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Abstract

In recent years, many image denoising methods have been proposed based on
convolutional neural networks (CNNs). While these methods have shown continu-
ous performance improvement by introducing various mechanisms and structures,
their computational cost tends to become increasingly expensive, owing to the re-
sulting complex network architectures. This paper aims at winning the trade-off
between computational efficiency and denoising performance for CNN-based im-
age denoisers. Towards this end, we draw inspirations from traditional variational
models with wavelet analysis operators for CNN architecture design. A model-
inspired CNN is proposed with four key modules: iterative encoding-decoding
units inspired by the iterative denoising process, directional convolutions inspired
by the separable wavelet filters, inception modules inspired by the multi-scale
analysis of wavelets, and stage-wise connections inspired by the adding noise
back operation. In experiments, our CNN shows high computational efficiency in
both training and test, with competitive results to state-of-the-art approaches.
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1. Introduction

Image denoising is a fundamental problem in the field of image processing [1]
and has practical values to many computer vision tasks [2–4]. It aims at removing
the noise from a noisy image and meanwhile preserving image details such as
edges and corners. Let x denote the ground-truth clean image and y the observed
noisy image. Generally, noise corruption can be formulated as follows:

y = x + n, (1)

where n denotes the measurement noise which is often assumed to be the additive
Gaussian white noise (AWGN). Then, image denoising is about solving x from
Eq. (1), given y as a known variable.

1.1. Motivations
Taking the advance of deep learning, many deep approaches (e.g. [5–7]) have

been proposed for image denoising. These approaches use deep convolutional
neural networks (CNNs) with various types of structures to learn the denoising
process directly from a large set of noisy/clear image pairs. The design of the
CNN structure is the key to such CNN-based approaches. Ideally, a practical
CNN should have (a) fast execution time that satisfies the need of the real-time
applications and (b) sufficient expressibility to learn the denoising mapping as
well as good generalizability to unseen images.

While existing CNN-based approaches have shown continuous performance
improvement by introducing various mechanisms and structures, their computa-
tional cost tends to become increasingly expensive owing to the resulting complex
network architectures. This motivated us to develop a CNN that can win the trade-
off between computational efficiency and denoising performance.

However, designing an effective yet efficient CNN is non-trivial and there is
often no way to start. There are some approaches (e.g. [6, 8]) designing their
CNNs for image restoration based on the iterative process of some traditional
method. In this paper, we draw prior knowledge from the wavelet analysis model
for image denoising, based on which a model-inspired CNN called SED-Net (Se-
quential Encoding-Decoding Network) is proposed. Benefiting from the prior
knowledge from the well-established wavelet analysis model, SED-Net enjoys
both computational efficiency and effectiveness simultaneously.
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1.2. Basic Idea
Many existing approaches to image denoising (e.g. [9, 10]) estimate the clean

x by solving variational models of a general form:

min
x
‖x− y‖22 + λφ(Wx), (2)

where λ > 0 is a weight, W is a transform for generating some kind of image
representation, and φ(·) is a function for imposing the image priors derived from
the statistics of natural images on the domain defined by W . One popular choice
for W is the wavelet tight frame [11] which has demonstrated its effectiveness and
computational efficiency in many image restoration tasks, owing to its capability
of multi-scale analysis and localization.

Let W be a wavelet tight frame satisfying W>W = I , where W and W>

are called the analysis and synthesis operators, respectively. Then the model in(2)
becomes the so-called wavelet analysis model. We use the half-quadratic split-
ting [12] to solve the model in (2). By introducing an auxiliary variable h, the
solver iteratively calculates{

h(t+1) = W>Ψ(Wx(t))
x(t+1) = ω(t)h(t+1) + (1− ω(t))y

(3)

