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Figure 1: We propose a new novel 3D photography approach that generates 3D viewing experience from a single image
using bilateral diffusion. It allows injecting depth information into the denoising diffusion probabilistic inference, and leads
to superior performances in wide-angle synthesis compared with state-of-the-arts.

Abstract
This paper aims to resolve the challenging problem of

wide- angle novel view synthesis from a single image, a.k.a.
wide- angle 3D photography. Existing approaches rely on
local context and treat them equally to inpaint occluded
RGB and depth regions, which fail to deal with large- region
occlusion (i.e., observing from an extreme angle) and fore-
ground layers might blend into background inpainting. To
address the above issues, we propose Diffuse3D which em-
ploys a pre- trained diffusion model for global synthesis,
while amending the model to activate depth- aware infer-
ence. Our key insight is to alter the convolution mechanism
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in the denoising process. We inject depth information into
the denoising convolution operation with bilateral kernels,
i.e., a depth kernel and a spatial kernel, to consider layered
correlations among pixels. In this way, foreground regions
are overlooked in background inpainting and only pixels
close in depth are leveraged. On the other hand, we propose
a global- local balancing approach to maximize both con-
textual understandings. Extensive experiments demonstrate
that our approach outperforms state- of- the- art methods in
novel view synthesis, especially in wide- angle scenarios.
More importantly, our method does not require any training
and is a plug- and- play module that can be integrated with
any diffusion model. Our code can be found at https:
//github.com/yutaojiang1/Diffuse3D.



1. Introduction
In our life, images play an important role in carrying

and sharing visual memories. Animating a still image can
further enhance the immersive experience of an impressive
moment. 3D photography [26, 13, 10] is proposed for this
purpose to generate 3D viewing experiences from a single
image, by interactively changing the camera angles. These
methods are all based on modular systems and leverage
state-of-the-art depth estimation, inpainting, and segmenta-
tion models to understand the layer structure and fill in the
holes of occlusions. This component-wise strategy shows
robust performance when dealing with in-the-wild scenes.

This line of research focuses on the inpainting quality
of disocclusion caused by camera movements, through tak-
ing neighboring contextual information into account. How-
ever, due to the limited and narrow boundary context for in-
painting, prior works [26, 10, 6] are confined to novel view
synthesis with small camera view angle changes (generally
5-10 consecutive frames for one scene), which can hardly
create a sense of immersion to meet the realistic demand.
Extending the camera angle reveals larger holes that can-
not be simply filled by repeating neighboring textures (see
Figure 1b). Indeed, human could conjecture the occluded
areas not only from the nearby visible areas but also by
connecting to our visual memories (i.e., image synthesis).
On the other hand, the way they inpaint disocclusions ne-
glects [26, 6] or implicitly considers [10] the depth prior,
which may leak foreground semantics into background re-
covery (see Figure 1c).

In this paper, we present a new method, called Dif-
fuse3D, to address the above problems. We employ an off-
the-shelf pre-trained diffusion model as the generative prior,
and we further empower it to be depth-aware by introducing
bilateral convolution into the denoising inference process.
Specifically, diffusion models can be conditioned by the
masks and generate coherent image contents through con-
secutive denoising steps, but all pixels are weighted equally
during the process. Inspired by bilateral filter [1, 29, 7]
and depth-aware learning [32], we decompose the denois-
ing convolution kernel into two parts, a spatial kernel that
averages local regions, and more importantly a depth ker-
nel to assign different weights to the pixels according to the
depth similarities. In this way, depth prior is injected in the
diffusion model and only the surrounding pixels located in
the nearby layers are considered in the denoising steps. On
the other hand, we introduce two levels of inpainting in the
framework, the global and local ones, to obtain diverse con-
textual knowledge from two essentially different aspects.

Our proposed method is a plug-and-play design that can
easily work with arbitrary diffusion models, and the idea of
bilateral diffusion can be easily extended to other diffusion
applications to include information other than depth. Exten-
sive experiments demonstrate the superior 3D photography

performance of our method compared to the state-of-the-
art methods. Especially in the wide-angle setting, our ap-
proach can effectively differentiate the contextual informa-
tion of foreground/background and produce more semanti-
cally meaningful inpainted regions (see Figure 1d).

