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Image Desnowing via Deep Invertible Separation
Yuhui Quan, Xiaoheng Tan, Yan Huang*, Yong Xu and Hui Ji

Abstract—Images taken on snowy days often suffer from severe
negative visual effects caused by snowflakes. The task of removing
snowflakes from a snowy image is known as image desnowing,
which is challenging as image details are easily mistakenly treated
and thus may be significantly lost during snowflake removal.
Leveraging invertible neural networks (INNs), this paper presents
a deep learning-based method for single image desnowing, which
can remove snowflakes accurately while preserving image details
well. Interpreting desnowing as an image decomposition problem,
we propose an INN composed of two asymmetric interactive paths
for predicting a latent image and a snowflake layer respectively.
Such an INN is able to progressively refine the features of both
latent images and snowflake layers for disentanglement, while
retaining all information possibly relevant to latent image recon-
struction. In addition, an attentive coupling layer supervised by
snowflake masks is introduced to enhance feature dismantlement
and a coupling-in-coupling structure is developed for further
improvement. Extensive experiments show that, the proposed
method outperforms existing ones on three benchmark datasets
of synthetic and real-world images, and meanwhile it also shows
advantages in terms of model size and computational efficiency.

Index Terms—Image desnowing, Invertible neural networks,
Image separation, Deep learning.

I. INTRODUCTION

SNOW is a type of bad weather often seen in cold regions
at high altitudes and latitudes. Images taken on snowy

days are usually corrupted by falling snow in the form of
snowflakes; see Fig. 1 for some examples. The visual effects
caused by snowflakes not only affect the visual aesthetics
and perception of an image negatively, but also decrease the
performance of many downstream computer vision systems
that are sensitive to occlusion, e.g., object tracking [1] and
video surveillance [2]. Image desnowing aims at removing
snowflakes from a snowy image while preserving all image
details. Such a technique can see its applications in digital
photography and computer vision.

The formation of an image with snowflakes is complicated,
and there have been different formation models proposed in
existing studies; see e.g. [3]–[6]. In general, an observed
snowflake-corrupted image Is is composed of the latent image
Ic desired for applications and the corresponding snowflake
layer S containing all intensity (color) fluctuations caused by
snowflakes [3]. Single image desnowing is about recovering
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(a) Light snow (b) Normal snow

(c) Dense snow (d) Heavy snow

Fig. 1. Examples of images taken on snowy days.

Ic given only Is. It is a challenging inverse problem which
needs to locate all snowflakes accurately and recover all those
pixels occluded by snowflakes, while no other cues except the
single input snowy image itself can be exploited.

In the past, many methods (e.g. [7]–[11]) have been pro-
posed for single image desnowing, which handcrafted some
priors of snowflakes for snowflake detection and imposed
priors on latent images for recovering occluded image pixels.
As shown in Fig. 1, the physical properties of snowflakes vary
greatly in density, size, shape and translucency from image to
image, and even within the same image. For instance, some
snowflakes in motion even look more like streaks than flakes.
In addition, images of natural scenes may differ significantly
in appearance. Therefore, pre-defined priors on snowflakes or
images are usually too simple to handle snowy images of
complex scenes, and not adaptive to different images either.

In recent years, deep learning has become one promising
tool for single image desnowing; see e.g. [4]–[6], [12]–[15].
These deep learning-based methods train an end-to-end deep
neural network (DNN) that maps an image with snowflakes to
its corresponding snowflakes-free latent image. Although these
methods bring significant performance gains over traditional
methods, there is still much room for further improvement.
See Fig. 2 for an illustration. We can observe that it is still
difficult for existing methods to eliminate all visual effects of
snowflakes while preserving all image details. There is still
the need for developing desnowing methods that can win the
both in snowflake removal and image detail preservation.

A. Motivation and Main Idea

One approach to designing a DNN for single image desnow-
ing, e.g. [14], is to follow a pipeline of snowflake detection and
removal. However, the interaction between snowflake detection
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Fig. 2. Image desnowing results of different methods.

and snowflake removal is limited in such a two-stage scheme.
A better approach is to interpret image desnowing as an end-
to-end image separation procedure, i.e., separating the desired
snowflake-less image from the input one. Existing studies
such as [4], [5], [13] usually implemented such an image
separation process by progressively encoding an input image
into latent image-related features while discarding snowflake-
related features, and then reconstructing the latent image by
decoding its corresponding features. Though the typical DNNs
used in existing works (e.g. U-Net [4], [5] and ResNet [13])
may be able to extract rich features related to latent images,
there is no guarantee that these features provide complete
information for recovering all image details. As a result, the
possible loss of information in the encoding stage will have
negative impacts on the reconstruction in the decoding stage.
Even for the decoding stage, it may also omit important image
features for reconstruction.

