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Abstract—Video denoising aims at removing noise from noisy
video frames and meanwhile preserving their structures and
details. It is a challenging task, as both noise and video struc-
tures/details correspond to high-frequency components of a noisy
video which are hard to distinguish. This paper proposes a deep
video denoiser using a progressive decomposition process with
conditional invertibility. Noisy video frames are first decomposed
into two latent codes via a forward process of conditional invert-
ible coupling layers, where one latent code carries the maximal
information regarding the noise-free reference frame while the
other encodes the information regarding noise, misalignment and
content difference. The clean video is then reconstructed from
the latent codes of noise-free frames using the reverse pass of the
coupling layers. To improve the robustness to variant noise levels,
the coupling layers are conditioned on noise level. In addition,
memory units are introduced to the conditioned coupling layers
to better exploit temporal correlation among frames for feature
disentanglement. Experiments on two benchmark datasets have
demonstrated the effectiveness of our method.

Index Terms—Video Denoising, Video Restoration, Coupling
Layers, Feature Disentanglement

I. INTRODUCTION

Video is a prevailing digital media for recording and
disseminating information in daily life. Noise corruption is
inevitable during video acquisition, transmission and storage,
causing noticeable degradation of visual quality of a video.
Video denoising is to remove noise from a video, which is an
important step in video processing and valuable to the fields
of digital photography and social multimedia [1], [2].

Video denoising can be naively done by applying an image
denoiser (e.g. [3]-[8]) to each frame individually. However,
this cannot make full use of the temporal information along
adjacent frames. A dominant approach is using multiple con-
secutive noisy frames to restore the reference frame, which can
be done using patch-based methods [9]-[12] or motion com-
pensation (MC)-based methods [1], [13], [14]. Patch-based
methods exploit the recurrence of spatio-temporal patches and
denoise them by a handcrafted process or a learned deep neural
network (DNN). For instance, to denoise a group of similar
spatio-temporal patches, V-BM4D [10] uses a joint transform
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and thresholding process, VNLB [9] utilizes an empirical
Bayes estimator, and VNLNet [11] leverages a simplified
DnCNN [3]. In general, patch-based methods need to search
similar counterparts within a volumetric neighborhood for each
noisy patch for denoising and stack the denoised patches back
to obtain a clean image. This often results in inconsistency on
overlapping patch areas and is time-consuming.

Different from patch-based methods, MC-based methods
operate on adjacent frames aligned by MC. For instance,
DVDNet [13] uses optical flow to warp adjacent frames to
the reference frame and then applies spatio-temporal deep
denoising. FastDVDNet [14] improves the speed of DVDNet
by avoiding explicit optical flow prediction. MMNet [1] si-
multaneously recovers multiple clean frames from consecutive
noisy frames. ER2R [15] combined the image-based R2R
loss [16], [17] with MC for self-supervised video denoising.
The performance of MC-based methods can be noticeably
affected by the misalignment caused by MC estimation error
or content difference. For improvement, PaCNet [18] incor-
porates patch matching into DNN-based video denoisers to
merry the advantages of the both.

How to remove noise while keeping original video details is
a key problem for video denoising. Since both random noise
and video structures (e.g. textures and edges) are the high-
frequency parts of a noisy video, it is difficult to distinguish
noise from various video structures. Currently, there is still
much room for improvement in existing methods. In this
paper, motivated by existing invertible image processing tech-
niques [7], [19], we interpret video denoising as a progressive
decomposition process with conditional invertibility. Initially-
aligned adjacent video frames are passed through a series
of conditional invertible coupling layers [20] in a forward
process, by which the frames are progressively decoupled
into two latent representations: one encoding the maximal
information shared by latent clean video frames, and the other
encoding the information of noise and misaligned content.
The noise-free video is then reconstructed from the latent
representation associated with latent clean video frames, using
a reverse pass of the coupling layers.

There are two branches in each conditional coupling layer,
respectively responsible for extracting common features and
noise/misaligned content. Using such coupling layers as the



basic blocks not only ensures the information-losslessness of
feature extraction to benefit the reconstruction process, but also
enables rich interactions between the two branches for feature
disentanglement. In addition, we incorporate the convolutional
Long short-term memory (ConvLSTM) [21] into the coupling
layers to better capture temporal information in the deep
feature domain, and we also condition the coupling layers on a
noise level map estimated by a sub-DNN, so as to improve the
model’s ability in handling videos with variant noise levels.

To summarize, this paper proposes a deep learning-based

video denoising method. Its contributions are listed as follows:

o A DNN for video denoising is proposed with a progres-
sive decomposition framework with conditional invertibil-
ity. It separates the noise and misalignment information
from clean video features in the forward process and
reconstructs the clean video in the reverse process, with
an information-losslessness property.

e ConvLSTM is incorporated into the coupling layers to
further capture temporal information for better feature
disentanglement during the progressive decomposition.

