the signal (image) to reconstruct,
y ∈ RM the intensity measurements, n ∈ RM the mea-
surement noise, | · | the element-wise modulus operator, and
A ∈ CM×N some complex-valued linear transform, e.g.,
discrete Fourier transform (DFT).

In recent years, deep learning (DL) has emerged as one
promising tool for PR. Most existing studies leverage super-
vised DL and train an end-to-end neural network (NN) over
a paired set of ground-truth (GT) images and their intensity
measurements. Recent works (Cha et al. 2021; Zhang et al.
2021b) can train an NN using an unpaired set. Plug-and-
Play (PnP) approaches use a pre-trained denoising NN (Met-
zler et al. 2018; Wu et al. 2019; Shi, Lian, and Chang 2020;
Wei et al. 2020; Chen et al. 2022b) or a pre-trained genera-
tive NN (Hand, Leong, and Voroninski 2018; Shamshad and
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Ahmed 2020; Hyder et al. 2019; Liu, Ghosh, and Scarlett
2021; Liu et al. 2021) to regularize the prediction.

These DL-based PR methods require the acquisition of a
large number of GT images or images with high signal-to-
noise ratio (SNR). In many domains, capturing such latent
images is expensive or even infeasible. Although PnP meth-
ods can use GT images from other domains, their general-
ity is often limited by domain shifts, e.g., statistical priors
learned from digital photographs of natural scenes are not
suitable for the images of biology or material science. An-
other approach to avoid collecting GT images is using an un-
trained convolutional NN (CNN) for regularizing the predic-
tion, which is based on the deep image prior (DIP) (Ulyanov,
Vedaldi, and Lempitsky 2018). These DIP-based unsuper-
vised DL methods (Jagatap and Hegde 2019; Bostan et al.
2020; Chen et al. 2022a) have high computational cost, as
different NN models need to be learned for different test
samples. In addition, their performance is not as good as the
supervised DL methods in the existing literature, probably
due to their lack of knowledge from external data.

Motivated by the challenge of collecting GT images and
the limitations of existing dataset-free unsupervised meth-
ods, this paper developed a fully-unsupervised end-to-end
DL approach for PR with the following three features:

• No prerequisite on GT images or pre-trained NN models.
• Training a universal end-to-end NN from external data.
• Providing competitive performance against existing su-

pervised DL-based methods.

Main Idea and Contributions
Unsupervised DL of PR can be interpreted as a weakly semi-
supervised learning problem. Consider the image acquisi-
tion process in (1). A GT image xgt is composed by a part
xl

gt which is completely captured by the intensity measure-
ments |Axgt| and the other part xu

gt which is completely lost
during image acquisition. These two parts are sufficient for
reconstructing xgt. Since y is a noisy version of |Axgt|, it is
used as a noisy label of xl

gt for weakly supervised learning.
However, there is no label regarding xu

gt. Then, the train-
ing data for unsupervised PR can be viewed as having par-
tial weak (noisy) labels encoded by y, where weakly semi-
supervised learning applies.



The interpretation outlined above served as inspiration for
our development of a teacher-student DL approach for unsu-
pervised PR. Teacher-student learning is a promising semi-
supervised learning technique, in which teacher models are
trained on labeled data to provide initial predictions, and
student models are trained to mimic the predictions of the
teachers on augmented data for the purposes of regulariza-
tion and improvement; see e.g. (Tarvainen and Valpola 2017;
Tang et al. 2021). It is also known as online self-supervised
knowledge distillation in existing literature (Anil et al. 2018;
Wang and Yoon 2021), i.e., teacher and student models are
jointly end-to-end trained for knowledge refinement and mu-
tual improvement.

In the proposed approach, a teacher model employs a self-
expressive loss with noise resistance to learn the prediction
about xl

gt. Such a self-expressive loss is extended from R2R
loss functions for self-supervised Gaussian denoising (Pang
et al. 2021) and self-supervised compressive sensing (Quan
et al. 2022). Together with the image prior from the induc-
tive bias of a deep NN (Tayal et al. 2020; Manekar et al.
2020b,a; Dittmer et al. 2020), the proposed loss can train
the teacher model to have a reasonable prediction accuracy.

For improvement, a student model is trained together with
the teacher model using a consistency loss to encourage the
predictions of the student model match that of the teacher
model, i.e. the so-called knowledge distillation. The consis-
tency loss is measured on a set of paired samples formed by
the image estimates from the teacher model, with data aug-
mentation via noise injection, image transformation, and ex-
ploitation of intermediate estimates from an unfolding NN.