2. Related Work
2.1. 3D Photography

The process of generating 3D viewing experience from
a 2D image is referred as 3D photography. This series
of methods surpasses previous multi-view synthesis ap-
proaches [23, 34, 36, 35], which are limited to generating a
fixed number of angles, by enabling unconstrained 3D syn-
thesis. It can be briefly classified into two categories, the
models based on the end-to-end network and modular sys-
tem. The former aims to synthesize novel views on multi-
view image datasets. These methods typically take a single
image as input and represent the scene with different rep-
resentations in an end-to-end fashion, like multi-plane im-
ages [39, 30], mesh [9], and point cloud [33]. Their main
limitation is that it heavily relies on the training data and
therefore cannot generalize to in-the-wild datasets.

Modular-based methods [26, 10, 6, 18, 17] utilize the
off-the-shelf monocular depth estimation, segmentation, or
inpainting models to produce reliable 3D viewing effects
regardless the input data domain. They concentrate more
on synthesis quality and computation efficiency. Shih et
al. [26] introduce an edge context guided depth and color
inpainting model to recover nearby disocclusions using
LDI representation [25]. Jampani et al. [10] employ an
efficient soft layering representation and a segmentation
based matting technique to capture finer appearance de-
tails. For mobile devices, Kopf et al. [13] present a low
resource-consumption system with elaborate depth estima-
tion method. To mitigate the difficulty in producing effi-
ciency and high-dimensional multi-plane images, Han et
al. [6] propose to learn the adaptive MPI depth which guides
the prediction of image planes in an interactive way. Zhou et
al. [40] develop a self-rectified strategy to construct pseudo-
stereo pairs, converting the monocular synthesis problem to
a stereo synthesis problem, thereby reducing the learning
ambiguity. Our work falls into this category and leverages
the off-the-shelf components. By contrast, we propose a
depth-injected bilateral diffusion to inpaint disocclusions in
a global and depth-aware manner.

2.2. Diffusion Model

The seminal work [27] presents a novel way to construct
a flexible and computationally tractable probabilistic model,
i.e., diffusion model. This is achieved by using a diffusion
process to gradually permute the known initial distribution
and then to learn a progressive denoising model to recover
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Figure 2: Overview of our framework. We take an RGB image and the corresponding depth map predicted using an off-
the-shelf estimator as inputs, to generate 3D viewing experience. Specifically, we first convert the scene into layered depth
images (LDI) and then select both local and global disocclusions for inpainting using our bilateral diffusion model. Depth
kernel is injected into the denoising process during inference. Global and local inpaintings are then fused together to obtain
the final result.

the original distribution. Because of high flexibilities, dif-
fusion models have shown compelling results in image syn-
thesis [8, 28, 22, 2], audio synthesis [12, 16, 14], and many
other applications [15, 2, 11]. Our aim is to provide a depth-
aware diffusion model in which a larger context inpainting
can be implemented for the large area of disocclusion. In-
stead of directly applying the conditions as input for the
encoder-decoder denoising models [22, 2], we opt to in-
corporate the depth prior into the multi-level spatial-wisely
performed convolution layers, which alters the probabilistic
representation in a bilateral manner.

3. Method

3.1. Overview

Preliminaries. Layered Depth Images (LDI) [25] repre-
sents a 3D scene by a layer-based representation. In LDI,
each pixel lattice contains arbitrary number of color and
corresponding depth values, i.e., the foreground objects and
occluded objects in the background. The sparse structure
of LDIs makes it favorable to store a 3D scene and ren-
der views efficiently. [26] exploits a modified LDI with
explicit local connectivity to achieve single-view 3D pho-
tography. In particular, they first create a trivial LDI from
the RGBD input and determine the occluded regions along
depth edges, which they utilize an edge inpainting network
to make it more complete. Next, they propose to do context-
aware inpainting on the occluded regions and then put them
back to the original LDI. Consequently, novel views can be
rendered from the inpainted LDI.

Pipeline. Figure 2 shows the overall pipeline of our
framework. Given an RGB image with the depth pre-
dicted by an off-the-shelf depth estimator, following pre-

vious LDI-based solution [26], our method first constructs
an initial layered depth images and then inpaint the oc-
clusion areas by iteratively selecting subproblem from the
initial LDI. Each subproblem has its own target disocclu-
sion region, with the guidance of the corresponding contex-
tual/referencing area along the depth edges (i.e., discontinu-
ities between layers) generated by the flood-fill algorithm.
Specifically, we propose depth-injected bilateral diffusion
with cross-layer inpainting strategy for the aforesaid in-
painting, so as to facilitate wide-angle 3D photography. Af-
ter integrating the inpainted results back to the initial LDI,
we are able to render novel views from 3D scene represen-
tation. In the following sections, we describe the bilateral
diffusion and cross-layer inpainting in detail.