To address the issues above, this paper interprets single im-
age desnowing as a progressive disentanglement and decom-
position process and leverages invertible coupling layers [17]
which guarantee that no information will be lost during feature
extraction and disentanglement. Based on coupling layers, we
propose a dual-path invertible neural network (INN), where
one path is used for snowflake layer extraction and the other
for latent image prediction; see Fig. 3 for an illustration. In
comparison to existing DNNs for image desnowing, using
coupling layers as the building blocks in our method not
only ensures the information-losslessness of feature extraction
to benefit the reconstruction process, but also enables rich
interactions between the two paths for feature disentanglement.
In addition, since an INN in its reverse mode can replicate its
input using its output, our approach can be viewed as implicitly
learning a formation model for snowflake-corrupted images.
Together with a reverse reconstruction loss, such an implicitly
learned formation model can bring further regularization.

There are another two techniques introduced in the proposed
dual-path INN for further performance improvement. One is a
coupling-in-coupling structure where coupling layers are not

coupling

  

  

  coupling coupling

Path for snowflakes

Path for clean image

Fig. 3. Basic idea of proposed INN for single image desnowing. The two paths
are asymmetric and interacting via feature fusion with a coupling process.

only between the two paths in the INN, but also used inside the
image path for better extracting image features. The other is
an attentive coupling layer supervised by snow masks, which
provides additional guidance for the identification of regions
of snowflakes for better feature disentanglement. Benefiting
from all its techniques, the proposed INN provides a com-
putationally efficient, light-weight, yet effective solution to
single image desnowing, with better performance than existing
ones on three datasets of both synthetic and real-world snowy
images. See Fig. 2 for visual illustration of one example.

B. Contributions

To summarize, the contributions of this paper are three-fold.
• We exploit deep invertible representation for single image

desnowing, by which information losslessness is achieved
during feature disentanglement for better preserving im-
age details during snowflake removal.

• A dual-path attentive INN with a coupling-in-coupling
structure is proposed for image desnowing, which shows
improvement over both standard INNs for image process-
ing and existing non-invertible DNNs for desnowing.

• An effective solution to image desnowing with state-of-
the-art performance, which shows its advantages over
existing ones in visual quality, quantitative performance,
and computational efficiency.

II. RELATED WORK

A. Image Desnowing with Handcrafted Filters

Traditional methods for single image desnowing are usually
based on a handcrafted filtering process. Xu et al. [18],
[19] applied the filtering guided by an edge map. Zheng et
al. [8] improved guided filtering using multiple clues for
guidance. Wang et al. [10] improved guided filtering based
on the principal direction of a patch and the sensitivity of
variance of color channels. Sparse coding is another often-
used technique for desnowing. Rajderkar et al. [20] modeled
a latent image and a snowflake layer by sparse representation
on two dictionaries respectively. The latent image is recovered
via sparse coding on the high-frequency image parts extracted
by bilateral filtering. Ding et al. [9] proposed to obtain a coarse
desnowed image via a guided `0 smoothing filter and refine
it via sparse regularization. Some methods use a two-stage
scheme: snowflake detection followed by image inpainting (or
called image error concealment [21]). Pei et al. [7] proposed to
detect snowflakes via thresholding high-frequency image parts
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and remove the snowflakes via inpainting occluded pixels.
Huang et al. [11] proposed to detect snowflakes with adaptive
median filtering. The latent image is then recovered via
sparse coding with spatially-varying reconstruction tolerances
estimated by a particle swarm algorithm.

All above methods are based on certain predefined priors
which are not adaptive to input images. Therefore, they do
not perform satisfactorily when there are large variations in the
appearance of snowflakes and the contents of natural scenes.

B. Image Desnowing via Deep Learning
In recent years, deep learning has been exploited for image

desnowing. One early work is Liu et al. [4] which proposed
a multi-stage DNN with two sequential modules: one for
recovering the areas obscured by translucent snowflakes, and
the other for estimating the remaining parts occluded by
opaque snowflakes. In addition, Liu et al. [4] released a dataset
for performance benchmarking. Li et al. [14] also built up a
dataset, and they constructed a DNN by sequentially connect-
ing a multi-scale convolutional neural network (CNN) used for
feature extraction and two stacked modified DenseNets [22]
used for snowflake detection and removal respectively. Li et
al. [15] proposed a generative adversarial network (GAN)
composed of a generator for latent images, a generator for
snowflake layers, and a discriminator for adversarial training.
Jaw et al. [13] also proposed a GAN for desnowing, where
the generator is a pyramidal hierarchical CNN with lateral
connections across different scales for more propositional
information and less computational time. Chen et al. [23]
proposed a DNN consisting of three parts: one part to predict
a snowflake mask by self-pixel and cross-pixel attention, one
part to remove snowflakes by the guidance of the predicted
snow mask, and one part to remove veiling effects.

Chen et al. [6] considered veiling effects in the formation
model of snowy images, based on which they designed a GAN
with three stages: removing veiling effects using an atmo-
spheric light prediction module motivated from dark chan-
nel prior [24], identifying snowflakes using three different-
scale sub-networks with multi-scale convolutional layers, and
removing snowflakes with partial convolutions. Further, they
contributed a benchmark dataset using their proposed im-
age formation model. More recently, Chen et al. [12] pro-
posed another dataset by considering the effects of streak-like
snowflakes. They proposed a hierarchical DNN [12] based on
dual-tree complex wavelet representation, with a contradictory
channel loss related to dark channel prior [24] and bright
channel prior [25] for image desnowing.

