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Abstract

Single image defocus deblurring (SIDD) is a challeng-
ing task due to the spatially-varying nature of defocus blur,
characterized by per-pixel point spread functions (PSFs).
Existing deep-learning-based methods for SIDD are limited
by either over-fitting due to the lack of model constraints
or under-parametrization that restricts their applicability
to real-world images. To address the limitations, this pa-
per proposes an interpretable approach that explicitly pre-
dicts inverse kernels with structural regularization. Moti-
vated by the observation that defocus PSFs within an im-
age often have similar shapes but different sizes, we repre-
sent the inverse kernels linearly over a multi-scale dictio-
nary parameterized by implicit neural representations. We
predict the corresponding representation coefficients via a
duplex scale-recurrent neural network that jointly performs
fine-to-coarse and coarse-to-fine estimations. Extensive ex-
periments demonstrate that our approach achieves excellent
performance using a lightweight model.

1. Introduction
When a camera captures an image, objects outside of

the focal plane appear blurry. This effect is known as
defocus blur and usually occurs when using a large cam-
era aperture or capturing scenes with significantly varying
depths. Removing defocus blur from a single image, known
as SIDD, is desired for many practical applications; see
e.g. [27, 14, 33, 60]. In general, defocus blur varies spa-
tially. Each defocused pixel is a weighted average of its
neighboring pixels in the latent all-in-focus image, with the
weights determined by a spatially-varying unknown PSF.

SIDD is closely related to defocus map estimation
(DME) [3, 44, 7, 5, 51, 32, 17]. Existing DME methods
typically model defocus PSFs using a Gaussian function
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parameterized by its variance or a disc function parameter-
ized by its radius. The resulting defocus map indicates the
per-pixel blur amount in terms of the values of such model
parameters, which can then be utilized for SIDD by apply-
ing a non-blind image deblurring (NID) algorithm using the
corresponding PSFs; see e.g. [18]. However, DME remains
a challenging task, and the estimated parameters of PSFs
can be erroneous for many pixels. Moreover, Gaussian or
disc-indicator functions are overly simplistic for real-world
defocus PSFs. All these errors will be magnified in the NID
process, resulting in noticeable artifacts.

Recently, many deep-learning-based methods have been
proposed for SIDD; see e.g. [41, 25, 21, 47, 36, 40, 1, 56,
58, 23, 31]. Most train an end-to-end neural network (NN)
that directly maps blurry images to their sharp correspon-
dences. Although these methods provide better results than
the DME-based two-step methods, their performance still
has much room for improvement due to significant vari-
ations in the spatial distributions of defocus PSFs among
different images. Many existing works (e.g. [21, 40, 56])
explicitly introduce spatially-varying processing blocks to
better handle the spatial variance of defocus PSFs. How-
ever, those blocks lack constraints and may cause overfit-
ting. A few studies (e.g. [36, 37]) represent defocus PSFs by
some specific basis for geometric regularization and employ
deep unrolling for an NN-based inversion process. Never-
theless, there is still room for improvement.

This paper presents an end-to-end deep NN with high in-
terpretability for SIDD, which explicitly predicts spatially-
varying inverse kernels of defocus PSFs and performs de-
blurring using the predicted inverse kernels. The possible
overfitting issue is tackled by providing a more accurate
model with structural constraints/regularization for the in-
verse kernels. Specifically, the inverse kernels are modeled
by a linear representation under a dictionary. To achieve
a compact yet sufficiently general representation, we con-
struct the dictionary with a multi-scale structure. This is
motivated by the empirical observation (as seen in [47]) that
defocus PSFs within an image tend to have the same shape



but vary mainly in size. We show that if two defocus PSFs
of different sizes have the same shape under an upsampling
operation, so do the dictionary atoms of their inverse ker-
nels. Thus, the dictionary atoms of a large size are defined
as an upsampled version of the atoms of a small size.