3.2. Bilateral Diffusion

The key of our method is to inpaint faithful image con-
tent in the occluded regions. This synthesis task can be ac-
complished by diffusion models, owing to its powerful abil-
ity on image inpainting. For a diffusion model, its forward
process is to sequentially add Gaussian noise to the input
x with variance schedule {βt}Tt=0 in T steps, resulting in a
noise xT :

q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

which is essentially a Markov chain. Next, xt of the arbi-
trary step t > 0 can be derived from x0 as:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where αt := 1−βt and ᾱt :=
∏t

s=1 αs. In turn, the reverse
process of a diffusion model is to gradually remove noise
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Figure 3: Illustration of the depth and spatial kernels in
our bilateral diffusion. We show the convolution step of
the denoiser with kernel size 3 × 3. Depth kernel is com-
puted according to the depth similarities to the center pixels.
Here we show the spatial kernel with the Gaussian function,
and it is combined with the depth kernel to assign the final
weights for the convolution operation.

from xt and generate x0 finally:

pθ (x0:T ) := p (xT )
T∏

t=1

pθ (xt−1 | xt) , (3)

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)I). (4)

In specific, the diffusion model iteratively runs the denois-
ing autoencoder εθ(xt, t) that predicts xt−1 from xt, i.e.,

µθ(xt, t) =
1

√
αt

(xt −
1− αt√
1− ᾱt

εθ(xt, t)). (5)

Here we select the state-of-the-art model, Latent Dif-
fusion [22] as our inpainting model. In general, diffusion
models aim to iteratively predict a denoised variant from a
noisy version of the input image. Usually the conditional
denoising model is an autoencoder, it takes a noisy input x
and condition at the iteration step t to produce the denoised
output at the iteration step t − 1. By repeating the denois-
ing process for T steps, the final output y can be obtained.
In particular, for the lth layer in the denoising network, a
specific pixel at the spatial coordinate p goes through the
denoising process as followed:

y(p) =
∑
pi∈Ω

x (pi) gs (‖pi − p‖) (6)

where Ω is the window centered at p and gs is the spatial
kernel of denoising model.

However, the convolution mechanism in denoising au-
toencoder of Latent Diffusion is of spatial invariance, and it
treats the pixels of different depths equally, resulting in syn-
thesis content of color-depth inconsistency near the depth

edges. To relieve this concern, inspired by bilateral fil-
ter [1, 29, 7] and depth-aware learning [32], we present a
depth-injected bilateral diffusion which leverage depth in-
formation for image inpainting to preserve color-depth con-
sistency. Figure 3 shows the bilateral diffusion. In specific,
we take the kernel of convolution as the spatial kernel sim-
ilar in bilateral filter. Depth differences serve as the depth
kernel to reweight the filter, so that depth information is in-
jected into the convolution of diffusion process.

For the proposed bilateral diffusion, we start by calcu-
lating depth kernel from the depth at p and its neighbors
pi ∈ Ω, i.e. the depth differences. Then, we can apply the
depth kernel to reweight the aforementioned filter:

y(p) =
∑
pi∈Ω

x (pi) gs (‖pi − p‖) fd (‖D (pi)−D(p)‖) ,

(7)
where fd is the depth kernel and D denotes the depth. In
practice, we apply Gaussian for the depth kernel fd:

fd (‖D (pi)−D(p)‖) = exp(−‖D (pi)−D(p)‖2

2σ2
r

), (8)

where σr adjusts the depth differences. In this way, we em-
power the bilateral diffusion to concern more on the pixels
with similar depth, leading to a color-depth consistent in-
painted results.

As illustrated in Figure 2, we first select one edge from
the depth edges and then expand the synthesized regions
and context regions along the edge by the flood-fill al-
gorithm. The context regions are the visible background
nearby the depth edge, while the synthesized regions refer
to the inpainted regions behind the foreground. After that,
a depth inpainting network [26] is employed to synthesize
depth D on the occluded regions. Unlike [26] that carries
out color inpainting independently from depth, we take ad-
vantage of depth to encourage the color inpainting results
with color-depth consistency.