« Noise level maps are incorporated into the coupling layers
as a conditional input, enabling a single learned DNN
model to handle videos with variant noise levels.

II. PROPOSED METHOD
A. Preliminary on Coupling Layers

Our proposed DNN is built upon invertible coupling lay-
ers [20]. For better understanding, we first briefly introduce
coupling layers. A coupling layer provides a specific double-
branch form of the forward process for converting input to
output so that it can replicate the input simply through its
reverse mode. Such an invertibility allows the processing to
be information-lossless. As shown in Fig. 1, a coupling layer
first divide its input X into two parts X; and X5 at channel
dimension. Then X; and X are transformed and interacted
with each other by some function set {1, ¢2, 91,92} in
a coupling way, leading to Y; and Y, which are finally
concatenated as Y. Such steps form the forward process that
can be expressed as follows:

X1, X5 = split(X), (1)

Y1 = X1 © exp(¢1(X2)) + ¢1(X2), (2)
Y = Xo © exp(¢2(Y1)) + ¢2(Y1), 3
Y = concat(Y1, Y>), )

where © denotes element-wise multiplication. The interactive
functions ¢1, ¢2, 11,12 are implemented by arbitrary DNN
sub-networks and their definitions do not affect the invertibility
of the coupling layer. The reverse process of the coupling layer
can then be simply done as follows:

Y1, Ys = split(Y), (5)
X2 = (Y2 —12(Y1)) @ exp(¢2(Y1)), (6)
X1 = (Y1 — 1(X2)) @ exp(¢1(X2)), (N
X = concat( X7, X5), (8)

where © denotes element-wise division.

Fig. 1. Structure of a standard coupling layer.

B. DNN Architecture

The proposed DNN for video denoising is called IVDNet
(Invertible Video Denoising Network) and outlined in Fig. 2. It
aims at obtaining a denoised reference frame F} € RW*x3
from given consecutive noisy frames { F: }'=iT™ ¢ RW>Hx3,
where m is the number of previous/subsequent adjacent frames
which is set 2 in our practice. The IVDNet consists of a frame
alignment block (FAB), a motion refinement block (MRB), a
noise estimation block (NEB), and several conditional cou-
pling layers (CCLs). In inference, the IVDNet performs a for-
ward pass for the disentanglement of noise/image features and
then calls a reverse pass for noise-free frame reconstruction.

In the forward process, the input frames first sequentially
pass through the FAB and the MRB for initial frame alignment
and motion refinement, respectively. Then, the aligned frames
are down-sampled by pixel unshuffle and divided into two
parts as the input of the subsequent double-branch coupling
layers. Finally, the IVDNet extracts and decouples features
through a series of coupling layers conditioned on the noise
level map estimated by the NEB, and then it outputs the latent
feature map y' and noise latent code z. The whole forward
process can be expressed as follows:

) =gtz 9)

CCLY, (MRB(FAB({F}
where N € R¥XW denotes a spatially-variant noise map
estimated by the NEB, and CCLY, (-) denotes k sequentially-
connected CCLs conditioned by IN, with k set to 8 in practice.

Using the progressive decomposition in the forward process,
the maximal information shared by adjacent frames (which are
likely to correspond to clean video frames) are encoded in the
latent feature y*, while the information of noise, misalignment
and content difference is encoded in the latent feature z. To
reconstruct a clean video in the reverse pass, we first cancel
the effect of the latent code by zeroing it during inference but
replacing it with a random variable 2 sampled from a Gaussian
distribution during training for data augmentation and noise-
injection-based regularization. Then, we send the latent repre-
sentation y® and £ back to the same coupling layers in their
reverse mode, and concatenate the outputs with pixel shuffle
upsampling. Finally, the reconstructed frames { F}/=/""™ with
noise removal and full alignment to the reference frame are
obtained. We average these denoised frames to obtain the final
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Fig. 2. Outline of proposed IVDNet for video noise removal.

denoising result of the current (reference) frame. Accordingly,
the reverse process can be expressed as follows:

Avg(CCLL, ([y', 2])) — F}, (10)

where Avg denotes averaging along the frame dimension, and
CCL™! denotes the CCL in its reverse mode.