The motivation of using consistency learning for the stu-
dent model is two-fold. Firstly, consistency learning is an ef-
fective semi-supervised learning technique (Hendrycks et al.
2019; Englesson and Azizpour 2021) for improving the
noise robustness of the model. Secondly, knowledge distilla-
tion can exploit the dark knowledge from the teacher model
via implicit ensemble (Allen-Zhu and Li 2020). It is ob-
served that the samples generated through data augmenta-
tion for student training contain multiple diverse estimates
of each GT image patch. This corresponds to one type of
dark knowledge. Due to the weak supervision provided by
its training data, the teacher model may suffer from overfit-
ting, resulting in large prediction variance. Then, the ensem-
ble of the multiple estimates of each GT image can signif-
icantly reduce this variance. By training the student model
to predict all these estimates, it implicitly learns to perform
effective ensemble. Furthermore, through consistency learn-
ing, the teacher and student models can integrate their dif-
ferent predictions to reduce solution ambiguity.

The performance of a DL method is greatly influenced by
the NN architecture. Based on proximal gradient, we imple-
ment a deep unfolding NN for both the teacher and student
models. For further improvement, we introduce two mod-
ules. One is a condition-aware module for training a uni-
versal model that adapts to imaging conditions (e.g., noise
level and compression ratio). The other is a long short-term
memory (LSTM) module to form a highway across the NN
for more efficient feature delivery. This is the first time that
memory is integrated into an unfolding NN for PR. These

two modules result in a powerful NN for PR.
The performance of our proposed approach is extensively

evaluated under various settings. The results indicate that
our proposed approach outperforms existing GT-free meth-
ods by a large margin in terms of reconstruction accuracy
and achieves competitive performance compared to the lat-
est GT-based methods. Additionally, our approach has ad-
vantages in terms of computational complexity when com-
pared to DIP-based unsupervised methods. The main tech-
nical contributions of this paper are as follows:

• The first work on end-to-end fully-unsupervised (GT-
free) deep learning for PR with noisy measurements.

• A self-supervised loss with noise resistance for teacher
model and a distillation scheme for student model.

• A deep unfolding NN enhanced for PR.
• A self-supervised teacher-student learning approach to

unsupervised PR with state-of-the-art performance.

Related Works
Traditional PR methods impose some prior on images to reg-
ularize the process. One often-used prior is the sparsity prior
of an image in some transform (dictionary), which results in
some `1-regularized models; see e.g. (Tillmann, Eldar, and
Mairal 2016; Qiu and Palomar 2017; Chang et al. 2018; Shi
et al. 2018a; Shi, Lian, and Fan 2019). Patch recurrence is
another popular image prior which is often implemented by
including a non-local denoiser in an iterative PR method; see
e.g. (Metzler, Maleki, and Baraniuk 2016; Shi et al. 2018b).

In recent years, there is an increasing interest in DL for
PR. The supervised methods (Rivenson et al. 2018; Işıl,
Oktem, and Koç 2019; Naimipour, Khobahi, and Soltana-
lian 2020; Hyder, Cai, and Asif 2020; Zhang et al. 2021a;
Shi and Lian 2022) train an end-to-end NN over a paired
dataset. Most of them adopt an unfolding NN which re-
places the regularization-related steps in an iterative scheme
by learnable modules. Based on some pre-trained deep de-
noising NN models, Wei et al. (2020) proposed an end-to-
end NN with reinforcement learning blocks to predict the
hyper-parameters involved in an unfolded scheme. The Cy-
cleGAN (Zhu et al. 2017) inspired DL methods (Cha et al.
2021; Zhang et al. 2021b) weaken the prerequisite on train-
ing data, from paired samples to the unpaired ones. Cha et al.
(2021) developed a PhaseCut-based loss for improving gen-
erator training. Zhang et al. (2021b) introduced the imaging
physics and a Fourier loss to improve cycle learning.

Instead of end-to-end training, PnP methods utilize pre-
trained models from other image domains for regularization.
Many PnP methods incorporate deep denoisers pre-trained
on noisy/clean image pairs into an unfolding NN. Metzler
et al. (2018) unfolded the RED (Romano, Elad, and Mi-
lanfar 2017) with the FASTA algorithm (Goldstein, Studer,
and Baraniuk 2014) and plugged the pre-trained DnCNN
models (Zhang et al. 2017). Chen et al. (2022b) plugged
pre-trained complex-valued NNs into RED. Shi, Lian, and
Chang (2020) unfolded a sparse model embedded with a
well-designed PnP denoiser. The success of these methods
depends on how correlated the images for pre-training are to



target images. Another PNP approach leverages deep gen-
erative model for regularization; see e.g. (Hand, Leong, and
Voroninski 2018; Shamshad and Ahmed 2020; Hyder et al.
2019; Liu, Ghosh, and Scarlett 2021; Liu et al. 2021). The
latent image is represented by a pre-trained generative model
with a specific input code. Then, the NN is trained by opti-
mizing the code to fit the measurements. As generative mod-
els are domain-specific, these methods usually do not gener-
alize well to unseen domains.