C. Video Desnowing and Related Techniques
In addition to single image desnowing, there are also some

works on desnowing a sequence of video frames; see e.g. [2],
[3], [26]–[30]. Video desnowing is relatively easier, as the
spatial-temporal redundancy among video frames provides
more cues for detecting snowflakes and for recovering latent
frames. Exploitation of such spatial-temporal cues is the focus
of video desnowing. For instance, the spatial-temporal redun-
dancy is exploited via statistical appearance models of snow-
streaks or snowflakes in [26], [27], [30], sparse representation

of consecutive frames in [2], [3], and low-rank approximation
of adjacent clean image layers in [28], [29]. These methods
cannot be directly called for single image desnowing. It is
worth mentioning that an asymmetric dual-path structure is
also used in the Slowfast network [31], a non-invertible DNN
to extract information from different temporal speeds for video
processing, where one path captures semantic information and
the other captures motion information. In comparison, our INN
extracts different layers from the image, with one path for the
snowflake layer and the other for the latent image layer.

D. Recovering Images Taken under Other Bad Weathers

In addition to image desnowing, there are extensive studies
on recovering images taken under other bad weathers. Deep
learning also has been widely used for such image recovery
tasks; see e.g. [32]–[39]. Among them, the task of image
raindrop removal from an image [33]–[36] shares similarities
with snowflake removal from an image. There are also some
studies on developing a universal model for recovering images
taken under different bad weathers, e.g. [5], [16]. While these
methods can be applied for image desnowing with minor
modifications, they are not specifically designed for single
image desnowing. As a result, they do not perform as well as
the ones specifically designed for image desnowing, as shown
in existing studies (e.g. [12]). In addition, compared to the
DNNs used in these existing works which do not guarantee the
information-losslessness over different network stages, ours
is invertible with no information loss across network stages.
Such a property allows our DNN to remove snowflakes more
effectively while preserving image details better than these
DNNs used in other tasks.

E. Invertible Neural Networks for Image Processing

INNs have been exploited in many image processing tasks;
see e.g., image rescaling [40], hiding [41], denoising [42],
super-resolution [43], inpainting [44], smoothing [45], decol-
orization [46], low-light enhancement [47], and high dynamic
range reconstruction [48]. To the best of our knowledge, this
work is the first one to exploit INNs for removing particles
from images taken under bad weathers.

In most existing works, the INNs for image recovery are
used as either a generative model in normalizing flow (e.g.,
[44]) or a shared-weight auto-encoder with invertibility (e.g.,
[40], [42], [45]). The latter one is related to our method. The
pipeline of these methods usually first applies a forward pass
as an encoder to disentangle layers in a latent code space, then
removes undesired layers by zeroing their latent codes, and
lastly applies a backward process as a decoder to obtain the
desired image. Note that once the latent code is mistakenly
zeroed, the related important image information cannot be
retrieved back in the backward process. In comparison, the
INN we propose for desnowing does not explicitly decompose
latent codes at its intermediate output, but directly maps an in-
put image to two layers. From the perspective of DNN design,
such an architecture is more efficient in feature expression.
In addition, some improved INN blocks are proposed in our
method for further improvement.
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III. BASIC BUILDING BLOCKS

This section describes the basic building blocks employed
in the proposed INN for image desnowing. INNs are first
proposed for unsupervised learning to model complex data
distributions by simple mean-field distributions of exponential
family under some transform [17], [49]. An INN f : RN →
RN can be viewed as a deep bijective (i.e. one-to-one)
mapping whose inverse f−1 : RN → RN can be directly
called by a backward process. In other words, an INN provides
a forward process to transform an input to some output, which
can replicate the input via a reverse mode of the network.

There are different architectures for an INN. In this paper,
we consider the so-called coupling layers [17] for constructing
the INNs used for image desnowing. See Fig. 4 for the diagram
of a standard coupling layer, which can be used in either the
forward mode or the reverse mode. In the forward mode, the
coupling layer first splits the input data X into two parts:
X1 and X2, then transforms them to Y1 and Y2 respectively,
by the learned functions F , G, H in a coupling way, and
finally concatenates Y1 and Y2 as its output Y . Such a forward
process can be expressed by

[X1,X2] = split(X), (1)
Y1 = X1 + F(X2), (2)

Y2 = X2 � exp(G(Y1)) +H(Y1), (3)
Y = concat(Y1,Y2), (4)

where both the split and concatenation operations are done
along the channel dimension. The functions F ,G,H above
can be implemented by arbitrary DNN modules for effective
feature processing, and the invertibility of the coupling layer
is independent from their definitions. The role of (2) and (3)
is to introduce complicated nonlinear transforms defined by
F ,G,H for generating effective deep features, while guar-
anteeing the invertibility of the whole process to keep all
information. The invertibility of the process comes from that,
at each step we keep a copy of one split of input, and
then form a new representation by combining its non-linearly
transformed result to the other split via a linear form. Then,
the other split can be recovered by solving the linear equations
with the given split copy. Concretely, the coupling layer in its
inverse mode can revert the above process as follows:

[Y1,Y2] = split(Y ), (5)
X2 = (Y2 −H(Y1)) � exp(G(Y1)), (6)

X1 = Y1 −F(X2), (7)
X = concat(X1,X2), (8)

where � denotes element-wise division.
For invertible down-sampling layers, Haar Transform (HT)

is an often-used one in INNs. A standard HT layer reduces
the spatial size of an input image while increasing the channel
number by a stride-2 convolution with four kernels includ-
ing LL>,HL>,LH>,HH>, where L = 1√

2
[1, 1]> and

H = 1√
2
[1,−1]>. The low-pass filter LL> acts as the average

pooling on feature maps while the three high-pass filters
capture edge-like information with different orientations. The
reverse mode of a HT layer is conducted via Inverse Haar
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Fig. 4. Structure of a standard coupling layer.