Although plain upsampling offers an economical method
for generating larger dictionary atoms from smaller ones,
the resulting atoms may have a limited frequency range.
This can lead to poor approximations of certain inverse ker-
nels. To address the limitation, we leverage implicit neural
representation (INR) [46], a technique that uses coordinate-
input NNs to represent geometric objects like 2D shapes, so
as to efficiently parameterize multi-scale atoms with both
sufficient coverage of high-frequency content and implicit
regularization to alleviate overfitting.

For the multi-scale representation coefficients, we sepa-
rate them into scale-related and shape-related components,
which are predicted by two scale-recurrent sub-NNs respec-
tively. To better utilize information from different scales for
coefficient prediction, we introduce a duplex scale-recurrent
framework that performs both fine-to-coarse and coarse-to-
fine estimations. Once the coefficients are predicted, the
corresponding inverse kernels are applied to the input image
for deblurring. The resulting pipeline is highly efficient and
interpretable, leading to a lightweight yet effective model.

To conclude, this paper proposes an end-to-end NN for
SIDD, which exhibits a noticeable performance boost com-
pared to existing ones, while maintaining low complexity.
See below for our main contributions:

• A parametric inverse kernel prediction framework for
SIDD, providing efficient and interpretable deep NNs.

• A multi-scale linear representation model for the in-
verse kernels of spatially-varying defocus blur, using
an INR-based multi-scale dictionary.

• A duplex scale-recurrent framework for predicting the
representation coefficients of inverse kernels.

2. Related Works

2.1. Existing Approaches for SIDD

SIDD can done by a two-step approach that combines
DME (e.g. [44, 51, 17, 32]) and NID (e.g. [20]). However,
such an approach has two inherent drawbacks. First, the
errors in DME will be magnified in the following NID pro-
cess. Second, simple Gaussian or disc functions do not fit
real-world defocus PSFs well. While there has been steady
progress in deep-learning-based methods for DME [59, 16]
and for NID [38, 10, 33, 29, 30, 4, 34, 35], the inherent
drawbacks of the two-step approach remain.

Deep end-to-end learning has emerged as a promising
approach for SIDD. The seminal work conducted by Abuo-
laim and Brown [2] trained an encoder-decoder CNN that

maps a defocused image to its in-focus correspondence,
with significant performance gain over two-step methods.
To better handle spatially-varying defocus blur, some stud-
ies introduced dynamic processing blocks, e.g., per-pixel
filter prediction in Lee et al. [21], dynamic residual blocks
in Ruan et al. [40], and attention in Zhang and Zhai [56].

The use of dynamic processing blocks may increase the
model complexity and the risk of overfitting. Regularization
by auxiliary tasks is an effective approach for improving
the generalization performance. In existing works, auxiliary
tasks are often defined using DME ([25, 41, 58]), depth esti-
mation [31], dual-view data [21, 1], or reblurring loss [23].
However, most of them require additional data sources.

A more appealing approach is encoding physical priors
of defocus blur into NNs. Quan et al. [36, 37] used a ker-
nel mixture model to parameterize defocus PSFs and con-
structed a deep unrolling NN. This method can be viewed
as the degradation learning [22, 49, 24, 11] that predicts the
blurring operator or kernels for deblurring. Our approach
differs in that it predicts inverse kernels, not the degrada-
tion with defocus PSFs. Son et al. [47] showed that in-
verse defocus kernels have an invariant shape across scales
and emulated them in feature spaces via a series of kernel-
sharing parallel Atrous convolutions. Their method inspired
our work, and it can be viewed as representing inverse ker-
nels for a feature tensor via a multi-scale dilated combina-
tion of a single atom and predicting spatially-invariant com-
bination coefficients via channel attention. In comparison,
our approach explicitly predicts inverse kernels on the in-
put image, allowing better interpretability, and represents
them using INR to improve effectiveness. Additionally, we
predict spatially-varying combination coefficients to better
handle spatially-similar (not invariant) defocus shapes.