Dataset-free DL for PR has recently made significant
progress; see e.g. (Jagatap and Hegde 2019; Bostan et al.
2020; Sun and Bouman 2021; Wang et al. 2020; Chen et al.
2022a; Wang, Li, and Ji 2022). These methods adjust the
weights of an untrained NN to match the measurements of
the test image, where noise sensitivity and solution ambigu-
ity are partially addressed by the DIP induced by a CNN.

This paper is one of the few studies on unsupervised end-
to-end for PR on external dataset without GT images. It
effectively avoids the issues present in existing DIP-based
dataset-free DL methods. Prior studies, e.g., (Tayal et al.
2020; Manekar et al. 2020b,a), have shown the inherent dif-
ficulty of learning on images with strong symmetry. Their
recipes are based on some regularized reconstructive losses
which work well only for noiseless intensity measurements.
In contrast, our approach considers measurement noise and
improves upon the issue of solution ambiguity through the
use of teacher-student distillation.

Methodology
Given a set of measurement samples, but without their GT
images, the goal is to train an end-to-end NN for reconstruc-
tion. Each measurement sample y relates to its GT xgt by
y = |Axgt|+n, with measurement noise n. Our main idea
discussed in previous sections is implemented as follows.

Teacher-Student Distillation Framework
The teacher-student self-supervised knowledge distillation
framework of the proposed approach is outlined in Figure 1.
There are a teacher model fT and a student model fS, which
are simultaneously end-to-end trained. The teacher model
will prepare multiple estimates of the latent images with rea-
sonable accuracy by some scheme, and these estimates will
be passed to the student for knowledge distillation. After-
ward, the student model will be used for testing.
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Figure 1: Proposed framework for unsupervised DL of PR.

Noise-resistant learning of teacher model The teacher
model is trained through partial weak supervision provided
by the measurements themselves. There are two issues to
address: the existence of measurement noise and the solution
ambiguity caused by the missing phase in training samples.

To address the issue caused by measurement noise, the
following self-supervised loss is introduced:

LT = Eη‖|AfT(y + η)| − (y − η)‖22, (2)

where η is drawn from Pn, the distribution of n. The loss is
defined on a pair of re-corrupted measurements (y + η,y −
η), and the rationale comes from the following proposition.
Proposition 1. Suppose η|x and n|x are independent and
identically distributed (i.i.d.). Then

EyLT = Exgt,n,η‖|AfT(y+η)|−|Axgt|‖22+const.. (3)

Proposition 1 states that LT is immune to measurement
noise, as it provides an unbiased estimate of the loss defined
on the noise-free measurements |Axgt|. In other words, the
loss LT can effectively remove the negative impact caused
by n. However, it cannot remove other solution ambiguity,
as it only considers the fitting error on intensity measure-
ments. However, as a CNN architecture is likely to have a
good inductive bias for natural images (Tayal et al. 2020;
Manekar et al. 2020b,a; Dittmer et al. 2020), the teacher
model can alleviate solution ambiguity with the loss LT.
Consistent learning of student model During learning,
the teacher model prepares a set of image estimates {x′}x′

as follows. (i) Noise injection: For each measurement y,
the teacher model takes y′ := y + z as input with ran-
domly added z ∼ Pn, and outputs multiple image estimates
x′ = fT(y

′). (ii) Intermediate reusing: As the teacher model
is an unrolling NN with multiple stages where each stage
outputs an intermediate estimate, we take the estimates from
the last N stages as x′, which provides various corrupted
versions of latent images. (iii) Image data augmentation: we
apply random rotation and random cropping on those image
estimates to enlarge the set of x′. Flipping is not used, as it
will generate images with the same measurements and train-
ing the student model to predict different images from the
same measurements will lead to contradiction.

The three schemes above enable the teacher model to
have multiple estimates of the target image from differ-
ent perspectives. Afterward, many pairs of training samples
{(y′′,x′)|y′′ = |Ax′|+ n′}x′,n′∼ Pn are formed and used
to train student model for consistency regularization and
knowledge distillation via the following loss:

LS = Ey′′‖fS(y
′′)− x′‖22. (4)

Total training loss We impose the losses LT,LS on the
output of every stage of the unfolding NNs, which are de-
noted by LkT,LkS respectively. Then, the teacher and student
models are jointly trained by

L := λT

K∑
k=1

γkLkT + λS

K∑
k=1

γkLkS , (5)

where λT, λS ∈ R+ and γk = 1/(K − k + 1).