Transformation (IHT), implemented by transposed convolution
with the aforementioned four kernels of HT.

For an INN constructed by coupling layers and HT layers,
its forward pass can be done by enabling the forward modes
of all these layers. Similarly, its reverse pass can be done by
just switching their reverse modes on.

IV. INVDSNET FOR SINGLE IMAGE DESNOWING

A. Outline of Architecture

The proposed INN for single image desnowing, named as
InvDSNet for convenience, aims at decomposing a snowy
image Is ∈ RH×W×3 into the desired latent image Ic ∈
RH×W×3 and snowflake layer S ∈ RH×W×3. See Fig. 5(a)
for the outline of our InvDSNet. As an INN is an one-to-one
mapping, the InvDSNet takes two copies of the snowy image
as its input, making the input and output have the same size.

The InvDSNet is composed of five blocks: two Coupling-in-
Coupling (CIC) encoding blocks (EBs), an Attentive Coupling
Block (ACB), and two CIC decoding blocks (DBs). That is,

CIC-DB×2(ACB(CIC-EB×2([Is, Is])))→ [Ic,S], (9)

where ×K denotes the repeat of a block for K times. The
reverse process is simply done by a backward process:

CIC-EB×2(ACB(CIC-DB×2([Ic,S])))→ [Is, Is], (10)

with the reverse modes on all modules turned on.
Each block in InvDSNet has two inputs and also two out-

puts, with two processing paths. In other words, the InvDSNet
is a dual-path DNN with two paths for separating the latent
image and the snowflake layer respectively from the snowy
image. Based on coupling layers, the features along one path
interact with that of the other path, and carry all information
fed from previous blocks through next blocks. The InvDSNet
can also be interpreted from the perspective of multi-task
learning where one task for extracting the latent image layer
and the other for extracting the snowflake layer. Such two tasks
are highly correlated to each other with a strong constraint, i.e.,
the composition of these two layers should replicate the input
image. Such a constraint between two tasks is achieved by the
invertibility of InvDSNet.

B. Coupling-in-Coupling Block

As shown in Fig. 5(a), a CIC EB takes two feature tensors
as input, one for the latent clean image and the other for the
snowflake layer. As a snowflake layer usually has much lower
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Fig. 5. Outline of proposed InvDSNet for single image desnowing.

complexity than a clean image in terms of image content,
each CIC EB processes its two inputs using two paths of
different lengths respectively. The shorter path, which is for
the snowflake layer, contains a HT layer for downsizing and
successive M coupling layers for feature processing. The
longer path, which is for the latent image, contains a HT
layer and successive N + M coupling layers. Here the M
successive coupling layers are shared between the two paths
for progressive feature fusion and refinement. The additional
N coupling layers in the path for latent images aim at
improving the effectiveness of image feature extraction for the
separation process. Note that as each of the successive M or N
coupling layers uses the same split ratio in InvDSNet, the pair
of the concatenation operation in the previous coupling layer
and the split operation in the current coupling layer equals to
an identity mapping, which are thus omitted in Fig. 5(b). The
split ratio is set to 1/3 for the successive N coupling layers
and 1/1 for the successive M coupling layers. Regarding the
functions F ,G,H in each coupling layer, we use the residual
block [50] shown in Fig. 5(c) for facilitating training and
enhancing feature flow.

C. Attentive Coupling Block

Attention mechanism [38], [51], [52] is introduced to im-
prove the efficiency of snowflake layer separation in the latent
feature space, which is implemented by inserting an ACB
in the middle layer of InvDSNet. An ACB is a coupling
layer for ensuring the invertibility of InvDSNet, but with
different definitions of F ,G,H from the ones used in CIC
blocks; see Fig. 5(b)(c)(d). More specifically, the F ,G,H

(a) Snowy image (b) Attention map AF (c) Heat map

Fig. 6. Attention map generated by ACB in InvDSNet. The heat map is plotted
by highlighting the regions of the snowy image according to the attention map.

in ACB share the same structure, which consists of four
consecutive Conv+ReLU layers and a Conv+Sigmoid layer.
The third Conv+ReLU layer outputs a feature tensor denoted
by F , which is passed to the subsequent layers to form an
attention map A. The generation of A will be supervised
during training; see the next subsection. After A is obtained,
the attention is done by outputting an attentive feature tensor
F̃ = F � A. There is also a skip connection to the last
layer for better information fusion and propagation. See Fig. 6
for the visualization of attention maps generated in the ACB,
where the snowflakes with various transparencies, sizes and
shapes can be captured by the generated attention maps. As
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snowflakes are nearly white in each channel, for the efficiency
on memory usage and computing, the ACB only predicts a
single-channel attention map and uses it for all channels.