3.3. Cross-layer Inpainting

To better model the global and local relationship for in-
painting, we come up with a cross-layer inpainting strat-
egy. Similar to [31], we extend the context regions from the
layer close in depth to all the layers farther than the current
layer. It is intuitive that the foreground layers may contain
irrelevant content that may mislead the inpainting of back-
ground, so that they should be excluded from the context
regions. Besides, rather than concatenating all context re-
gions and inpainting them together, we feed them into the
local branch and global branch separately to alleviate the
large change on depth of background. At last, we merge the
outputs from both branches and obtain the final result.

Specifically, when we process the context regions, we
regard the regions close in depth and synthesis regions as
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Figure 4: Qualitative comparisons with state-of-the-art methods. (a) 3D Photo blends foreground into the background
inpainting. (b) AdaMPI tends to produce blurry inpainted results. (c) Our method synthesizes realistic and geometrically
consistent content image content in the scenario of wide-angle viewpoint changes.

the local information that considers the neighboring pixels
only, and the other regions far in depth as the global refer-
ence. We apply the inpainting model to each branch inde-
pendently, and fuse the inpainted images into a composite
image by a distance-based weighted fusion, similar to [5],
as below.

w =
dedge

max(dedge)
, y = w · ylocal + (1− w) · yglobal (9)

where w is the weight for the local-global fusion and dedge
denotes the distance between the occluded pixel and the
depth edge. With this cross-layer operation for global and
local processing, we are able to produce more realistic in-
painting results, and further boost the performance of novel
view synthesis.

3.4. Implementation Details

For the depth inpainting model, we leverage the pre-
trained model from [26]. We revise the pretrained latent dif-
fusion model (LDM) in [22] as our color inpainting model.
In detail, we replace the denoising kernel in the denois-

ing autoencoder with our proposed bilateral diffusion ker-
nel. In purpose of sharing the depth consistency in informa-
tion contraction and expansion, we perform this operation
in both input block and output block of the denoising au-
toencoder. Besides, we adopt distance-transform in [3] for
distance function in Section 3.3.

4. Experiment
4.1. Experimental Setup

We implement our method using Pytorch [19] and eval-
uate it on a single Nvidia GeForce RTX 3090. Our ap-
proach can achieve 3D photography without any training,
and the running time mainly depends on the pre-trained dif-
fusion model. When applying stable diffusion, it takes 8-15
mins to generate all the viewpoints (including 240 frames).
For reference, state-of-the-art method 3D Photo [26] takes
5 mins to render all the frames. Our execution time can be
accelerated by adopting a more efficient diffusion model.

Metrics. As for the dataset, the RealEstate-10K [39]
dataset contains a large number of video clips. We ran-



domly sample 100 video clips from the test set for evalu-
ation. To evaluate our performance in wide-angle scenar-
ios, we use a more challenging setting than previous meth-
ods. Rather than using an interval of 10 frames as in 3D
Photo [26], we use the frame t = 0 as the source view and
the frame t = 20 as the target view to cope with wide-angle
movement. In other words, the synthesized angles are ap-
proximately two times larger than the previous setting. We
use the SSIM, PSNR and LPIPS [38] scores to quantita-
tively measure the quality of the novel views. The image
resolution is set to 384× 512 when quantitatively compare.
Note that we crop 5% border when we calculate the metrics,
following the setting of [6].

Baselines. We mainly compare our method with two
state-of-the-art methods with publicly available source
code: 3D Photo [26] and AdaMPI [6]. For 3D Photo, we use
the pretrained model provided by the authors. For AdaMPI,
the performance of AdaMPI is related to the number of
planes N , we use the pretrained model with 64 planes for
the best performance. As a fair comparison, all those meth-
ods use the same depth map predicted by DPT [20].

4.2. Comparisons

4.2.1 Qualitative Evaluation

For qualitative comparisons, we use the photos provided by
3D Photo [26], which consist of challenging examples in the
wild. Figure 4 shows some examples of them. While other
methods may be able to synthesize the correct contents in
some disoccluded regions, they often produce artifacts and
blurs in the discontinuous regions between the foreground
and background when there is a wide camera angle change.
In contrast, our method, which benefits from the proposed
bilateral diffusion, is able to reduce the misdirection from
the foreground and prioritize the background. This results
in images that are both faithful to the original and geomet-
rically consistent.

