
Fingerprinting Deep Image Restoration Models
(Supplemental Material)

1. Details of LGP and Color Histograms in Fingerprint Feature Comparison
The LGP operator [6, 7] assigns an integer code to each image pixel based on its neighboring local structure. Let yc denote

the pixel value at the spatial location c. Consider a circle of radius R centered at c and take P sampling points along on the
circle with a fixed order. The pixel values of those sampling points, denoted by y0, y1, · · · , yP−1, are obtained via bi-linear
interpolation wherever necessary. Let gp = |yp − yc| and ḡ = 1

P

∑P−1
p=0 gp. The LGP code is defined as

LGPP,R =

P−1∑
p=0

s(gp − ḡ)2p, s(x) =

{
1, x ≥ 0,

0, x < 0.
(1)

The LGP code is indeed a binary string in the form of an integer. Such a bit string will be circularly shifted w.r.t. image
rotation and may be sensitive to noise. Thus, borrowing the idea of uniform rotation-invariant transform [11], we enhance
rotational invariance by taking the minimum value under bit-wise cyclic shifting and reduce noise sensitivity by eliminating
the patterns with frequent bit-wise jumps. This leads to a uniform rotation-invariant version of LGP:

LGPri
P,R =

{
mink Sk(LGPP,R), if U(LGPP,R) ≤ u0,
P + 1, otherwise,

(2)

where Sk denotes the circular bit-wise right shift on the input by k times, and U is a uniformity measure that counts the
number of bit-wise transitions from 0 to 1 or vice versa. The LGP is applied with P = 10, R = 2, u0 = 2 and it results
in a 12-dimensional LGP histogram. An 18-dimensional color (RGB) histogram is also used and thus we finally have a
30-dimensional feature vector of a fingerprint image.

2. Determining Value of σ for Model Ownership Verification
The reason we set σ = 0.015 is two-fold. First, similar to [33], we simply assume hsou(j),hsus(j) ∼ N (µ0, σ

2
0) to

facilitate hypothesis test. So e(j) ∼ N (0, σ2) with σ =
√

2σ0. Considering hsou is implemented by a 30-dim normalized
vector where hsou(j) is around 1/30 = 0.033 when it is uniformly distributed, we assume µ0 = 0.033 and σ0 = 0.011 so
that µ0 ± 3σ ∈ [0, 1]. Here µ0 ± 3σ is considered due to the 3-sigma rule in statistics. Then we set σ to 0.015 which is
around

√
2σ0. Second, as hsou(j),hsus(j) ∈ [0, 1], the Gaussian distribution of e(j) should be truncated into [−1, 1]. To

approximate the truncated Gaussian distribution, one way is ensuring Pr[-1≤ e(j) ≤1]≈1, and σ = 0.015 satisfies it.

3. Details of Source Models
Denoising models Restormer, Nei2Nei, and DBSN are trained with synthetic noisy images, and DnCNN, NAFNet, and
SimBase are trained with real-world noisy images. Specifically, Restormer is trained using synthetic noisy images from the
BSD68 dataset [10] with white Gaussian noise whose level is drawn from the range [0, 50]. Note that BSD68 is often used a
test set in existing literature, but here we use it as training data for evaluating the performance of fingerprinting. DnCNN is
trained using the SIDD dataset [1]. The other four denoising models are trained using the data used in their own works.
SR models We use the pre-trained models released online for all the models. Among them, EDSR, RRDBNet, and RNAN
are provided by [5], and the other three models are obtained from their official websites.
Independent Restormer models Restormer #1 is trained using synthetic noisy images from the BSD68 dataset of [10]
with white Gaussian noise whose standard deviation is drawn from the range [0, 50]. Restormer #2∼#5 are trained using



synthetic noisy images from the DIV2K [2], Flickr2K [8], WED [9] and BSD500 [3] datasets, with white Gaussian noise
whose levels (i.e., standard deviations) are set to 15, 25, 50, and drawn from the range [0, 50], respectively. Restormer # 6 is
trained on the real-world noisy images from the SIDD dataset [1].