for t = 0, 1, · · · , where Ψ is an operator associated with φ and {0 < ω(t) < 1}t
is a parameter sequence. For instance, Ψ is a scaling function when φ is the `2
norm, a soft thresholding function when φ is the `1 norm, and a hard thresholding
function when φ is the `0 norm; see also Sec. 3.2 for more details. The denoising
process defined by (3) iteratively alternates two sub-processes: (a) update of h:
manipulation in the wavelet domain defined by the wavelet transform W and
then turn the manipulated wavelet coefficients back to the image domain by the
inverse wavelet transform W−1 = W>; (b) update of x: merging h(t+1) with
the input image y using weights (ω(t), 1 − ω(t)). There are three key ingredients
in such a process: (a) iterative processing; (b) processing in the wavelet domain
(i.e. Ψ(Wx(t))) and transforming back (i.e. W>z(t+1)); and (c) merging with
input noisy image, also often called adding the noise back, i.e., ωh(t+1)+(1−ω)y.

Inspired by the key ingredients of the process defined in (3) as well as the
construction of the involved 2D wavelet transform, we construct our SED-Net
with the following modules:

• Sequential encoding-decoding units. In the update of h, the estimated image
x is first transformed to wavelet domain by the analysis operator W , manip-
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ulated with Ψ(·), and then transformed back into image domain by the corre-
sponding synthesis operator W>. By viewing the wavelet transform and in-
verse wavelet transform as an encoder and decoder respectively, we define the
backbone of SED-Net by a series of encoding-decoding units to simulate this
iterative wavelet-based processing.

• Directional convolutions. The 2D wavelet filters for W are often constructed by
the tensor product of two 1D wavelet filters (horizontal/vertical in the 2D plane).
This enables generating a 2D convolution kernel of sizeM×N using parameters
whose number is less than MN . However, since oriented kernels except the
horizontal/vertical ones are non-separable kernels, the 2D kernels constructed
from the 1D ones cannot have rich orientations. In other words, employing only
1D kernels in a CNN to simulate 2D convolutions cannot effectively extract the
rich-oriented structures in images. Thus, we combine 1D convolutions and 2D
ones in the convolutional layers of SED-Net.

• Inception-like module. Multi-scale analysis is known to be the most important
property of wavelets [13], which enables the extraction of image structures from
rough scales to fine scales. Many studies have shown that the multi-scale analy-
sis benefits for denoising images with varying-scale structures [13]. Inspired by
the multi-scale analysis capability of wavelets, we introduce the inception-like
structure into each encoding-decoding unit, which contains convolutions with
various kernel sizes.

• Stage-wise connections. The operation of adding noise back, as seen in Eq (3),
is commonly utilized in the numerical solvers of variational denoising models.
Typically, denoising involves low-pass filtering, which results in the loss of cer-
tain image details. To counteract this, the addition of the noisy image to the
denoised intermediates can be employed to reintroduce image details and lead
to final results with finer details. In light of this, we add a skip connection be-
tween the noisy image and the output of the final encoder-decoder (ED) stage.
Simulating adding noise back operation, this connection preserves details by
transmitting details from the noisy image to the output of the final ED stage.
Additionally, due to the data-driven property of neural networks, the ED units
hence may also produce desired details for recovery. Therefore, we also intro-
duce skip connections between the output of each ED and the final one. These
connections form the proposed stage-wise connections.

To summarize, existing CNNs cannot balance effectiveness and computational
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efficiency well. This work investigates a CNN-based denoiser that can enjoy
both state-of-the-art performance and low computational cost. Different from
the existing ones, the proposed CNN is inspired by variational models. Such a
model-inspired design benefits much performance improvement. These benefits
are demonstrated on standard benchmark datasets, and the experimental results
have shown the solid performance of our proposed CNN.