2.2. Related Techniques

Deep inverse kernels Several studies have included in-
verse kernels in deblurring NNs, in addition to [47]. Xu et
al. [52] and Ren et al. [38] presented the CNNs that adopt
tensor product for emulating separable inverse kernels to
perform NID. Dong et al. [9, 10] and Pronina et al. [33]
performed NID via Wiener inverse filtering in deep fea-
ture spaces. However, all these methods are designed for
spatially-invariant blur. Ren et al. [55, 39] proposed a re-
current NN to mimic inverse kernels for removing spatially-
varying blur of dynamic scenes, but not for SIDD.
Scale-recurrent NNs for deblurring Scale-recurrent NNs
are commonly used for image deblurring, e.g. [36, 28, 48,
12, 54, 8, 15]. These methods typically employ coarse-
to-fine estimation which is unidirectional and thus cannot
fully leverage information from the subsequent scales for
the prediction at the current scale. In contrast, our proposed
NN utilizes a bi-directional structure via bi-LSTMs [13] for
joint coarse-to-fine and fine-to-coarse estimation. This is



particularly useful for SIDD, as defocus blur effects show
strong self-similarity over scales. While bi-LSTM has been
used in [61] for multi-scale video deblurring, it is only used
for bi-directional temporal processing and the multi-scale
processing is still one-way. Also note that the multi-scale
NN proposed in [6] for motion deblurring is not restrictive
to unidirectional processing, but not in a recurrent manner.
INR for image recovery INR has been applied to image
recovery [42, 19, 50]. In comparison to these works, we use
INR to parameterize inverse kernels, not images, for SIDD.

3. INR-Based Dictionary for Inverse Kernels
3.1. Inverse Kernels for Spatially-Varying Blur

Consider a simplistic uniform blurring model defined by
y = k ∗ x, where ∗ denotes convolution, k denotes the
PSF, and y,x denote the blurred image and its sharp corre-
spondence, respectively. Let F denote the discrete Fourier
transform (DFT). According to the well-known convolution
theorem, we have F(y) = F(x)�F(k), where � denotes
entry-wise product. Then, one can define a (pesudo) inverse
kernel k† by: for each (ωx, ωy),

F(k†)[ωx, ωy] = (F(k)[ωx, ωy])−1, if |F(k)[ωx, ωy]| 6= 0;
(1)

and 0 otherwise. Then, for an invertible PSF with only non-
zero DFT coefficients, we have

F(x) = F(k†)�F(y) =⇒ x = k† ∗ y. (2)

When the PSF k is non-invertible, the result k† ∗ y still
provides a fair approximation to x.

One can extend (1) to handling spatially-varying blur.
Let K† = {k†i,j}i,j denote a set of inverse kernels. Then,
the image y with spatially-varying blur can be recovered by
a spatially-varying deconvolution process C defined by

C
(
y;K†

)
[i, j] =

∑
x,y

k†i,j [x, y]y[i− x, j − y]. (3)

Both the shape and the size of k†i,j depend on the PSFs de-
termined by scene depths and camera settings. When scene
depths have significant variations, the sizes of the defocus
PSFs also vary significantly, leading to large variations in
the size of k†i,j and a large number of unknowns in K†.
Without additional constraints on K†, overfitting can occur.

3.2. Multi-Scale Dictionary for Inverse Kernels

To address the overfitting caused by excessive degrees of
freedom in K†, we parameterize the inverse kernels using a
linear span over a dictionary with reduced number of atoms,
resulting in inverse kernels that lie within a low-dimensional
space. That is, we express an inverse kernel k† as a linear
combination of atoms from a dictionaryV = [v1, · · · ,vN ]:

k† = ω1v1 + · · ·+ ωNvN , (4)

where ω1, · · · , ωN ∈ R are the weights. Additionally, in-
verse kernels may have a large size. To accurately approx-
imate them using as few atoms as possible, we introduce a
multi-scale structure to the dictionary atoms, which is mo-
tivated by the observation that when two kernels have the
same shape but different sizes, the larger one can be effec-
tively approximated by upsampling the smaller one. Conse-
quently, the dictionary atoms for the corresponding inverse
kernels can also be related through such an upsampling pro-
cess, as stated in the following proposition.