D. Training Loss

Let (Is, Ic,S) denote a triplet of a snowy image, its latent
image and its snowflake layer in training data. Recall that an
INN has both the forward and reverse modes. The training
scheme of InvDSNet utilizes its invertibility to measure the
errors in both the forward separation process and the reverse
reconstruction process. Such a scheme allows us exploit the
supervision from not only Ic, but also S and Is, for reducing
possible overfitting. Accordingly, the total loss function for
training is defined in a two-way manner which includes a
forward loss Lforward and a reverse loss Lreverse:

Ltotal := Lforward + Lreverse. (11)

1) Forward loss: The forward loss function is defined by

Lforward := Lsep + λfLatt-f, (12)

where the separation loss Lsep measures the prediction accu-
racy on the latent image and snowflake layer from an input
snowy image, the forward attention loss Latt-f measures the
quality of the generated snow attention maps in the forward
process, and the weight λf ∈ R+ balances the two terms.
Let I ′c,S

′ denote the estimates of the latent image and the
snowflake layer in the forward process respectively, predicted
from Is using InvDSNet. Then we define

Lsep = ‖I ′c − Ic‖2 + β‖S′ − S‖2, (13)

with a weight β ∈ R+. As for the forward attention loss, recall
that there are three attention maps denoted by AF ,AG ,AH
generated in the ACB, and we define

Latt-f = ‖AF − S‖2 + ‖AG − S‖2 + ‖AH − S‖2. (14)

2) Reverse loss: The reverse loss function is defined by

Lreverse := Lrecon + λrLatt-r, (15)

with a reconstruction loss Lrecon, a reverse attention loss Latt-r,
and a weight λr ∈ R+ set to the same as λf in practice. Let
I ′s , I

′′
s denote the snowy images reconstructed from two paths

respectively, using the reverse mode of InvDSNet fed by the
ground-truths Ic and S. Note that I ′s , I

′′
s correspond to the

two duplicated inputs for InvDSNet in the forward process,
whereas they can be different in the reverse process. The
reconstruction loss Lrecon in (15) measures the consistency
between the reconstructed snowy images and the original input
ones, which is defined as

Lrecon = ‖I ′s − Is‖2 + γ‖I ′′s − Is‖2. (16)

The reverse attention loss shares a similar form with the
forward one, which is defined based on the attention maps
ĀF , ĀG , ĀH generated in the reverse process:

Latt-r = ‖ĀF − S‖2 + ‖ĀG − S‖2 + ‖ĀH − S‖2. (17)

It is worth mentioning the reverse process of InvDSNet indeed
corresponds to a formation model for images with snowflakes,
which may be utilized by the reverse loss for better training.

(a) Snow100K (b) SRRS (c) CSD

Fig. 7. Sample images and corresponding snowflake maps from three datasets.

V. EXPERIMENTS

The performance of InvDSNet is evaluated on three bench-
mark datasets which include both synthetic and real snowy
images, and it is compared to that of some existing methods
of different types.

A. Experimental Settings

1) Datasets: The benchmark datasets for performance eval-
uation include the Snow100K dataset [4], the dataset of Snow
Removal in Realistic Scenario (SRRS) [6], and the Compre-
hensive Snow Dataset (CSD) [12]. Each dataset contains a
large number of training samples, i.e., the triplets consisting
of a snowy image, its latent image, and its snowflake layer
(map). See Fig. 7 for some sample images of each dataset.
The details of these datasets are summarized as follows.
• Snow100K [4]: It is a large dataset with 100000 triplets.

The snowflake layers are generated by PhotoShop with
variations in density, shape, size, transparency, and mov-
ing trajectory. One half of the triplets are used for
training, and the other half is used for test. The dataset
also provides some real snowy images downloaded via
Flicker API for visual evaluation.

• SRRS [6]: This dataset contains 15000 triplets. The
snowy images are synthesized with veiling effects, and
the snowflakes in synthesis are varied in transparency,
size, and moving trajectory. Following the standard pro-
tocol provided by the dataset, we use 13000 triplets for
training and the rest for test.

• CSD [12]: There are 10000 triplets in this dataset. The
synthesized snowflake layers exhibit large variations in
the transparency, size and shape of snowflakes, e.g.,
they may contain streak-like snowflakes. In addition, the
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON THREE BENCHMARK DATASETS.