Network Architecture
Similar to standard CNNs, an unfolding NN based on prox-
imal gradient descend also has an inductive bias (Dittmer



et al. 2020) to facilitate unsupervised DL. Therefore, for
both the teacher and student models, we construct an NN
with K stages via unfolding the proximal gradient descend
solver (Combettes and Pesquet 2011) for a regularized vari-
ational problem: minx ‖y − |Ax|‖22 + φ(x). Starting from
an initial point x0, the proximal gradient descend iterates:

zk = xk−1 − qk∇D(xk−1;y,A),

xk = Proxqkφ (zk) := argminx{φ(x) +
qk
2
‖x− zk‖22},

(6)

where qk ∈ R+ is a step size, D(x;y,A) = ‖y − |Ax|‖22,
and Proxqkφ (z) denotes the proximal operator. We replace
Proxqkφ by a so-called proximal module (PM) without weight
sharing across stages, which is a U-Net with two enhance-
ments. See Figure 2 for the resulting NN architecture.
Imaging condition awareness Imaging conditions such as
noise level and sampling ratio can vary for different samples.
Many existing methods, e.g. (Metzler, Maleki, and Baraniuk
2016; Metzler et al. 2018; Wei et al. 2020; Yang et al. 2022),
include them as known hyper-parameters or an additional in-
put. Instead, we introduce a condition-aware block (CAB) to
utilize imaging conditions for better prediction, which also
allows training a single model that generalizes well on the
samples with varying imaging conditions. Let θ = [β, ρ]
store the noise level β (e.g., standard deviation for Gaussian
noise and strength for Poisson noise) and the sampling ra-
tio ρ. The CAB is a stack of fully-connected layers, which
maps θ to the step sizes {qk}Kk=1 used in (6) as well as to a
set of feature values {pk}Kk=1 incorporated into the PMs at
different stages. Concretely, pk is repeated to form a map of
the size of x and used as the additional input of the kth PM.
Cross-stage feature delivery In a PM, an input image is
mapped to features and then transformed back to an image
for output. Then, an unrolling NN constructed via (6) alter-
nates between the image and feature domains. Since the PMs
at different stages play a similar role (i.e. proximal opera-
tors), their extracted features should be highly correlated and
the features from the previous PM could benefit the process
of next one. However, the aforementioned features-image-
features pipeline is not efficient which may form a bottle-
neck for feature delivery through the whole NN, particularly
when the image size is much less than the feature size.

To address the bottleneck issue of feature delivery, similar
to the work for compressed sensing (Song, Chen, and Zhang
2021), we introduce convolutional long short-term memory
(ConvLSTM) cells (Shi et al. 2015) on top of the CNNs,
which creates a path that allows interactions and feature de-
livery across different stages. Then, the pipeline of our un-
folding NN reads as follows: for k = 1, · · · ,K,

zk = xk−1 − qk∇D(xk−1;y,A),

xk = PMk(pk,hk−1, zk),

[hk, ck] = ConvLSTM(tk,hk−1, ck−1), if k ≤ K − 1,

where qk, pk are the output of CAB, tk is the intermediate
features drawn in the kth PM (i.e., PMk), and hk, ck are the
hidden and cell states respectively in the kth ConvLSTM
cell, with h0 and c0 set to zeros. To fully exploit feature
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Figure 2: NN architecture for teacher and student models.

delivery, we draw intermediate features from three parts of
PMk to form tk, as shown in Figure 2. We insert a ConvL-
STM cell between every two adjacent stages so as to reduce
the cell number fromK toK−1, which differs from (Song,
Chen, and Zhang 2021). In addition, a ConvLSTM cell in
our NN consumes features from multiple layers, rather than
a single layer like (Song, Chen, and Zhang 2021).

Experiments
Performance evaluation is conducted on three types of mea-
surements: coded diffraction patterns (CDPs), holographic
patterns, and ptychographic patterns. Through the experi-
ments, we setK = 5 for both NNs and λT = λS = 1, N = 2
for training. The teacher and student models are jointly
trained using the Adam optimizer with 200 epochs and batch
size of 8. The learning rate is initialized to 5 × 10−4 when
the measurement number is two times larger than the pixel
number, and 1 × 10−3 otherwise. It is then decayed every
100 epochs with the factor of 0.5. To simulate practical sce-
narios, for each GT image, only one intensity measurement
sample is generated to form the data for unsupervised learn-
ing. The trained student model is used for inference.

Evaluation on Coded Diffraction Patterns
CDPs in coded diffraction imaging are generated with A =[
(FD1)

>, · · · , (FDJ)
>]>, where F is a DFT matrix, and

D1, · · · ,DJ are defined as Djx→ dj � x, j = 1, · · · , J.
Here � denotes the Hadamard product, and dj ∈ CN is an
illumination mask set to uniform masks or bipolar masks:
the former for non-compressive CDPs and the both for com-
pressive CDPs. A uniform mask is generated through draw-
ing its elements uniformly from the cell circle in the complex
plane. A bipolar mask is generated through drawing its ele-
ments from {1,−1} with the Bernoulli distribution B(1/2).
The mask number is set to J = 1, 2, 4 respectively.
PR from non-compressive uniform CDPs The train-
ing data setting for PR varies in existing works. Follow-
ing the representative work (Wei et al. 2020), our training
set consists of the 400 images of the Berkeley segmentation
dataset (BSD) (Martin et al. 2001) and the 5600 images se-
lected randomly from the PASCAL VOC dataset (Evering-
ham et al. 2015). Each of these 6000 images is resized to
128× 128 and used to generate the CDPs via (1), with Pois-
son noise simulated by the scheme of (Metzler et al. 2018):
y2 = |Ax|2 + ε, where ε ∼ N (0, γ2Diag(|Ax|2)) and



Table 1: Quantitative results on uniform CDPs in terms of PSNR(dB). The best and second best results at each row are boldfaced
and underlined respectively. Left part of methods: GT-dependent; Right part of methods: GT-free.