Proposition 1. Let k† be an inverse kernel defined by (4).
Let Us be a standard dyadic upsampling operator with a
factor s via expansion. Then(

Us(k)
)†

= ω1Us(v1) + · · ·+ ωNUs(vN ). (5)

Proof. See supplemental material for the proof.

Proposition 1 implies that two PFSs with the same shape
but different sizes can share the same dictionary for their
inverse kernels up to a spatial scaling factor. For defocus
PSFs within an image, they typically have similar shapes
related to camera settings, as observed in [47]. However,
their sizes will vary with the corresponding scene depths.
Thus, we represent the inverse kernels of PSFs using dif-
ferent upsampled versions of a dictionary with small atoms.
Such a multi-scale structure provides a physics-based im-
plicit prior on the PSFs within same image and leads to a
more compact dictionary for representing inverse kernels of
varying sizes. Specifically, we define a multi-scale dictio-
nary composed by the sets (sub-dictionaries) {V r}Rr=1:

V r = [vr1, · · · ,vrN ] ⊂ RMr×Mr , vrn = USr
(vn), (6)

where vrn denotes the atom at the r-th scale, Sr denotes an
upsampling factor that determines the size parameter Mr of
the atom. As r increases, Sr becomes larger and Mr gets
smaller. The per-pixel inverse kernels are then expressed as

k†i,j = ω1,i,jv
ri,j
1 + · · ·+ωN,i,jv

ri,j
N ∈ RMri,j

×Mri,j , (7)

where ri,j denotes the scale factor (index) related to k†i,j .
Note that the atoms within the same sub-dictionary have
a uniform size, while their sizes vary across different sub-
dictionaries. That is, each sub-dictionary is utilized to rep-
resent inverse kernels of a specific size.

Using the linear representation (7) and the fact that vri,jn ∗
y =

∑
r δ(r− ri,j)vrn ∗y with a Dirac delta function δ, we

can rewrite Eq. (3) as

C
(
y) =

∑
i,j

1i,j �
( N∑
n=1

ωn,i,jv
ri,j
n ∗ y

)
(8)

=
∑
i,j

1i,j �
( N∑
n=1

R∑
r=1

µr,i,jωn,i,jv
r
n ∗ y

)
, (9)



where 1i,j denotes a mask with 1 for the (i, j)-th entry be-
ing 1 and 0 otherwise, and µr,i,j = δ(r − ri,j). We can
then perform spatially-varying inverse filtering by convolv-
ing each atom vrn in the dictionary with the input image y,
and summing the resulting images by the spatially-varying
weights µs,i,jωn,i,j . The weights µs,i,j and ωn,i,j control
the size (adaptive to scene depth) and shape (adaptive to
image) of the corresponding inverse kernel, respectively.

3.3. INR Models for Dictionaries of Inverse Kernels

The dictionary {Vr}Rr=1 used in (8) is generated by the
base atoms {vj}Nj=1 of the smallest size. However, sim-
ply upsampling these base atoms cannot cover all high fre-
quencies, i.e., certain high-pass filters of large sizes may
not be well approximated by the linear span of these atoms
obtained by plain upsampling. To address this limitation,
we use INR to re-parameterize the multi-scale dictionary.
INR provides a more expressive way to generate multi-scale
atoms that cover more frequencies than plain upsampling.
Additionally, INR provides implicit regularization to allevi-
ate overfitting by preferring image structures over random
noise, as shown in [42, 19, 50].

Specifically, we express vrn as

vrn[x, y] = Φn(x, y), [x, y] ∈ [1, · · · ,Mr]× [1, · · · ,Mr],

where [x, y] denotes a spatial coordinate, and Φ is an INR
model implemented by a compact multi-layer perceptron
(MLP) of a small size. The INR model maps spatial coordi-
nates to a continuous function that implicitly represents the
kernel atom. This function can be evaluated at any point in
space to interpolate a kernel atom of an arbitrary size, form-
ing a dictionary of inverse kernels with arbitrary scales.