Method Snow100K Small/Medium/Large SRRS CSD #Params(M) Time(s)PSNR(dB) SSIM Snow100K PSNR(dB) PSNR(dB) SSIM PSNR(dB) SSIM

MGF [8] 22.41 0.77 24.32/22.99/19.95 15.78 0.74 13.98 0.67 - -
DesnowNet [4] 30.11 0.93 32.33/30.86/27.16 20.38 0.84 20.13 0.81 15.60 1.38

JSTASR [6] 28.59 0.86 31.40/29.11/25.32 25.82 0.89 27.96 0.88 65.00 0.87
DesnowGAN [13] 31.11 0.95 33.43/31.87/28.06 - - 27.09 0.88 - -

HDCW-Net [12] 24.10 0.80 24.84/24.75/22.75 27.78 0.92 29.06 0.91 6.99 0.14
ShapeAttention [34] 29.94 0.89 30.93/29.98/28.92 26.56 0.90 27.85 0.88 7.01 0.23

MAWR [16] - - - - - 31.35 0.95 28.71 0.39
InvDN [42] 27.99 0.81 28.83/28.44/26.74 26.49 0.88 27.46 0.86 7.26 0.12

InvDSNet [Ours] 32.41 0.93 34.39/33.17/29.69 29.25 0.95 31.85 0.96 6.94 0.06

synthesis also takes the veiling effects and blurring effects
into account. Following the experimental setup of [12],
we use 8000 triplets for training and 2000 for test.

2) Methods for comparison: Eight related methods are used
for performance comparison, including
• a traditional single image desnowing method: MGF [8];
• four deep learning-based single image desnowing meth-

ods: DesnowNet [4], JSTASR [6], DesnowGAN [13] and
HDCWNet [12];

• one recent deep learning method for recovering images
taken in general bad weather conditions: MAWR [16];

• one deep learning-based method for single image rain-
drop removal: ShapeAttention [34].

• one efficient INN recently originally proposed for single
image denoising: InvDN [42].

The DNN models of the last three methods are retrained on the
same training data of image desnowing as ours, with hyper-
parameters tuned up. The results of all the compared methods
are directly quoted from their corresponding papers whenever
available, or obtained by running the codes with recommended
parameter settings released in the public domain, using the
same experimental data as ours. If neither the results nor the
codes are available, we leave the results blank in the tables.

3) Implementation details of InvDSNet: Though all exper-
iments, we set M = 2 and N = 8 for InvDSNet. In training,
all images are randomly cropped into 128× 128 patches. The
hyper-parameters λ, β and γ of the training loss are set to
be 0.05, 0.1 and 0.1 respectively. The model weights are
initialized by Xavier. The Adam optimizer is used with batch
size 8. The initial learning rate is set to 3e−5 for the first 100
epochs and 1e−5 for the last 200 epochs. The InvDSNet is
implemented in PyTorch and run on a single NVIDIA GTX
1080 Ti GPU. The code will be made public upon the paper’s
acceptance.

B. Quantitative Results and Analysis

The quantitative results of the three benchmark datasets are
listed in Table I. The effectiveness of desnowing is measured
by Peak Signal-to-Noise Ratio (PSNR) and Structural SIM-
ilarity (SSIM) index. Note that during its construction, the
Snow100K dataset is also divided into three subsets according
to the size of snowflakes, which are denoted by Snow100K-
Small/Medium/Large respectively. Thus, we report the results

on Snow100K in terms of both the full test set and the three
subsets. It can be seen that InvDSNet is the best performer
across all the three datasets in terms of PSNR, with notifiable
improvement over the second-best performers. That is, InvD-
SNet not only outperforms the methods designed for other
or general weathers, e.g., ShapeAttention and MAWR, but
also performs noticeably better than those designed for single
image desnowing, e.g., DesnowNet, JSTASR and HDCW-Net.
The SSIM results of InvDSNet are also the highest on CSD
and SRRS, while the second highest on Snow100K.

We also compare the complexity of different DNN models
in terms of the number of parameters and the running time
in processing a 480×640 image on a single RTX 1080Ti
GPU. It can be seen that InvDSNet has the smallest number
of model parameters among all the compared methods. This
not only implies that InvDSNet consumes less memory than
other compared models during test, but also indicates that the
performance gain of InvNet is not from enlarging the model,
but from the architecture design. In addition, our InvNet also
enjoys the fastest running speed. Particularly, its running time
is less than one half of that of its best competitor, HDCW-Net.
All above results have shown the advantages of InvDSNet in
both desnowing performance and computational complexity.

To further analyze the performance of InvDSNet in terms
of image degradation caused by light snow and heavy snow
respectively, we redivide the Snow100K-Small dataset accord-
ing to the density of snowflakes, as we found that it contains
a sufficient number of images with light snow. The density
of snowflakes is estimated by the ratio of the total area of all
snowflake regions over the total number of image pixels. The
snowflake regions are obtained by thresholding the ground-
truth snowflake map provided by the dataset by the Ostu
method [53]. An image is viewed as containing light snow
if its estimated snowflake density is less than 30%; otherwise
it is viewed as image with heavy snow. As a result, we obtain
5287 images with light snow and 11324 images with heavy
snow. We evaluate the performance of InvDSNet on these two
subsets respectively, without model retraining, and the results
are listed in Table II. The methods with released codes for
producing the results are also included for comparison. It can
be seen that our model performs the best on both light-snow
images and heavy-snow images.
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Input MGF JSTASR HDCW-Net MAWR InvDSNet

Fig. 8. Visual comparison of desnowed images from selected methods on real-world snowy images from the Snow100K dataset.

TABLE II
RESULTS IN TERMS OF LIGHT SNOW AND HEAVY SNOW ON

SNOW100K-SMALL DATASET.