J γ prDeep PPR DPSR TFPnP prCom Dolpin B-GAMP conPR DDec DMMSE E2E Ours

pr
D

ee
p1

2

1
9 35.29 33.29 33.33 36.05 35.59 26.29 35.10 32.81 33.33 34.04 30.31 35.94

27 26.39 28.71 28.98 30.15 29.75 25.16 29.07 26.80 28.09 29.46 25.56 30.17
81 22.08 24.04 23.92 24.42 23.52 17.47 22.96 20.44 22.55 23.53 17.24 25.00

2
9 37.61 35.92 35.90 38.53 38.06 30.89 37.75 35.09 33.21 37.01 34.27 38.58

27 31.26 30.63 30.66 32.07 32.15 25.69 30.96 29.48 28.71 30.06 24.66 32.16
81 25.20 25.39 25.59 26.37 25.90 17.70 23.96 24.07 24.55 25.82 17.45 26.40

4
9 39.70 37.55 37.69 40.33 40.60 31.24 40.32 36.39 37.60 40.58 37.53 41.09

27 33.54 31.67 32.30 33.90 34.10 27.45 32.85 30.88 31.36 33.97 27.69 34.23
81 26.90 27.02 26.73 27.23 27.60 20.22 25.43 25.87 25.19 27.12 18.58 28.29

B
SD

68

1
9 34.83 33.46 33.44 35.46 34.37 27.43 34.62 32.98 32.24 33.97 29.61 35.37

27 25.92 28.59 28.75 29.88 28.75 25.54 29.05 26.93 28.11 29.67 24.41 29.85
81 21.49 24.08 23.97 24.68 23.09 16.58 23.01 20.52 22.16 24.42 16.35 24.99

2
9 37.22 35.55 35.57 37.96 37.11 32.17 37.35 35.46 32.01 36.72 34.27 37.99

27 30.92 30.34 30.25 31.69 30.03 26.35 30.94 29.60 28.23 31.40 25.50 31.69
81 24.70 25.35 25.38 26.28 24.94 16.54 23.98 24.10 23.73 25.54 16.59 26.46

4
9 39.41 37.16 37.25 40.40 39.63 32.81 40.00 37.37 36.33 39.31 37.49 40.52

27 33.14 31.53 31.87 33.63 33.19 28.52 32.82 31.05 30.67 33.12 28.64 33.70
81 26.49 26.38 26.47 27.94 26.53 19.76 24.99 25.95 24.44 26.56 19.91 28.05

Time(sec.) 9.05 1.72 5.13 0.02 7.56 10.09 16.96 3.61 22.18 267 0.02 0.02

a larger γ indicates a lower SNR. The value of γ is uni-
formly sampled from {9, 27}. For testing, the images of the
prDeep12 dataset (Metzler et al. 2018) and BSD68 (Martin
et al. 2001) are used for generating measurements, corrupted
by Poisson noise of γ = 9, 27, 81 respectively.

Totally eleven methods are selected for performance com-
parison, including DOLPHIn (Tillmann, Eldar, and Mairal
2016), B-GAMP (Metzler, Maleki, and Baraniuk 2016),
ConPR (Shi et al. 2018b), prDeep (Metzler et al. 2018),
PPR (Shi, Lian, and Fan 2019), DDec (Jagatap and Hegde
2019), DPSR (Shi, Lian, and Chang 2020), E2E (Manekar
et al. 2020a) TFPnP (Wei et al. 2020), prCom (Chen et al.
2022b) and DMMSE (Chen et al. 2022a). Their results are
quoted from (Chen et al. 2022b,a) whenever possible and
otherwise obtained with their published codes. Specifically,
DOLPHIn, B-GAMP and ConPR are learning-free meth-
ods, DDec and DMMSE are DIP-based dataset-free unsu-
pervised methods, and E2E is a dataset-based unsupervised
method. All of them are GT-free. In comparison, prDeep,
PPR, DPSR, prCom and TFPnP are GT-dependent: the for-
mer four are PnP methods, and the last one is an end-to-end
DL-based method. For fair comparison and for PSNR im-
provement, we replace the U-Net used in E2E by ours.