C. Frame Alignment and Motion Refinement

Compared to image denoising, video denoising can uti-
lize the similar information of adjacent frames to assist the
restoration of the current reference frame. However, due to
the motion of objects and the jitter of the capture device,
video frames are often not well aligned. To better make
use of spatio-temporal information among adjacent frames,
we borrow the idea from SpyNet [22], a lightweight flow-
based DNN, to construct the FAB for frame alignment in our
IVDNet, which calculates the optical flow by combining the
classical spatial pyramid with deep learning, so as to achieve
a good balance between accuracy and speed. In addition, the
MRB with its structure shown in Fig. 2 (b) is introduced to
further refine motion vectors for better alignment. It consists of
two convolutional (Conv) layers and one GDN [23] followed
by two deconvolutional (Deconv) layers and one IGDN [23].
Briefly, the MRB encodes the corrupted motion vector into a
compact representation, and then obtains the refined motion
vector by a decoding process.

With the FAB and MRB modules, noisy frames are almost
aligned in the feature domain, but there will inevitably exist
mis-compensated areas due to estimation errors or content
differences. Such misaligned information is handled by the
subsequent progressive decomposition process with the CCLs
described in the next subsection.

D. Conditional Coupling Layer

Each CCL has two branches, and the aligned frames are
divided into two parts as its input; see Fig. 2(a). The two
branches are responsible for extracting common features and
noise/misaligned content information, respectively. Using in-
vertible coupling layers not only ensures the information-
losslessness of feature extraction to benefit the reconstruction
process, but also enables rich interactions between the two
branches for feature disentanglement. To better extract deep
features and temporal information, a five-layer DenseBlock
(see Fig. 2(c)) and ConvLSTM (see Fig. 2(d)) are selected as
the basic functions ¢1/11 and ¢o/ 9 in the coupling layers
respectively. Furthermore, the noise level maps estimated by
NEB are incorporated into the CCLs as conditional input,
enabling the model to handle videos with various noise levels.

Noise estimation Noise level is an important prior for
video denoising. To handle videos with different noise levels,
a common solution is to learn a specific model for each noise
level, thus requiring multiple models. By incorporating a noise
level map into coupling layers as the conditional input, our
IVDNet can handle videos with various noise levels using a
single model. We define the NEB as the noise level estimator
of [24], which utilizes the low-rank characteristic of non-local
similar blocks and the eigenvalues of their covariance matrix to
estimate the noise level. Interested readers are referred to [24].

ConvLSTM Temporal information existent in neigh-
boring frames can provide additional information to boost
the video denoising performance. The ConvLSTM [21] is
good at processing temporal information. We incorporate a
simplified ConvLSTM module (see Fig. 2(d)) into CCLs for
better utilizing the temporal dependencies in adjacent video
frames in the deep feature domain to improve prediction.



E. Loss Function

For the t" noisy frame, let F!, F} denote the corresponding
ground-truth clean frame and the denoised frame, respec-
tively. The overall training loss function £ consists of an ¢;-
reconstruction loss and a perceptual loss:

L= |Fj—Fi+AY_|[0(F)) — ®(F)|2, (D)
t t

where @ is a set of VGG-16 layers [25], and A is set to 0.5
in our practice. Such losses are common for image denoising.
The loss function indeed encourages the latent code of noise-
free frames to reconstruct a noise-free frame. Together with the
fact that the CCLs are invertible without information loss nor
information gain, it is expected the latent codes can perform
feature disentanglement effectively.

III. EXPERIMENTS

The experiments for performance evaluation are conducted
on two widely-adopted benchmark datasets: DAVIS [26] and
Set8 [13]. Following the experimental configurations of [13],
[14], we train our IVDNet on the DAVIS training set and
evaluate it on the DAVIS test set and Set8, respectively.
Six video denoising methods are used for performance com-
parison, including VNLB [9], V-BM4D [10], VNLNet [11],
DVDNet [13], FastDVDNet [14] and PaCNet [18].
Implementation details The training set consists of multiple
input-output pairs, generated by adding Gaussian white noise
with noise levels o € [5,50] (randomly drawn from a uniform
distribution) to cropped clean patches of size 128 x 128. The
test set is generated by adding Gaussian white noise of noise
level o = 10, 20, 30,40, 50 to clean frames, respectively. The
model weights are initialized by the Xavier [27] method. The
Adam [28] optimizer is called with a learning rate of le-4 for
the first half epochs and le-5 for the second half. The batch
size is set to 1. The implementation is based on PyTorch and
run on a single NVIDIA GeForce GTX 2070Super GPU. The
code will be made public on our GitHub.

A. Results and Analysis

Quantitative comparison in performance and complexity
The quantitative results on two test datasets in terms of Peak-
Signal-to-Noise Ratio (PSNR) are listed in Table I and Table II
respectively for comparison. It can be seen that our proposed
IVDNet achieved the overall best results both on the DAVIS
and Set8 datasets, demonstrating its effectiveness. Particularly,
IVDNet is the best performer on four out of five noise levels.

The number of floating-point operations (FLOPS) of our
IVDNet is also compared to its top competitor PaCNet, which
is 394G over 1340G. In other words, our model also has its
advantage in terms of model complexity due to the use of
coupling layers, whose number of FLOPS is around only 1/3
of that of the PaCNet.