4. Implicit Neural Inverse Kernel Network
Our proposed NN called INIKNet consists of recurrent

deblurring stages over different scales for exploiting cross-
scale contextual information. Each deblurring stage pre-
dicts and applies inverse kernels to deblur the input image.
Concretely, each stage consists of two steps: (i) given an in-
put image y, inferring two weight tensors µ,ω that contain
the weights {µr,i,j}r,i,j and {ωn,i,j}n,i,j respectively; and
(ii) applying inverse filtering defined by (8) to deblurring y.

4.1. Duplex Scale-Recurrent Framework

Current scale-recurrent deblurring NNs, e.g. [36, 28, 48,
12, 54, 8, 15], typically use an LSTM-based coarse-to-fine
framework. The deblurred image from the current (coarser)
scale is attached to the input of the next (finer) scale, result-
ing in unidirectional feature flow that only considers coarser
scales when inferring at finer scales. This approach cannot
fully leverage the additional information available at finer
scales for deblurring on coarser scales, especially when the
blur effects show strong similarity over space and scale.

To address this limitation, we propose a duplex multi-
scale processing framework, which leverages bi-LSTM [13]
as the sub-NNs to predict µ and ω. It improves predic-
tions at coarser scales by incorporating additional informa-
tion from finer scales through the feature flow in the fine-to-
coarse pass. This refined information is then utilized to fur-
ther improve predictions on finer scales via the feature flow
through the coarse-to-fine pass. As a result, the prediction
at the current scale benefits from the information extracted
from both the previous and subsequent scales.

As shown in Fig. 1, our INIKNet first downsamples the
input image to multi-scale versions. For each scale, a U-
Net shared across scales is first applied for extracting spatial
features from the input. The extracted features are then fed
to two bi-LSTM sub-NNs so as to exploit the dependencies
among scales for feature refinement. The outputs of two
bi-LSTMs sub-NNs are then used to predict µ and ω via
an 1 × 1 convolutional layer, respectively. Afterward, the
predicted weights are used by an Inverse Filtering Module
(IFM) to perform deblurring using (8) to output the result.

Our INIKNet differs from existing coarse-to-fine NNs in
that it does not concatenate the output image from the cur-
rent scale to the input of the next scale, as this operation
would not only make the feature flow unidirectional, but
also prevent the current-scale processing from starting, until
the deblurring is fully completed at the previous scale. By
removing this operation, the U-Net and bi-LSTM can start
running earlier, without waiting for the deblurred images
from previous scales. Moreover, by cancelling the opera-
tion, the IFM only needs to be called at the original image
scale during inference, even though it is still required during
training to calculate the multi-scale loss.

4.2. Details of Key Modules

Bi-LSTM sub-NNs Recall that the weights µ and ω corre-
spond to two distinct properties of inverse kernels, namely
size and shape, respectively. Their dependency on image
scales also differs significantly. Therefore, rather than use
a single bi-LSTM sub-NN to predict µ and ω jointly, we
use two parallel bi-LSTM sub-NNs for separate predictions.
Both sub-NNs share the same structure, consisting of con-
volutional LSTM cells [45] arranged in two paths for fine-
to-coarse and coarse-to-fine estimations in opposite direc-
tions. Each LSTM cell takes a cell state and a hidden state
as input and outputs updated states. The input cell state is
defined as the features extracted by the U-Net, while the in-
put hidden state for the next scale is set to the output one
from the previous scale, forming a cross-scale connection.
Weight predictors To convert the output features from the
bi-LSTM sub-NNs to the weights µ and ω, two 1× 1 con-
volutional layers are applied, respectively. For predicting
µ, the Softmax function is used to impose non-negativity
and `1-normalization constraints. Such a soft relaxation of
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Figure 1: Architecture of proposed INIKNet for SIDD.

