
Deep Video Demoiréing via Compact Invertible Dyadic Decomposition
(Supplemental Material)

1. More Details of Alignment Block (AB)
The AB is implemented by the pyramid cascading de-

formable (PCD) module [4], whose structure is illustrated
in Fig. 1. It first extracts features at different scales from
both the reference frame and the neighboring frames using
standard convolutional layers, and then aligns the features
in each scale using deformable convolutions with their off-
sets predicted in the coarser scales. See also Fig. 2 for an
example of the aligned features produced by the AB;.
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Figure 1: Structure of PCD module used for our AB.

2. Visual Comparison for Ablation Study
See Fig. 3 for the recovered frames produced by differ-

ent baselines in our ablation study, with comparison to our
original CIDNet. We can observe that the results produced
by the original CIDNet are more perceptually satisfactory.

3. Comparison in FPS
See Table 1 for the comparison on FPS between our

CIDNet and some video-oriented methods. Our CIDNet is
faster than VDN. Note that the ESDNet and DMCNN are
even faster due to the original design for single images (ex-
tended to videos by retraining on multi-frame input), but they
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Figure 2: Visualization of the aligned features produced by AB.
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Figure 3: Visual comparison for ablation studies.

lack specific designs on video processing and thus perform
worse than our CIDNet. Therefore, we do not include their
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Figure 4: Detailed structures of “Wavelet+INN” and “INN with U-Nets”.

results for comparison.

Table 1: FPS(↑) on frame size 1280 × 720 using a single
RTX 3090, without counting the I/O time.

MBCNN InvDN VDN CIDNet (Ours)

2.94 7.75 10.20 11.63

4. Details of Two Multi-Scale Baselines
The details of “Wavelet+INN” and “INN with U-

Nets” used in the ablation study are shown in Fig. 4. In
“Wavelet+INN” (Fig. 4(a)), the wavelet transform is inserted
into a series of coupling layers (CLs) for multi-scale analysis,
and the free-form functions in CLs are defined as Dense-
Blocks [2]. In “U-Nets in INN” (Fig. 4(b)), each free-form
function of CLS is defined as a U-Net (Fig. 4(c)) with the
same number of scales as that of the CIDNet. For a fair
comparison, the AB used in the CIDNet is also added to the
font of each of these two baselines.

5. Details of The One-Way Baseline
See Fig. 5 for a comparison of the two INN pipelines,

two-way INN versus one-way INN used in our ablation study.
The two-way INN (with a similar spirit to existing works)
first extracts features F from a degraded image Id in the
forward pass, then zero out a part of the features in F to
eliminate the undesired pattern, and finally feed the features
into the INN in a backward pass to obtain the recovery image
Ic. In comparison, the proposed one-way scheme directly
decomposes the input degraded image into the latent clean
one and the moiréing component. We also show some visual
results in Fig. 6 for comparison, where the “one-way CIDNet”
can preserve more details for the texts.
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Figure 5: Illustration of different INN pipelines.
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Figure 6: Visual comparison of images recovered by the
two-way scheme and the one-way scheme.

6. Influence Analysis on Number of Scales/CLs

The number of scales and the number of CLs in each
scale are important hyper-parameters for the CIDNet. We
further investigate their influence on the performance and
complexity. See Table 2 for the results. The performance
of CIDNet is improved as the number of scales increases,
but the number of FLOPs also increases accordingly. The
results of different numbers of CLs are listed in Table 3,
where ki denotes the number of CLs in the ith scale. Not
surprisingly, larger ki achieves better results but leads to
higher complexity.



#Scale LPIPS↓ PSNR (dB)↑ SSIM↑ #Params #FLOPs

2 0.190 21.90 0.730 4.70 44.54
3 0.184 22.27 0.735 4.57 28.10
4 0.193 21.93 0.729 4.75 19.00

Table 2: Results of CIDNEt with different number of scales.

k1 k2 k3 LPIPS↓ PSNR (dB)↑ SSIM↑ #Params #FLOPs

1 1 1 0.208 21.18 0.723 2.32 17.98
1 1 2 0.198 21.64 0.726 2.72 18.39
1 2 3 0.187 22.20 0.730 3.52 20.44
2 3 4 0.184 22.27 0.735 4.57 28.10
3 4 5 0.184 22.32 0.736 5.93 37.69

Table 3: Results of CIDNet with different number of CLs in
each scale, where ki for ith scale.

7. More Results in Text Recognition
See Fig. 7 for one more visual example in the down-

stream text recognition task, where our proposed CIDNet
outperforms VDNNet.
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Figure 7: An example of text recognition. 1st row: the
degraded/demoiréd frame, 2nd row: zoom-ins, 3rd row: rec-
ognized texts, whose erroneous words are marked in RED .

8. More Visual Results
See Fig. 8 and Fig. 9 for more visual comparisons,

where our proposed CIDNet generates better results than
other compared methods. Video demonstrations can be
found at our GitHub site.
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Figure 8: Visual comparison of some selected demoiréd frames in the TCL20 Pro setting.
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Figure 9: Visual comparison of some selected demoiréd frames in the IPhoneXR setting.