2. Related Work

Traditional methods exploit certain image priors to overcome the undeter-
minedness of the denoising problem. Many methods use the sparsity prior which
assumes sparse intensity changes of images, and implement the prior by minimiz-
ing the `1 norm of image coefficients in some domains; see e.g. total variation-
based methods [14–17] and wavelet-based methods [18]. Sparse representation
methods [19, 20] suppose clean image patches can be sparsified under a certain
dictionary and learn the dictionary with sparse constraints. Another popular image
prior is the nonlocal self-similarity (NSS), utilizing recurrent patches within spa-
tial neighborhood [21, 22], across scale space [23], on external images [24]. There
are some approaches learning the parameterized distribution of image patches on
clear images and using the learned distribution as an image prior; see e.g. [25].

In recent years, supervised learning has emerged as a promising approach to
image denoising. Schmidt et al. [26] unrolled the traditional models into a learn-
able cascade denoising process and learned such a process from training data.
Chen et al. [27] unrolled the diffusion process into a learnable one, with improve-
ment over Schmidt et al.’s method. These two methods are closely related to ours
as they also draw inspirations from traditional models. Leveraging deep learning,
our approach shows superior performance over them in the experiments.

The deep-learning-based methods for image denoising have shown outstand-
ing performance over learning-based methods. The early work can be traced back
to Burger et al. [28] that learns a multi-layer perceptron to map noisy patches
onto clean ones. The most representative approach is Zhang et al.’s DnCNN [29],
which is a simple yet practical CNN for image denoising and has been used as a
benchmark in many studies. To improve efficiency and handle spatially-varying
noises, the FFDNet [30] takes downsampled subimages and a tunable noise level
map as input.

There are some CNN-based approaches exploiting the NSS prior. Yang and
Sun [8] unrolled the BM3D [8] method into a CNN. Ploetz et al. [31] introduced
a neural nearest neighboring block. While introducing the NSS prior to CNNs
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brings performance gain, the resulting CNN is less efficient compared to DnCNN
and has heavy requirements on computational resources (e.g. memory).

Most existing works focus on improving network architectures. Tai et al. [32]
introduced a persistent memory network (MemNet) and exploited dense connec-
tion for better preserving the high-frequency information during denoising. Yu et
al.[33] proposed a deep iterative down-up network. Park et al. [34] studied a
densely connected hierarchical network by using a modified U-Net architecture.
Fang et al. [35] proposed a multilevel edge features guided CNN. Quan et al. [36]
proposed a complex-valued CNN to exploit the merits of complex-valued opera-
tions, such as the compactness of convolution given by the tensor product of 1D
complex-valued filters and the nonlinear activation on phases. Li et al. [37] ex-
plored the degradation mechanism of the noisy image and proposed a lightweight
network to progressively remove noise.

There are some studies drawing inspirations from wavelet to design CNNs for
image denoising. Inspired by the lifting wavelet transform, Huang et al. [38] pro-
posed a lifting-based invertible CNN, which learns a non-linear redundant trans-
form with perfect reconstruction property to reduce noise. Liu et al. [39] presented
a multi-level wavelet CNN for a better trade-off between the receptive field size
and the computational efficiency. To further incorporate the power of wavelet
transform, Tian et al. [40] introduced a series of cascading wavelet transforms
and enhancement blocks, enhancing the features in the wavelet domain. In com-
parison, our work goes beyond the wavelet transform, but further looks at a whole
wavelet analysis model for denoising, which can win the trade-off between com-
putational efficiency and denoising performance.

3. Preliminaries

Throughout this paper, bold upper letters are used for matrices, bold lower
letters for column vectors, and calligraphic letters for operators. The notations
0 and I denote the zero matrix and the identity matrix with appropriate sizes
respectively. The `p norm of a vector is denoted by ‖ · ‖p. Given a sequence
{v(t)}t∈N, v(t0) denote the t0-th element in the sequence.