weights µr,i,j from 0, 1 to [0, 1] not only makes training
easier, but also improves the representation accuracy of in-
verse kernels by including the use of additional atoms. This
can be useful when the inverse kernel sizes fall between the
gaps among the predefined non-consecutive atom sizes.
INR models of kernel atoms The MLPs used for INR have
a structure similar to those in [46]. They comprise three
fully-connected (FC) layers separated by a Sine activation
function with a learnable frequency parameter that controls
frequency content. The 2D coordinates are first mapped to a
high-dimensional space and then projected to single values.
One difference from [46] is that we first transform spatial
coordinates to polar coordinates for slight improvement.
IFM for deblurring The IFM first calls the learned MLPs
to generate all kernel atoms {vrn}n,r and then calculates the
feature tensors f [n, r] = vrn ∗ y. Afterward, Eq. (8) is
implemented by simple entry-wise product and summation
operations on the tensors f ,µ,ω.

4.3. Training Loss

In addition to the `2 loss LMSE defined by mean squared
error (MSE), two loss functions often seen in image re-
covery are also used for training, including the frequency-
domain loss LFD [6] defined as the `1 distance in the fre-
quency domain, and the Learned Perceptual Image Patch
Similarity (LPIPS) loss LLPIPS [57] predicted by a pre-

trained NN. These three loss functions measure deblurring
quality in the spatial, frequency and feature (perceptual) do-
mains, respectively. The total loss is then given by

L =
∑
p

L(p)
MSE + λ1L(p)

FD + λ2L(p)
LPIPS, (10)

where p denotes the index of the pth scale, and λ1, λ2 are
empirically set to 0.1. Ground-truth images are downsam-
pled accordingly for the supervision at different scales.

5. Experiments

Datasets and metrics Following [2, 41], we train models
on two widely-used datasets, DPDD [2] and LFDOF [41],
respectively. To assess their generalization performance, we
also evaluate these models on two more datasets, RTF [7]
and RealDOF [21]. Three quality metrics are used for
quantitative evaluation: Peak Signal to Noise Ratio (PSNR,
measured in dB), Structural SIMilarity index (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) [57].
The model complexity is measured by both the number of
parameters and the inference time on a 640 × 640 image
using an NVIDIA 2080Ti RTX GPU.
Implementation details Throughout the experiments, we
employ 8 scales and 10 INR-based atoms per scale: R = 8
andN = 10. We use atoms of sizes 1×1, 3×3, · · · , 15×15,



where the 1 × 1 atom is fixed as a delta kernel for model-
ing in-focus regions. The frequency parameters of the sine
activation functions in all INR models are initialized by ran-
dom sampling from [2, 16]. We call Adam for training, with
4 × 105 iterations and a batch size of 4. We start with an
initial learning rate of 2×10−4 and halve it every 105 itera-
tions. Random flipping, rotation, and cropping (to 256×256
pixels) are performed for training data augmentation.

5.1. Performance Evaluation

Compared methods We select 9 NN-based SIDD methods
for comparison, including the DPDNet [2], AIFNet [41],
IFANet [21], KPAC [47], GKMNet [36], MDP [1], DRB-
Net [40], Restormer [53], and MPRNet [26] trained in [23]
with a misalignment-robust scheme. The experimental re-
sults of the compared methods are reported either from
their original papers or obtained by using their released pre-
trained models and codes. AIFNet is a model trained on
LFDOF with the additional use of SYNDOF for its DME
step. To compare its performance on DPDD, we retrain
it using both DPDD and SYNDOF. DRBNet is a model
trained on LFDOF and fine-tuned on DPDD. For a fair com-
parison, we retrain it on both datasets, respectively.
Evaluation on DPDD and LFDOF Table 1 presents the
quantitative results on DPDD and LFDOF. Our INIKNet
performs the best in PSNR on DPDD and in all three metrics
on LFDOF, despite using a lightweight model whose pa-
rameter number is the second smallest and around 13.2% of
that of Restormer, a general restoration model. Compared
to the latest SIDD-specified MRPNet model [23], INIKNet
achieves over 0.3 dB PSNR improvement on DPDD while
having only about 10% parameters to learn. Similar re-
sults are observed in the comparison with DRBNet, indi-
cating that the performance gain of INIKNet comes from
the design of NN structure rather than the increased model
size. Though INIKNet is slightly larger than GKMNet, the
smallest model, it achieves noticeably better performance.
Compared to KPAC that uses dilated convolutions to mimic
inverse kernels, INIKNet performs significantly better. In
conclusion, the superiority and compactness of INIKNet
demonstrate the effectiveness of its architecture design.
Generalization analysis on RealDOF and RTF The re-
sults of the DPDD/LFDOF-trained models evaluated on Re-
alDOF and RTF are listed in Table 2. Our DPDD-trained
INIKNet shows good generalization to different datasets
and achieves the best performance on both RealDOF and
RTF in all three metrics. The LFDOF-trained INIKNet is
the top performer on RealDOF and achieves the best SSIM
score on RTF, as well as the second-best scores in PSNR
and LPIPS. Though AIFNet performs better in PSNR and
LPIPS, it requires an additional dataset for DME and is
much larger than INIKNet. In summary, INIKNet exhibits
superior generalizability over other compared models.