Method Light snow Heavy snow
PNSR(dB) SSIM PNSR(dB) SSIM

MGF [8] 24.71 0.82 23.96 0.80
HDCW-Net [12] 25.65 0.84 24.46 0.80

InvDN [42] 30.39 0.86 28.22 0.81
InvDSNet [Ours] 38.73 0.98 32.27 0.92

C. Qualitative Comparison

The qualitative evaluation is done by visually comparing
the desnowed images of different methods in Fig. 8. We select

some real-world images from Snow100K for the evaluation. It
can be seen that InvDSNet also outperforms other compared
methods in terms of visual quality. For instance, in the
zoomed-in region of the first sample, other methods cannot
remove large snowflakes well, while InvDSNet can do much
better. In the second and last samples, other methods cannot
well distinguish small snowflakes from bar-like fine textures,
leaving a number of snowflakes in the regions with such tex-
tures, or even having partial textures smoothed out (e.g. MGF).
In comparison, our InvDSNet produced a much cleaner yet
clear image. In the third sample, all the methods except
InvDSNet and MAWR cannot remove the dense snowflakes.
Note that MAWR might treat other regions with white color
as big snowflakes and thus damaged those regions; see e.g. the
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Input MGF HDCW-Net MAWR InvDSNet Ground Truth

Fig. 9. Visual comparison of desnowed images from selected methods on synthetic snowy images.

bottom of the zoomed-in region. In comparison, InvDSNet not
only removed the dense snowflakes but also produced clearer
text on the truck. In the forth sample, JSTASR and HDCW-
Net darkened the image too much and even removed the halo
of the lamp, while MAWR could not remove the snowflakes
in the dark. In comparison, InvDSNet not only removed the
snowflakes but also preserved the lightness (e.g. the halo).

In Fig. 9, we visualize the results from different methods
on some synthetic images from the three benchmark datasets,
where ground-truth latent images are included for better com-
parison. Again, we can see that InvDSNet is good at both
removing snowflakes and preserving image structures, with
better visual quality achieved than other compared methods.
Such an improvement on visual quality is consistent with that
on quantitative metric. To conclude, InvDSNet is better than
other compared methods at removing snowflakes of different
shapes, sizes, densities of snowflakes, while preserving image
structures and background color well.

D. Ablation Studies

To analyze the contribution of each key component in the
proposed InvDSNet, we conduct ablation studies by forming

the following baseline models.

• “Plain”: An INN with standard coupling layers is con-
structed as a baseline, which does not contain any of
our proposed blocks. The number of coupling layers is
set to 25, which is set to make the resulting model size
and network depth as close to our NN as possible. The
training is based on a simple forward separation loss.

• “w/o ACB (ACB→CL)”: The ACB is replaced by two
coupling layers, which has a similar model size to the
original one for a fair comparison.

• “Single path”: Each CIC block is changed to a sequence
of M +N coupling layers. It leads to a single-path INN
of same size, which maps a snowy image to a clean one.

• “Single path & w/o ACB”: Based on “Single path”, the
ACB is further replaced by two coupling layers.

• “w/o HT”: The HT layers in the middle two CIC blocks
are removed from InvDSNet.

• “CIC: CL→RB”: The N additional coupling layers in
each CIC block are replaced by three residual blocks
of 46 channels. The number of residual blocks and the
channel number of each residual blocks are set to make
the resulting model size and network depth as close to
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TABLE III
RESULTS OF ABLATION STUDIES ON CSD.

Model Setting PSNR(dB) SSIM

Plain Model 28.56 0.932
w/o ACB (ACB→CL) 31.39 0.948

Single Path 31.12 0.948
Single Path & w/o ACB 29.77 0.939

w/o HT 31.21 0.935
CIC: CL→RB 28.87 0.908

w/o Lreverse 31.43 0.952
w/o Latt 31.34 0.948

w/o Lreverse&Latt 31.02 0.938
Original Model 31.85 0.954

the original ones as possible.
• “w/o Lreverse”: The model is trained only using Lforward.
• “w/o Latt”: The model is trained without using Latt-f and
Latt-r in the loss function.

• “w/o Lreverse&Latt”: Both Lreverse and Latt are removed
from the training loss, i.e., the model is trained with the
forward separation loss only.

The results of the ablation studies are listed in Table III,
where InvDSNet outperforms all the baselines noticeably. (i)
The plain model show a significant performance decrease
(around 3dB PSNR) over the original InvDSNet, which in-
dicates the effectiveness of our proposed blocks. (ii) The
effectiveness of the ACB can be verified by comparing the
results of “w/o ACB” and “Original” as well as by comparing
the results of “Single Path & w/o ACB” and “Single Path”.
Particularly, the latter case has a PSNR decrease of 1.35dB
when disabling the ACB. (iii) Comparing the results of “Single
Path” with “Original”, we can see that the proposed dual-path
invertible architecture of InvDSNet with CIC structure does
benefit image desnowing, which brings 0.73dB PSNR gain.
The HT layers in intermediate layers also play an important
role which improves the PSNR result with 0.64dB, as they
exploit multi-scale representation during progressive feature
refinement along the network depth dimension. (iv) There
is a PSNR drop of 2.98dB when replacing the additional
N coupling layers in CIC blocks with resicual blocks. This
indicates the CIC design can better extract features for the
separation task. (v) Regarding the reverse loss Lreverse and the
attention loss pair (Latt-f,Latt-r), both of them have a noticeable
contribution to the performance, which are 0.42dB and 0.51dB
respectively. This is probably because that such loss functions
reduce the overfitting of InvDSNet. In addition, Lreverse and
(Latt-f,Latt-r) play different roles as a noticeable PSNR drop is
observed when removing both of them.