We also show the comparison with another state-of-the-
art method SLIDE [10]. Since the code of SLIDE is not
publicly available, we qualitatively compare the result from
their paper, as shown in Figure 5. SLIDE shows blurry and
repetitive patterns in highlighted regions, while our method
shows rich and harmonious details.

4.2.2 User Study

We conducted a user study to evaluate the subjective im-
age quality of the novel views generated by our proposed
method and other comparison methods. Fifty participants
were recruited and each was asked to rate the quality of 30
images produced by each method, resulting in 90 images
rated per participant. The images were presented in a ran-
dom order to eliminate potential biases in the participants’
ratings. Participants assigned a score between 1 and 5, with

(a) Source view (b) Ground truth

(c) SLIDE [10] (d) Ours

Figure 5: Qualitative comparison with SLIDE [10]. Note
that the result is directly obtained from their paper. Our
method shows rich and clear patterns.

Table 1: Quantitative Comparisons with state-of-the-art
methods. ↑ denotes the higher the better and ↓ denotes
the opposite. Column E.S. denotes the metrics calculated
in the entire scene, and column D.R. denotes the metrics
calculated in disocclusion regions. The best results are
marked in bold. The proposed method outperforms the
robust 3D Photo, and achieves the best perceptual score
(LPIPS) among all the competitors.

Methods
PSNR ↑ SSIM ↑ LPIPS ↓

E.S. D.R. E.S. D.R. E.S. D.R.

3D Photo 19.80 21.78 0.691 0.889 0.153 0.111
AdaMPI 22.57 24.42 0.785 0.915 0.185 0.098
Ours 20.72 23.56 0.726 0.894 0.132 0.083

1 indicating the worst image quality and 5 indicating the
best. The ratings were averaged across all participants to
obtain a mean opinion score (MOS) for each method.

4.2.3 Quantitative Evaluation

To quantitatively compare with state-of-the-art methods, 3D
Photo [26] and AdaMPI [6], we conduct experiments on the
testset of RealEstate-10K [39] and calculate the metrics on
two different scales: the entire scene and only the disoc-
clusion region. The quantitative result is shown in Table
1. In particular, it is worth noting the comparison with 3D
Photo since both methods are based on the same LDI-based
3D representation. Our proposed method outperforms 3D
Photo in all three metrics, indicating that the proposed bilat-
eral diffusion approach is more effective than the inpainting
method used in 3D Photo. While AdaMPI leads in PSNR
and SSIM, it performs worse in LPIPS due to its tendency
to generate blurry content in the disoccluded regions, which



Figure 6: User study on mean-opinion-score. Our method
outperforms other methods due to less artifacts in synthe-
sized images.

Table 2: Ablation Study on different variants of our
method. ↑ denotes the higher the better and ↓ denotes the
opposite. Best results are marked in bold. All the compo-
nents contribute to the final performance.

Methods PSNR ↑ SSIM ↑ LPIPS ↓

w/o bilateral diffusion 19.83 0.690 0.151
w/o local context 20.02 0.707 0.145
w/o global context 20.32 0.711 0.136
Ours 20.72 0.726 0.132

Input block 20.41 0.718 0.136
Output block 20.58 0.720 0.135

is preferred by the first two pixel-level metrics. This is also
evident in super-resolution evaluation [4], where a blurry
image usually has a higher pixel-wise score, but is detected
by the perceptual metric LPIPS. Our results demonstrate a
much better perceptual score than AdaMPI, indicating that
bilateral diffusion improves the generation of realistic and
coherent image content. Moreover, the cross-layer inpaint-
ing leverages multi-level information to ensure consistent
synthesis even when there are wide camera angle changes.

As shown in Figure 6, our proposed method achieves
the highest MOS score, outperforming the other compar-
ison methods. Participants found our method to produce
images with fewer artifacts and a higher degree of realism
compared to the other methods. These results are consistent
with our objective evaluations, which show that our method
generates images that are more faithful to the original and
geometrically consistent than the other methods.