Model DPDD LFDOF #Params
(106)

Time
(sec.)PSNR SSIM LPIPS PSNR SSIM LPIPS

DPDNet 24.348 0.747 0.277 - - - 32.25 1.430
AIFNet 24.213 0.742 0.309 29.677 0.884 0.202 41.55 0.276
IFANet 25.366 0.789 0.217 29.787 0.872 0.156 10.48 0.063
KPAC 25.221 0.774 0.226 28.942 0.857 0.174 2.06 0.037

GKMNet 25.468 0.789 0.219 29.081 0.867 0.171 1.41 0.129
MDP 25.347 0.763 0.268 28.069 0.834 0.185 46.86 3.317

DRBNet 25.485 0.792 0.254 30.253 0.883 0.147 11.69 0.085
MPRNet 25.730 0.792 0.232 - - - 20.10 1.161

Restormer 25.980 0.811 0.178 - - - 26.10 0.672
INIKNet 26.055 0.803 0.185 30.293 0.886 0.132 1.98 0.228

Table 1: Quantitative results on DPDD/LFDOF. Bold for
best performers and underline for second-best performers.

Model RealDOF RTF #Params
(106)PSNR SSIM LPIPS PSNR SSIM LPIPS

Tr
ai

ne
d

on
D

PD
D

DPDNet 22.870 0.670 0.425 23.608 0.591 0.296 32.25
AIFNet 23.093 0.680 0.413 24.041 0.758 0.289 41.55
MDP 23.500 0.681 0.444 24.012 0.738 0.312 46.86
KPAC 23.975 0.762 0.338 24.618 0.777 0.236 2.06
IFANet 24.712 0.748 0.306 24.924 0.801 0.227 10.48

GKMNet 24.254 0.732 0.392 24.970 0.789 0.261 1.41
DRBNet 24.884 0.751 0.376 24.463 0.773 0.311 11.69
MPRNet 24.541 0.736 0.339 24.588 0.788 0.304 20.10

Restormer 25.091 0.762 0.285 24.212 0.821 0.224 26.10
INIKNet 25.231 0.765 0.287 25.450 0.834 0.215 1.98

Tr
ai

ne
d

on
L

FD
O

F IFANet 22.504 0.669 0.483 26.437 0.838 0.238 10.48
KPAC 22.550 0.671 0.457 25.959 0.803 0.230 2.06

AIFNet 22.623 0.667 0.461 27.552 0.882 0.176 41.55
GKMNet 23.609 0.721 0.408 26.985 0.856 0.246 1.41

MDP 22.726 0.680 0.453 25.580 0.809 0.228 46.86
DRBNet 22.910 0.691 0.437 26.717 0.853 0.200 11.69
INIKNet 23.810 0.724 0.356 27.401 0.885 0.179 1.98

Table 2: Quantitative results on RealDOF/RTF. Bold for
best performers and underline for second-best performers.