To analyze the performance impact of the values of M and
N , i.e., the number of coupling layers in the CIC blocks, we
conduct an ablation study by fixing M or N to its original
value while varying the value of the other. Concretely, we
fix M = 2 and set N = 6, 8, 10 respectively, and then fix
N = 8 and set M = 1, 2, 3 respectively. The results of the
corresponding models as well as their model size (in terms
of number of parameters) are listed in Table IV. It can be
seen that as M or N increases, the performance of InvDSNet

TABLE IV
RESULTS BY SETTING DIFFERENT N AND M ON CSD.

Setting PSNR(dB) SSIM #Parameters(M)

M = 2
N = 6 31.38 0.952 5.61
N = 10 31.91 0.954 8.26

N = 8
M = 1 31.03 0.948 5.88
M = 3 31.97 0.955 8.01

M = 2, N = 8 (Original) 31.85 0.954 6.94

TABLE V
RESULTS OF STUDY ON ADDITIONAL LOSS FUNCTIONS. ↑ (↓): HIGHER

(LOWER) VALUE IMPLIES BETTER PERFORMANCE. ↑ (↓): HIGHER VALUE
DENOTES BETTER (WORSE) PERFORMANCE.

Method PSNR(dB)↑ SSIM↑ LPIPS↓ DISTS↓
InvDSNet Original 31.85 0.954 0.036 0.043
InvDSNet w/ SSIM 31.55 0.963 0.030 0.037
InvDSNet w/ LPIPS 31.76 0.958 0.024 0.034
InvDSNet w/ DISTS 31.80 0.960 0.025 0.026
InvDN [42] 27.46 0.861 0.184 0.125
MAWR [16] 31.35 0.941 0.062 0.058

increases, but the increment is small when M and N are
sufficiently large. The setting of M = 2, N = 8 gives a good
balance between the performance and model complexity.

E. Study on Additional Loss Functions

As discussed in [54], [55], existing classic quantitative
metrics for measuring image quality are not always consistent
with the judgment from human perception. Indeed, many
quantitative metrics (e.g. [54]–[57]) have been developed for
evaluating visual image quality with higher consistency to
human perception. The study of this paper focuses on the
design of new DNN architectures and loss functions for
recovering images, where the loss functions depend on the
choice of image quality metrics. A simple `2-norm-related
loss is implemented for measuring the prediction error dur-
ing training and the quality of the results. Nevertheless, the
forward and backward loss functions we propose do not call
special properties of `2-norm. They can be easily adapted to
other quality metrics for measuring prediction errors.

In this experiment, we evaluate the performance impact
brought by adapting the training loss functions to differ-
ent image quality metrics including SSIM, LPIPS [56] and
DISTS [57]. In addition, we also would like to see how the
NNs optimized for one quality metric behaves when their
outputs are measured using another quality metric. Thus, we
also use LPIPS and DISTS for evaluation. The results are
listed in Table V. Two baselines are included for comparison,
which also perform worse than InvDSNet in the new metrics.
It can also be seen that although the PSNR drops slightly when
adding SSIM/LPIPS/DISTS into the loss functions, the values
of all these three metrics are improved simultaneously over
the original ones. Especially, adding the DISTS loss achieves
improvements on the SSIM, LPIPS and DISTS metrics with
minimal PSNR drop cost. Such results indicate that the perfor-
mance of the proposed DNN architecture and loss functions
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do not rely on any specific metric. Adopting more advanced
image quality metrics in the loss functions can be helpful for
achieving better quality even measured with different metrics,
which can also result in the performance gain consistent with
human perception.

VI. CONCLUSION

In this paper, we proposes InvDSNet, a dual-path atten-
tive INN for single image desnowing. Benefiting from the
invertibility of coupling layers, the two paths in InvDSNet
interacts with each other for feature refinement and disentan-
glement, while keeping all available details for reconstructing
the latent image. Together with the coupling-in-coupling layers
and attentive coupling layers, the InvDSNet can effectively
remove snowflakes while preserving image details. In the
extensive experiments, the InvDSNet noticeably outperforms
existing methods, quantitatively and qualitatively. In addition,
the InvDSNet also has lower model complexity and higher
computational efficiency compared to existing DNN models.

Due to its invertibility, the InvDSNet in its reverse mode
can be viewed as an image formation process for snowflake-
corrupted images. Since the formation process of snowflake-
corrupted images is not simple, our approach can be viewed as
implicitly learning and exploiting such a process (e.g. via the
reverse loss), instead of explicitly exploiting it. In future, we
would like to investigate the extension of InvDSNet to solv-
ing other bad-weather image processing problems where the
underlying physics of the degradation process are complex.
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