3.1. Wavelet Tight Frames
Since framelets are considered in the proposed method, we first briefly present

some basics of framelets for image processing. Interested readers are referred to
[41, 42] for more details. Let H be a Hilbert space with the usual inner product
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〈·, ·〉 and norm ‖ · ‖. A sequence {φn}n∈Z ⊂ H is a frame for H if there exist two
positive constants a and b such that

a‖f‖22 ≤
∑
n∈Z

|〈φn, f〉|2 ≤ b‖f‖22, ∀ f ∈ H. (4)

A frame {φn}n∈Z is called a tight frame for H when a = b. Frame can be viewed
as a generalization of Riesz Basis and tight frame is a redundant system that gen-
eralizes orthogonal basis.

There are two operators associated with a given frame {φn}n∈Z: the analysis
operatorW defined by

W : f ∈ H −→ {〈f, φn〉} ∈ `2(Z), (5)

and its adjoint operatorW∗, also called the synthesis operator, defined by

W∗ : {cn} ∈ `2(Z) −→
∑
n

cnφn ∈ H. (6)

Wavelet tight frames are arguably the most frequently-used frames in image
processing. A wavelet tight frame is a tight frame system generated by the shifts
and dilations of a finite set of generators, which can be implemented by convolu-
tions with a set of filters that has some properties. Given a filter a ∈ `2(Z), define
the linear convolution operator Sa : `2(Z)→ `2(Z) by

[Sav](n) = [a ∗ v](n) =
∑
k∈Z

a(n− k)v(k),∀v ∈ `2(Z). (7)

For a set of wavelet filters {ai}mi=1 ⊂ `2(Z), the corresponding analysis operator
has the matrix representation as follows:

W = [S>a1(−·),S
>
a2(−·), . . . ,S

>
am(−·)]

>, (8)

and by definition, the corresponding synthesis operator is W>.
The wavelet frames formed by multi-resolution analysis are often referred to

as framelet systems, and the associated filters are called framelet filters. Framelet
filters can be effectively constructed by the Unitary Extension Principle (UEP) [43].
For instance, the 1D single-level linear B-spline wavelet tight frame constructed
by UEP has the following three filters:

a1 =
1

4
(1, 2, 1)>; a2 =

√
2

4
(1, 0,−1)>; a3 =

1

4
(−1, 2,−1)>. (9)
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In the 2D case, the framelet filters can be constructed via the tensor product of the
1D versions. In this paper, we consider the separable property and the multi-scale
design of 2D framelets, and propose the directional convolution and inception-like
module under its inspiration.

3.2. Wavelet Analysis Model and Its Numerical Solver
Since unknowns are much more than the equations in the denoising prob-

lem (1), effective priors on the clean image x are needed to solve the system.
Most existing regularization methods can be classified into two categories. One
is the so-called synthesis-based approach [44, 45], whose model usually has the
following general form:

min
x
‖x− y‖22 + λφ(c) s .t . x = W>c, (10)

Recall that y denotes the noisy observation. The synthesis-based model assumes
that the clean image can be synthesized by some specific dictionary W> and the
regularization is imposed by the coefficients c. The other one is the so-called
analysis-based approach [14, 18], which can be written as

min
x
‖x− y‖22 + λφ(Wx). (11)

Different from the synthesis-based model, the analysis-based model assumes the
clean image has some specific properties(e.g., sparsity), under the carefully-designed
transform W . It is empirically observed that for image restoration, the estimated
images obtained by the synthesis-based model usually have some visually un-
pleasant artifacts. In comparison, the analysis-based approach usually has fewer
artifacts as they directly ensure the properties of the estimated images. Interested
readers are referred to [11, 46] for more details on the two types of regularization
models and their connections.