4. Implementation Details for Additional Restoration Tasks
Image Deblurring The operator DT for image deblurring is defined as

DT (X) := K⊗X + N,

where K denotes a blur kernel and N denotes the noise. For defocus blurring models, we define K as a 3 × 3 Gaussian
kernel with standard deviation of 1 and draw N from N (0, 15/255). The λ is set 0.05 for fingerprint extraction. For motion
deblurring models, we define K as a 9 × 9 vertical linear motion kernel and draw N from U(0, 0.1). The λ is set 0.1 for
fingerprint extraction. See Figure 1 for the fingerprints extracted from three models of motion deblurring.
Low-light Image Enhancement We use an exponential transformation of power 3 and a min-max normalization for
simulating low-light changes. Therefore, the operator DT for low-light image enhancement is defined as

DT (X) := Norm(X3),

where Norm(X) = (X−min(X))/(max(X)−min(X)).
Image Deraining The operator DT for image deraining is define as

DT (X) := X + R,

where R denotes the synthetic rain layer. Following existing work, we generate the synthetic rain layer by convolving motion
blur kernels with some points randomly sampled from a uniform distribution with a threshold of 0.995. The synthesized rain
layer is then scaled down by 0.1 to reduce the intensities. The extracted fingerprints are shown in Figure 1, which exhibit
distinctive patterns and remain similar after the pruning and quantization attacks.
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Figure 1: Fingerprints extracted from different image DNN models of two tasks.

5. Sensitivity Analysis on Initial Critical Images
To investigate the sensitivity of our fingerprinting approach to different initial critical images S(0) sampled from a Gaussian

distribution, we using different seeds in the Gaussian random generator to obtain different instances of S(0) for calculating
the fingerprints. As shown in Figure 2 on four models, the patterns of fingerprints are consistent across different instances



of S(0) for the same model. Moreover, we evaluate the robustness under pruning, fine-tuning, and quantization attacks on
two models, with different instances of S(0). The extracted fingerprints are shown in Figure 3. We can also observe that the
changes of initial critical images have little impact on the extracted fingerprints under different attacks.
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Figure 2: Fingerprints calculated using different instances of S(0) obtained via different seeds.
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(a) Fingerprints on Nei2Nei.
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(b) Fingerprints on MobileSR.

Figure 3: Fingerprints calculated using different initialization seeds under various attacks.

6. Robustness Analysis under Finetuning Attacks with Significant Model Performance Decrease
The main paper has shown that our proposed fingerprinting approach is robust under the finetuning attack with 500

iterations (steps). We further examine the robustness under more iterations of finetuning, including 1.7k, 3.4k and 6.8k



iterations. As the number of iterations increases, the performance of the attacked models changes more significantly. See
Table 1 for the performance differences of five denoising models under finetuning with different numbers of iterations. For
instance, the performances of all the models change 2.12dB in average under the finetuning with 6.8k iterations. Such
significant changes may make the attacked models inapplicable in practice.

The extracted fingerprints are shown in Figure 4. Our approach produces consistent critical images for all source models
under attacks with 1.7k iterations. The extracted fingerprints for SimBase, DBSN, Nei2Nei, and Restormer also keep similar
under the attacks with 3.4k or 6.8k iterations. However, for NAFNet, the extracted fingerprint presents similar texture
patterns but shows a different color compared to the original one under the finetuning attacks with 3.4k or 6.8k iterations.
Note that in these case, NAFNet suffers from a significant PSNR drop of 1.6dB and 2.9dB, respectively. In conclusion, our
approach is robust under finetuning attacks with reasonable performance changes, but may fail under extreme attacks that
cause significant performance degradation of the model.

Table 1: PSNR difference(dB) of some denoising model under finetuning with different numbers of iterations.

#Iteration SimBase DBSN Nei2Nei NAFNet Restormer Avarage

1700 0.82 2.44 0.06 0.86 0.50 0.94
3400 1.58 2.55 0.57 1.64 0.81 1.43
6800 3.21 2.67 0.76 2.93 1.04 2.12

O
rig

in
al

Ft
-1

.7
k

Ft
-3

.4
k

Ft
-6

.8
k

SimBase DBSN Nei2Nei NAFNet Restormer

Figure 4: Fingerprints calculated from the denoising models under finetuning attacks with different numbers of iterations.
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