Qualitative analysis comparison See Fig. 3 for the output
features of several CCLs. Compared to the features extracted
for noise-free frames, the features extracted for noise compo-
nents contain significantly heavier noise. In addition, features

TABLE I
PSNR(DB) RESULTS ON DAVIS TEST SET. BEST (SECOND-BEST)
RESULTS OF EACH COLUMN ARE BOLDFACED ( UNDERLINED).

Method 0=10 0=20 0=30 0=40 o0=50 Average
VNLB 38.85 35.68 33.73 3232 31.13 3434
V-BM4D  37.58 33.88 31.65 30.05 28.80 32.39
VNLNet  35.83 34.49 - 32.32 3143 -
DVDNet  38.13 35.70 34.08 32.86 31.85 34.52
FastDVDNet 38.71 35.77 34.04 32.82 31.86 34.64
PaCNet 39.97 36.82 34.79 33.34 32.20 3542
IVDNet 39.88 36.82 34.96 33.58 3247 35.52
TABLE II

PSNR(DB) RESULTS ON SET8. BEST (SECOND-BEST) RESULTS OF EACH
COLUMN ARE BOLDFACED ( UNDERLINED).

Method =10 0=20 0¢=30 0=40 0=50 Average
VNLB 37.26 33.72 31.74 3039 29.24 3247
V-BM4D  36.05 32.19 30.00 28.48 27.33 30.81
VNLNet  37.10 33.88 - 30.55 29.47 -
DVDNet  36.08 33.49 31.79 30.55 29.56 32.29
FastDVDNet 36.44 33.43 31.68 30.46 29.53 3231
PaCNet 37.06 3394 32.05 30.70 29.66 32.68
IVDNet 36.62 3395 32.27 31.04 30.06 32.79

for noise-free frames contain less and less noise along the
network depth, while the ones for noise components contain
more and more noise. This demonstrated that our IVDNet can
effectively perform progressive feature disentanglement.

The qualitative evaluation is done by visually comparing
the denoised frames of different methods in Fig. 4. It can
be seen that our proposed IVDNet has advantages over other
methods to eliminate noise and maintain details. For instance,
our results can better preserve the detailed features of faces
and hands in the first sample than other compared methods.
The superiority of our qualitative results has verified that the
proposed progressive decomposition with conditional invert-
ible coupling layers do benefit the reconstruction process.

Part w.r.t. z Part wrt. yt

CCL #8 (Last)

CCL #1 CCL #3

Fig. 3. Visualization of the features associated to latent image representation
y? and to noise component z respectively, output by CCLs. The noise level
of the input image is 50. The latent features w.r.t. y* and the associated noise
components are of 12 and 48 channels respectively, and we show the first
three channels as RGB images.

B. Ablation Studies

To analyze the contribution of each key component in our
proposed IVDNet, we conduct ablation studies by forming the
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TABLE III
PSRN(DB) RESULTS OF BASELINES IN ABLATION STUDIES. BEST
RESULTS OF EACH COLUMN ARE BOLDFACED.

Baseline 0=10 0=20 0=30 o0=40 0=50 Average
w/o FAB 39.24 3639 3459 3325 3218 35.13
w/o MRB 39.49 36.61 34.80 33.47 3240 3535
w/o noise map 39.52 36.53 34.70 33.35 3226 35.27
w/o LSTM  39.56 36.63 34.78 33.45 3233 3535
Original 39.88 36.82 34.96 33.58 3247 35.52

following baseline models. (i) w/o FAB: The model is trained
without the FAB module. (ii) w/o MRB: The model is trained
without the MRB module. (iii) w/o noise map: The model
is trained without using noise level maps as the conditional
input in the CCLs. (iv) w/o CovnLSTM: The ConvLSTM
module in each coupling layer is replaced by a DenseBlock
of a similar size. The results of these baselines on the DAVIS
test set are listed in Table III. It can be seen that the original
IVDNet outperforms all the baselines with noticeable PSNR
improvement, which indicates the effectiveness of each key
component in our proposed model.

IV. CONCLUSION

In this paper, we proposed an effective DNN for video
denoising, which is built upon a progressive decomposition
process implemented by conditional coupling layers. The two
branches of the constructed coupling layers interact with each
other for feature refinement and disentanglement. Meanwhile,
they keep all available features for reconstructing the reference
frame, due to their invertibility. By incorporating ConvLSTM
into the coupling layers, our model can better capture temporal
information for disentanglement. In addition, an estimated
noise map is used to condition the coupling layers to better
handle videos with variant noise levels. In the extensive ex-
periments, our proposed DNN outperformed existing methods
both quantitatively and qualitatively.
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