4.3. Ablation Study

To validate the performance of the proposed bilateral
diffusion and cross-layer inpainting, We conduct qualita-
tive and quantitative experiments to compare our complete
method with the other three variants: 1) w/o bilateral diffu-
sion, inpainting with traditional spatial diffusion kernel; 2)

(a) Source view (b) w/o bilateral diff. (c) Ours

Figure 7: Qualitative ablation comparisons of bilateral
diffusion. (b) shows that without the injected depth infor-
mation, background or out-of-view inpainting suffers badly
from the ambiguous surrounding context. (c) recovers both
background and out-of-view regions well.

w/o local context, inpainting without local reference con-
tent; 3) w/o global context, inpainting without global refer-
ence content.

The results in Table 2 demonstrate that incorporating any
of the three components leads to an improvement in the
quantitative measurements. In particular, the use of bilateral
diffusion has a greater impact on the novel view synthesis,
indicating that depth information is a critical prior for color
inpainting. By replacing the spatial diffusion kernel with a
bilateral diffusion kernel, the depth prior can help the diffu-
sion model to focus on areas with similar depth, resulting in
more accurate geometry and realistic generation. Moreover,
the negative impact of the lack of context information on the
final synthesis view provides evidence of the effectiveness
of cross-layer inpainting, especially the local context. The
local context refers to the areas closest in depth to the oc-
cluded regions. By adopting both strategies, we achieve the
best performance on the novel view synthesis.

Figure 7 provides a qualitative comparison between our
model with bilateral diffusion and the variant without it,
which only uses spatial diffusion kernel. The results show
that the model without bilateral diffusion generates dis-
torted images, whereas the bilateral diffusion is able to gen-
erate color-depth consistent results in the disoccluded re-
gions. This is evident in the ground behind the astronaut



(a) Source view (b) Global (c) Local (d) Ours

Figure 8: Qualitative ablation comparisons of cross-
layer inpainting. (b) and (c) show two different types of
inpaintings with different emphasis. Our method (d) can
combine their advantages.

and the background sheltered from the shrubs in the source
view. The bilateral diffusion effectively exploits the infor-
mation of visible background close in depth. Furthermore,
Figure 8 illustrates that combining global and local informa-
tion leads to the best visual results by utilizing multi-level
information.

We conduct another experiment to determine the opti-
mal location for injecting the depth kernel, comparing three
methods: bilateral diffusion only in the input block, only
in the output block, and in both input and output blocks.
The quantitative results presented in Table 2 show that the
complete method, where bilateral diffusion is used in both
input and output blocks, achieves the best results. This sug-
gests that our approach benefits from depth consistency in
both feature contraction and expansion, leading to superior
performance.

4.4. Discussions

4.4.1 Challenging Scenarios

Wide-angle Movement Evaluation. To showcase the ef-
fectiveness of our method in handling wide-angle camera
movements, we present the variation of synthesis quality as
the view changes. For ease of analysis, we utilize spatial
camera displacements to represent camera movements.

Figure 9 reveals that while 3D Photo [26] and
AdaMPI [6] are capable of generating results with small an-
gle changes, the synthesis quality rapidly deteriorates when
faced with wide-angle settings. In contrast, our proposed
method not only performs well with narrow camera move-
ments, but also exhibits promising results when the camera
angle changes extensively. This indicates that bilateral dif-
fusion effectively enforces the denoising model to focus on
pixels that are close in depth, and filter out irrelevant fore-
ground information, resulting in improved synthesis quality.
Additionally, our proposed global-local inpainting strategy
further enhances synthesis quality.

Figure 9: Comparison of wide-angle movement. Our
method can achieve superior results with wide-angle
changes (the lower the better).

(a) Source View (b) 3D Photo (c) AdaMPI (d) Ours

Figure 10: Our method can handle multiple foregrounds.

(a) Source view (b) Latent diff. (c) Palette (d) RePaint

Figure 11: Our method is flexible and plug-and-play that
can be applied to any diffusion model.

Scene with Multiple Foregrounds. Figure 10 shows
a challenging case with multiple foregrounds. The result
demonstrates our method understands the geometrical rela-
tions well and produces more realistic results than others.

4.4.2 Bilateral Diffusion with Different Backbones

The proposed bilateral kernel is a versatile plug-and-play
module that can be seamlessly integrated with any diffusion
model. To showcase its compatibility, we present additional



(a) Source view (b) DPT (c) Midas (d) NewCRFs

Figure 12: Our method is capable to handle depth maps
from different sources.

results in Figure 11 using various diffusion models such as
Latent diffusion [22], Palette [24], and RePaint [15]. The
figures illustrate that our bilateral kernel can effectively col-
laborate with different diffusion models, thereby extending
the scope of our method’s applicability.