Qualitative comparison We compare INIKNet with some
SIDD-specified competitors on DPDD and LFDOF via vi-
sual inspection. See Fig. 2 for some deblurred images on
four datasets, where complex textures such as those on wire
fence and branches are successfully recovered by INIKNet.
See also Fig. 3 for some results on the CUHK dataset [43].
While most methods fail under large blur, ours yields more
visually satisfying results. These findings demonstrate that
our INIKNet performs well in terms of visual quality.

5.2. Ablation Studies and Analysis

Ablation studies We construct several variants of INIKNet
and list their results on two datasets in Table 3.
Non-MS Dict: We drop the multi-scale structure of the dic-
tionary and instead use an individual INR model for each
dictionary atom at each scale (thus yielding a larger model
size). A noticeable performance degradation occurs. This
is because the multi-scale structure of the INR-based dictio-
nary imposes structural regularization to reduce overfitting.
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Figure 2: Results on using models trained on DPDD (left part) and LFDOF (right part). Zoom-in for better views.

Model RealDOF RTF
PSNR SSIM LPIPS PSNR SSIM LPIPS

Non-MS Dict 24.916 0.749 0.310 25.136 0.809 0.254
Non-INR Dict 25.058 0.754 0.303 25.237 0.819 0.226
Unidirectional 25.099 0.753 0.294 25.305 0.824 0.227

Original INIKNet 25.231 0.765 0.287 25.450 0.834 0.215

Table 3: Results of baseline models trained on DPDD.

Non-INR Dict: When the INR-based dictionaries are re-
placed by the plain ones, where each base atom vn is
defined as a learnable matrix and bi-linearly upsampled
to form the multi-scale dictionary, the performance of
INIKNet decreases. This is probably because the frequency
content for the atoms generated by plain upsampling are
limited, so do their generated inverse kernels.

Unidirectional: To simulate an unidirectional scale recur-
rent mechanism (e.g. [36]), we replace the bi-LSTM with
double unidirectional LSTMs (for keeping the model size).
The output from the last scale is attached to the input of the
current scale for additional information. Such a scheme for
coefficient prediction results in some performance degrada-
tion, highlighting the effectiveness of our proposed duplex
scale-recurrent framework.

Visualization of coefficients and atoms The coefficient
maps µ and ω are visualized in Fig. 4. We can see that the
regions with larger blur amount tend to have larger coeffi-
cients µ assigned to larger inverse kernels, and vice versa.
In comparison, the coefficients ω are more spatially similar
(gray), consistent with the prior of spatially-similar shapes
of inverse kernels. We use Fig. 5 to visualize some learned
(non-)INR-based atoms in both the spatial and Fourier do-
main. The INR-based atoms within the same scale con-
tain diverse patterns with varying frequencies and orienta-
tions, and meanwhile they have similar shapes across scales.
Compared to the non-INR-based ones, the INR-based atoms
encode richer spatial structures and frequency contents. In-
terestingly, the INR-based atoms exhibit strong isotropy,
which is likely due to the isotropy of defocus PSFs (so do
their inverse kernels). All these properties of the INR-based
atoms enable our INIKNet to effectively represent and pre-
dict inverse kernels for spatially-varying defocus blur.

6. Conclusion
This paper presented an interpretable end-to-end SIDD

approach, which learns a duplex scale-recurrent NN to pre-
dict INR-driven dictionary-parameterized inverse kernels of
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Figure 3: Results on CUHK dataset (without ground-truths) using models trained on DPD. Zoom-in for better views.

Input µ1 µ4 µ7 ω1 ω5 ω9

Figure 4: Visualization of µ maps and ω maps.

Non-INR atoms in spatial domain Non-INR atoms in Fourier domain INR-based atoms in spatial domain INR-based atoms in Fourier domain
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Figure 5: Visualization of bilinearly upsampled (non-INR-based) atoms and INR-based atoms in two domains.

defocus blur and applies them to deblur images. Our pro-
posed approach introduced effective structural regulariza-
tion on inverse kernels for good generalization, which is

based on the shape similarity of defocus PSFs over an im-
age. The resulting effective and light-weight model has
demonstrated its advantages by extensive experiments.
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