See Table 1 for the quantitative results of all compared
methods measured by Peak-Signal-to-Noise Ratio (PSNR).
Among all GT-free methods, ours is the best performer.
By leveraging teacher-student learning, our approach notice-
ably outperformed the very recent DIP-based unsupervised
method DMMSE and the very recent PnP method prCom. It
also performs much better than the dataset-based unsuper-
vised method E2E. Surprisingly, it even performed compet-
itively against the representative supervised method TFPnP,

with better results in more than one half settings. See Fig-
ure 3 for visual comparison on some reconstructed images.
The visual quality of our results is competitive against that
of the supervised methods. All above results have demon-
strated the effectiveness of our approach.
Computational efficiency Table 1 also lists the inference
time of different methods in reconstructing a 128× 128 im-
age with a uniform mask, run on an RTX Titan GPU. The
TFPnP, E2E, DDec, DMMSE and our model are all imple-
mented with PyTorch. It can be seen that our model, E2E
and TFPnP have nearly the same inference time which is
much less than the DIP-based methods DDec and DMMSE.
This showed the computational efficiency advantage of our
dataset-based unsupervised approach over the dataset-free
ones. Other methods are not implemented with PyTorch and
require more stages/iterations in their processing, and their
running time is much higher than ours.
PR from compressive uniform or bipolar CDPs Com-
pressive PR considers an additional compression process
during measuring, which can be expressed as A = CFD,
where C is aM×N matrix produced by randomly sampling
M rows of an N × N identity matrix, and D is a diagonal
matrix associated with a single illumination mask. The sam-
pling ratio ρ is defined as ρ =M/N . Two types of noise are
considered respectively: the Poisson noise simulated by the
scheme of (Metzler et al. 2018) with strength γ and the addi-
tive white Gaussian noise (AWGN) with strength measured
by the SNR of input measurements. Three sampling ratios
ρ = 0.3, 0.4, 0.5 are used respectively.

Following Yang et al. (2022), we randomly crop 6000
patches of size 128 × 128 from 400 images of BSD to
generate the measurements for training. The Poisson noise
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Figure 3: Reconstructed images on uniform CDPs with γ = 27. Upper: J = 2; Bottom: J = 4.

Table 2: Performance comparison of PR from compressive
uniform or bipolar CDPs on prDeep12 dataset, in terms of
PSNR(dB). The best result at each column is boldfaced.

ρ 0.50 0.40 0.30

U
ni

fo
rm

γ 10 30 10 30 10 30
B-GAMP 32.33 27.85 31.94 27.78 30.53 27.33
prDeep 32.43 22.29 30.90 23.80 30.55 25.10

PPR 29.91 27.31 28.51 26.48 26.20 25.07
DPUNet 33.18 28.63 32.34 28.37 30.96 27.76

Ours 33.19 28.86 32.30 28.52 31.09 28.12

B
ip

ol
ar

SNR 10 20 10 20 10 20
B-GAMP 23.75 28.45 23.22 27.74 22.10 26.75
prDeep 19.51 28.27 18.49 27.77 17.04 26.89

PPR 24.46 27.17 23.69 26.16 22.72 24.33
Ours 24.35 28.62 23.71 27.94 23.13 26.99

of training data has its strength uniformly sampled from
[0,50], while the AWGN has its SNR uniformly sampled
from [10,50]. For test, the images from prDeep12 are used
as GTs. The strength of Poisson noise is set to 10 and 30
respectively, and the SNR of AWGN is set to 10 and 20 re-
spectively. A single model is trained for dealing varying ρ.

Three baseline methods, B-GAMP, prDeep and PPR, are
used for comparison. In addition, the DPUNet (Yang et al.
2022), a supervised end-to-end NN, is introduced for the
comparison on uniform masks, with quoted results. See Ta-
ble 2 for the quantitative results. Our approach is the top per-
former through all settings except for two cases where it per-
formed slightly worse than two GT-based methods, DPUNet
and PPR, respectively. Such results again demonstrated the
effectiveness of our approach.

Evaluation on Other Patterns
PR from holographic patterns In holography, the mea-
surements are generated with A : x → [(Fx)>, (F(x +
Ds1,s2x))>, (F(x− iDs1,s2x))>]>, where (Ds1,s2x)(t1+
t2n1) = exp( 2πis1t1n1

+ 2πis2t2
n2

)x(t1 + t2n1), 0 ≤ tj ≤
nj − 1 for j = 1, 2, and i =

√
−1. Both the s1 and s2 are

set to 0.5 according to (Chang et al. 2018). Poisson noise de-

Table 3: PSNR(dB) results of PR from holographic patterns
and ptychographic patterns respectively.