4.4.3 Tolerability of Different Depth maps

We conducted an experiment to assess the effectiveness
of depth maps obtained from different depth estimators.
Specifically, we evaluated our model using depth maps esti-
mated from three different methods, namely DPT [20], Mi-
das [21], and NewCRFs [37]. The results are presented in
Figure 12, and show that our method can adapt to the varia-
tions in depth maps and produce plausible results.

4.5. Applications on Other Tasks

We propose the first feasible attempt to intervene con-
volutional operations of a pretrained diffusion model. Our
idea can be easily applied to other applications. We show
two applications of our proposed bilateral diffusion, depth-
aware raindrop and object removals, in Figure 13. In the
task of raindrop removal, our proposed method removes
raindrops well and synthesizes clear content in covered re-
gions (the top row of Figure 13c). However, the diffusion
model without bilateral weights generates blurry results (the
top row in Figure 13b). Besides, the task of object removal
shows similar results. In the bottom row of Figure 13b, the
traditional diffusion model generates blurs and discontin-
uous geometry. In contrast, with the assistance of bilateral
weights, our method generates images that are more faithful
and geometrically consistent (Figure 13c).

5. Conclusion
In this paper, we resolve the problem of wide-angle 3D

photography from a pure depth-aware synthesis perspective.
In particular, we employ a diffusion model as the genera-
tive prior for holistic inpainting, and we further alter the
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Figure 13: Applications on raindrop removal and object re-
moval. Our incorporated bilateral weights can produce bet-
ter results against traditional diffusion.

diffusion inference process by proposing a bilateral diffu-
sion that takes depth into the denoising consideration. We
reformulate the convolution operations of the denoisers into
two components, a spatial kernel that assigns equal weights
to all the samples, and a depth kernel that weights pixels
differently according to the depth similarities. As a con-
sequence, inpainting the disocclusions will not show fore-
ground leakage because of our depth-aware diffusion. We
further involve both global and local contexts in disocclu-
sion inpainting. Our method is a plug-and-play design that
can easily be applied in arbitrary diffusion models to in-
clude not only depth information. We show superior perfor-
mances in wide-angle 3D photography.

Limitation. Our method shares the same limitation as in
diffusion models, and one is the heavy computational cost.
Although our method does not involve any training, which
is a big advantage, it requires many iterations of the denois-
ing steps. On the other hand, our method can be easily inte-
grated into a new efficient diffusion model in the future. Be-
sides, our method also shares similar limitations with LDI.
Our entire framework has a high tolerance to depth varia-
tions, but when the depth map is particularly inaccurate, the
generation quality will be degraded.

Potential Negative Impact. Our main contribution is a
method to improve the quality of 3D photography, which
could impact automation. As such, our work inherits the
general ethical risks of Al, like the question of how to ad-
dress the potential of increased automation in society.

Acknowledgement. This paper is partially supported
by the National Natural Science Foundation of China (No.
61972162); Guangdong Natural Science Funds for Dis-
tinguished Young Scholars (No. 2023B1515020097); and
Singapore Ministry of Education Academic Research Fund
Tier 1 (MSS23C002).



References
[1] Volker Aurich and Jörg Weule. Non-linear gaussian filters

performing edge preserving diffusion. In Mustererkennung
1995, 17. DAGM-Symposium, pages 538–545, 1995. 2, 4

[2] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended
diffusion for text-driven editing of natural images. In CVPR,
pages 18208–18218, 2022. 3

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 5

[4] Kelvin C.K. Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu,
and Chen Change Loy. Glean: Generative latent bank for
large-factor image super-resolution. In CVPR, pages 14245–
14254, 2021. 7

[5] Qiaole Dong, Chenjie Cao, and Yanwei Fu. Incremental
transformer structure enhanced image inpainting with mask-
ing positional encoding. In CVPR, 2022. 5

[6] Yuxuan Han, Ruicheng Wang, and Jiaolong Yang. Single-
view view synthesis in the wild with learned adaptive multi-
plane images. In SIGGRAPH, 2022. 1, 2, 6, 8

[7] Shengfeng He, Qingxiong Yang, Rynson WH Lau, and
Ming-Hsuan Yang. Fast weighted histograms for bilateral
filtering and nearest neighbor searching. IEEE TCSVT,
26(5):891–902, 2015. 2, 4