α prDeep DPSR PPR prCom TFPnP TFPnP* Ours

Holo
3 31.73 25.79 25.85 31.03 32.18 33.13 33.81
9 28.70 24.88 24.96 27.93 28.52 29.58 30.28

Pty
3 25.37 20.93 20.93 23.99 24.46 25.12 25.68
9 18.78 19.94 19.90 20.37 22.57 23.30 24.08

prDeep TFPnP Ours GT

Figure 4: Reconstructed images from holographic patterns
(up) and ptychographic patterns (bottom) with α = 9.

fined by |y| ∼ α · Poisson(|Ax|/α) is added where a larger
α indicates a lower SNR. We randomly select 6000 (100)
images from the public fashion product image dataset (Ag-
garwal 2019) to form the training (test) set. All the images
are converted to gray-scale, resized and cropped centrally to
128 × 128 for generating the measurements. The Poisson
noise strength α is uniformly sampled from {3, 9} for train-
ing data, and set to 3 and 9 respectively on test data.

PR from ptychographic patterns Ptychography is one
application of PR. Following (Chang et al. 2018), we define
A : x → [(F(ω �R1x))

>, (F(ω �R2x))
>, · · · , (F(ω �

RLx))
>]>, where Rl is a binary matrix that selects a

window of x and L = 9, and the ω denotes the coded
pattern generated by a 64 × 64 zone plate len. We se-



lect 82 (20) cell images from public microscope cell im-
age dataset (Payyavula 2018) to form the training (test) set.
The training images are cropped to 6012 patches of size
128×128 for measurement generation, and the test images
are cropped to 128×128. The previous noise setting is used.
Results and analysis The prDeep (Metzler et al. 2018),
PPR (Shi, Lian, and Fan 2019), DPSR (Shi, Lian, and Chang
2020), prCom (Chen et al. 2022b), and TFPnP (Wei et al.
2020) are used for comparison. To simulate the case without
GT images, we directly call the models of these methods
trained on CDPs of natural images. See Table 3 for the re-
sults. Our approach is the best performer. The domain gap
between natural images and cell images makes most PnP
methods not work well. While TFPnP can have a noticeable
performance gain after retrained on cell images (denoted by
TFPnP∗), its result is still worse than ours. See Figure 4 for a
visual comparison. Our approach preserved more structural
details, while other two methods produced over-smoothing
patterns or flecked backgrounds. These results have justified
the value of our unsupervised learning approach for PR.

Ablation Studies
We construct the following baselines for ablation studies.
(a) Teacher: using the teacher model for test; (b) w/o LT:
replace LT with the one used in (Manekar et al. 2020a):
‖|AfT(y)| − y‖22; (c) w/o Inject (w/o Inter, w/o Augment):
Noise injection (Intermediate reusing, image data augmen-
tation) is disabled respectively when the teacher model pre-
pares the data for student learning; (d) w/o CAB: all CABs
are disabled; (e) w/o LSTM: all the ConvLSTM cells are re-
placed by a series of convolutional layers of nearly the same
parameter number; (f) supervised: training the student model
using paired data with MSE loss. All baselines are retrained
with the same strategy stated in CDPs for fair comparison.

See Table 4 for the quantitative comparison. Each com-
ponent of the proposed approach contributes to performance
improvement. Particularly, (i) benefiting from the proposed
noise-resistant self-expressive loss and the inductive bias of
the unfolding NN architecture, the teacher model already has
a not bad performance, which is further improved noticeably
with larger than 0.72dB PSNR gain; (ii) the proposed noise-
resistant loss LT is critical to the success of the learning;
(iii) the three strategies used in the data preparation process
can improve the effectiveness of student learning and distil-
lation; (iv) our approach performed even slightly better than

Table 4: Results of ablation studies in PSNR(dB), conducted
on uniform CDPs with J=1,4 on prDeep12 dataset, in the
presence of Poisson noise with γ = 9.

J Teacher w/o LT w/o Inject w/o Inter Original

1 35.21 35.22 35.62 35.76 35.94
4 40.29 40.35 40.72 40.85 41.09

J w/o Augment w/o CAB w/o LSTM Supervised Original

1 35.73 35.34 35.43 35.90 35.94
4 40.81 40.66 40.55 41.02 41.09

its supervised counterpart, which is probably due to the dif-
ficulty of supervised learning of PR on the training data with
certain symmetry (Tayal et al. 2020).

Analysis on Noise Model Mismatch
Like many existing approaches, e.g. (Metzler et al. 2018;
Wei et al. 2020), one key of our scheme requires the knowl-
edge of noise. We investigate the influence of mismatch
between the noise model used in our training scheme and
that of both training and test data. This is done by adding
Poisson-Gaussian mixed noise simulated by the scheme
of (Khademi et al. 2021) to the training and test samples.
The strengths of Poisson and Gaussian noise are set to 10
and 30 respectively. In training, the Poisson noise instead
of the Poisson-Gaussian mixed one is used for our unsu-
pervised loss and noise injection, with its strength γ sam-
pled from 9, 27, 81. As a result, the noise characteristics are
inconsistent between data and our assumption. We include
five selected methods for comparison. These methods are
also blind to the noise characteristics of test data, with their
models trained on Poisson noise directly applied.

See Table 5 for the results of CDPs on prDeep12, where
our result with matched noise statistics, denoted as “Ours*”,
is also included. With a 0.5dB decrease in PSNR, our ap-
proach still performs better than prDeep, DPSR, DMMSE
and E2E. But the performance is below that of TFPnP, as the
noise robustness of TFPnP is likely to come from the image
prior learned from GTs. In comparison, same as other unsu-
pervised methods, ours does not access any GT and its noise
robustness comes from the training loss whose effectiveness
relies on noise model match.

Table 5: Performance comparison of CDPs (J=4) in
PSNR(dB) when trained with a mismatched noise model.

prDeep DPSR TFPnP DMMSE E2E Ours Ours*

25.73 27.11 28.42 25.36 24.44 28.12 28.61

Conclusion
This paper proposed a teacher-student distillation approach
to unsupervised deep learning for PR, which bypasses the
difficulty of collecting GT images. The approach involves
training a teacher model with a noise-resistant loss and a
student model with consistent learning on paired samples
generated by the teacher model. Using an unrolling NN with
specific modules designed for PR, our proposed approach
has been demonstrated effective and efficient in extensive
experiments under various settings. In the future, we plan to
explore other frameworks and strategies for teacher-student
learning and distillation to further improve the approach.
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Appendix
Proof of Proposition 1
Rewrite EyLT by

EyLT = Exgt,n,η

[
‖|AfT(y + η)| − |Axgt|‖22

+ 2(η − n)
>
(|AfT(y + η)| − |Axgt|)

+ (η − n)
>
(η − n)

]
,

(7)

where the last term Exgt,n,η(η − n)
>
(η − n) is a constant

regardless the values of the NN’s parameters. Since η and
n conditional on xgt are independent and follow the same
distribution Pn(·|xgt), we can rewrite the first term of the
right-hand side of Eq. (7) as follows:

Exgt,n,ηn
>(|AfT(y + η)| − |Axgt|)

= Exgt
En|xgt

Eη|xgt
n>(|AfT(|Axgt|+ n+ η)| − |Axgt|)

=

∫
xgt

∫
n|xgt

∫
η|xgt

Pxgt
(xgt)Pn(η|xgt)Pn(n|xgt)n

>·
(|AfT(|Axgt|+ n+ η)| − |Axgt|)

=

∫
xgt

∫
n|xgt

∫
η|xgt

Pxgt(xgt)Pn(n|xgt)Pn(η|xgt)η
>·

(|AfT(|Axgt|+ n+ η)| − |Axgt|)
= Exgt,n,ηη

>(|AfT(y + η)| − |Axgt|).

Thus, the second term of the right-hand side of Eq. (7) is
zero. Also the not that the third term of the right-hand side
of Eq. (7) is a constant determined by the noise’s character-
istics. Therefore, we have

EyLT = Exgt,n,η‖|AfT(y + η)| − |Axgt|‖22 + const..

The proof is done.

Details of the U-Net used in PM
The detailed structure of the U-Net used in PM is illustrated
in Figure 5. Both the max pooling and transposed convolu-
tional layers use a scaling factor of 2. All the convolutional
layers are 3× 3 with stride 1 and zero padding unless speci-
fied. The negative slopes in all LeakyReLU layers are 0.2.

Conv+IN+LReLU+Res+Conv+IN+LReLU

Conv1×1

Concatenation

MaxPool2×2+

TransposedConv4×4

Input Output

64 16

32

64

128

64

32

16 16 64

64

32

Figure 5: Detailed architecture of U-Net used in PM.

Distribution of Image Estimates from Teacher
One dark knowledge from the teacher model trained by
the weak supervision is its prediction uncertainty. The data
preparation process done by the teacher model indeed pro-
vides different estimates of a GT, and the student model
trained to predict all such estimates indeed is learning some
kind of ensemble of such estimates. Figure 6 provides
an empirical study where the estimates from the teacher
model via augmentations of noise injection and intermedi-
ate reusing are visualized via t-SNE, where each image es-
timate is plotted as a 2D point. The results show that those
estimates have sufficient diversity around the GT to allow ef-
fective ensemble by the consistent learning and knowledge
distillation by the student model.
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Figure 6: T-SNE visualization of image estimates from the
teacher model with augmentations by noise injection and
intermediate reusing. The test samples are the 1× uniform
CDP measurements of three images from PASCAL VOC
dataset, corrupted by Poisson noise with strength γ = 9.

Visual Comparison of Compressive CDPs
Figure 7 shows some visual results on compressive CDPs. It
can be seen that E2E is not good at handling measurement
noise, as the reconstructed image contains severe noise. The
results of B-GAMP suffer fro over-smoothing. In contrast,
the images reconstructed by our approach are much better.

E2E B-GAMP Ours GT

Figure 7: Images reconstructed by selected methods from
compressive uniform CDP with ρ = 0.3 and γ = 30.
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