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
3

[9] Ronghang Hu, Nikhila Ravi, Alexander C Berg, and Deepak
Pathak. Worldsheet: Wrapping the world in a 3d sheet for
view synthesis from a single image. In ICCV, pages 12528–
12537, 2021. 2

[10] Varun Jampani, Huiwen Chang, Kyle Sargent, Abhishek
Kar, Richard Tucker, Michael Krainin, Dominik Kaeser,
William T Freeman, David Salesin, Brian Curless, et al.
Slide: Single image 3d photography with soft layering and
depth-aware inpainting. In ICCV, pages 12518–12527, 2021.
2, 6

[11] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising diffusion restoration models. In NeurIPS,
2022. 3

[12] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion model for
audio synthesis. In ICLR, 2020. 3

[13] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean
Quigley, Francis Ge, Yangming Chong, Josh Patterson, Jan-
Michael Frahm, Shu Wu, Matthew Yu, et al. One shot 3d
photography. ACM TOG, 39(4):76–1, 2020. 2

[14] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou
Zhao. Diffsinger: Singing voice synthesis via shallow diffu-
sion mechanism. In AAAI, volume 36, pages 11020–11028,
2022. 3

[15] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In CVPR,
pages 11461–11471, 2022. 3, 9

[16] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Si-
mon. Symbolic music generation with diffusion models.
arXiv preprint arXiv:2103.16091, 2021. 3

[17] Fangzhou Mu, Jian Wang, Yicheng Wu, and Yin Li. 3d photo
stylization: Learning to generate stylized novel views from a
single image. In CVPR, pages 16273–16282, 2022. 2

[18] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d
ken burns effect from a single image. ACM TOG, 38(6):1–
15, 2019. 2

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, pages 8024–8035. 2019. 5
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[21] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE TPAMI, 44(3):1623–1637, 2020. 9

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 3, 4, 5, 9

[23] Robin Rombach, Patrick Esser, and Björn Ommer.
Geometry-free view synthesis: Transformers and no 3d pri-
ors. In ICCV, pages 14356–14366, 2021. 2

[24] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–
10, 2022. 9

[25] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In SIGGRAPH, pages 231–
242, 1998. 2, 3

[26] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In CVPR, pages 8028–8038, 2020. 1, 2, 3, 4, 5,
6, 8

[27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, pages 2256–
2265, 2015. 2

[28] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In ICLR, 2020. 3

[29] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for
gray and color images. In ICCV, pages 839–846, 1998. 2, 4

[30] Richard Tucker and Noah Snavely. Single-view view synthe-
sis with multiplane images. In CVPR, pages 551–560, 2020.
2

[31] Qianqian Wang, Zhengqi Li, David Salesin, Noah Snavely,
Brian Curless, and Janne Kontkanen. 3d moments from near-
duplicate photos. In CVPR, 2022. 4

[32] Weiyue Wang and Ulrich Neumann. Depth-aware cnn for
rgb-d segmentation. In ECCV, pages 135–150, 2018. 2, 4



[33] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a single
image. In CVPR, pages 7467–7477, 2020. 2

[34] Cheng Xu, Keke Li, Xuandi Luo, Xuemiao Xu, Shengfeng
He, and Kun Zhang. Fully deformable network for multi-
view face image synthesis. IEEE Transactions on Neural
Networks and Learning Systems, 2022. 2

[35] Xuemiao Xu, Keke Li, Cheng Xu, and Shengfeng He.
Gdface: Gated deformation for multi-view face image syn-
thesis. In AAAI, volume 34, pages 12532–12540, 2020. 2

[36] Yangyang Xu, Xuemiao Xu, Jianbo Jiao, Keke Li, Cheng
Xu, and Shengfeng He. Multi-view face synthesis via pro-
gressive face flow. IEEE TIP, 30:6024–6035, 2021. 2

[37] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and
Ping Tan. Neural window fully-connected crfs for monocu-
lar depth estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3916–3925, 2022. 9

[38] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[39] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view
synthesis using multiplane images. ACM TOG, 37(4):1–12,
2018. 2, 5, 6

[40] Yang Zhou, Hanjie Wu, Wenxi Liu, Zheng Xiong, Jing Qin,
and Shengfeng He. Single-view view synthesis with self-
rectified pseudo-stereo. International Journal of Computer
Vision, pages 1–12, 2023. 2