In this paper, we look at the analysis-based model and consider wavelet tight
frame as the transform W . The resulting model (11) is the so-called wavelet
analysis model. We use the half-quadratic splitting [12] as the numerical solver.
By introducing an auxiliary variable z, the problem (11) can be reformulated as

min
x,z
‖x− y‖22 + β ‖z −Wx‖22 + λφ(z), (12)

which is equivalent to (11), when β → ∞. Therefore, to solve the problem (11),
we can iteratively solve the z-subproblem and x-subproblem in (12) with increas-
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Figure 1: Illustration of the architecture of proposed SED-Net.

ing β as follows: z(t+1) = arg min
z

β(t)
∥∥z −Wx(t)

∥∥2
2

+ λφ(z)

x(t+1) = arg min
x

‖x− y‖22 + β(t)
∥∥z(t+1) −Wx

∥∥2
2

, (13)

where {β(t) > 0}t is an increasing sequence. Both sub-problems in (13) have
explicit solutions, which can be written as{

z(t+1) = Ψ(Wx(t))
x(t+1) = ω(t)W>z(t+1) + (1− ω(t))y

, (14)

where Ψ(·) is dependent on the regularization function φ(·) and the weight λ/β(t)

and ω(t) = β(t)

β(t)+1
. Note that the solver (14) can be rewritten into (3) by substituting

z with h = W>z. In this paper, we consider two key facts in the iteration (14): i)
the analysis operator W and the synthesis operator W> are iteratively performed.
ii) the noise is added back to the estimation in each iteration. Inspired by these
facts, we develop the sequential encoder and decoder backbone and the stage-wise
connection in the proposed denoising network.

4. Proposed Method

The architecture of the proposed SED-Net for image denoising is illustrated
in Fig. 1. The network comprises three components: 1) a feature extraction layer,
which maps the image into the feature domain, 2) a backbone, implemented as a
sequential concatenation of encoding-decoding units inspired by solver (3), 3) a
reconstruction layer, which maps the features back into the image domain. Below,
we first detail the proposed ED unit, followed by a description of the network
framework.
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Figure 2: Illustration of directional convolution module.

4.1. Encoding-Decoding Unit
Consider an iteration of (3), where W and W> can be interpreted as an en-

coding process and a decoding process respectively. We thus implemented an
encoding-decoding unit, where we sequentially connect a strided convolutional
layer (simulating W ), Rectified Linear Unit (ReLU, simulating Ψ), and a decon-
volutional layer with a fusion mechanism (simulating W>). Rather than the nor-
mal convolutional and deconvolutional layers, we introduce the directional con-
volutions and inception modules under the inspiration of the solver (3), whose
details are provided as follows.

Directional Convolutions The wavelet filters are generated by the tensor
product of 1D ones. Compared to the 2D ones, using 1D filters can use fewer
parameters to generate a 2D filter with a larger receptive field. Besides, images
often have horizontal or vertical edges. Using 1D filters can better handle or
preserve the horizontal/vertical image edges. However, purely using 1D filters
can only generate filters with limited directions (horizontal or vertical). To enrich
the orientations of filters, normal convolutions are needed.

Inspired by the above discussion, we embed directional convolutions into the
ED unit, as shown in Fig. 2. Three types of convolutions, including horizontal
convolution, vertical convolution, and normal convolution, are performed simul-
taneously at the encoding stage with a stride equal to two along x-axis, y-axis, or
both. In the decoding stage, we apply the corresponding deconvolution to the three

10



Figure 3: Simplified inception module. The feature maps obtained by convolutions with kernels
of various sizes are concatenated before being transferred to the next layer.

intermediate feature maps to keep outputs the same size. In the implementation,
the depth of the intermediate feature maps is all 128 while the decoding results
have a depth of 64. The cascade of combined directional convolution and nor-
mal convolution can model both long horizontal/vertical edges and edges in other
directions and corners. We experimentally found that embedding the directional
convolution component to the backbone substantially increases the performance.

The aforementioned fusion layer is applied to merge the three feature maps
from the decoding block. For simplicity, we define the fusion layer as the summa-
tion over channels, without learnable weights in the summation.

Inception Module One characteristic of wavelet is its multi-scale analysis
capability, which can adapt to image patterns in different scales, e.g. larger convo-
lution kernel is suitable for flat regions but not for detailed textures. Inspired by
such a characteristic, we employ the simplified inception module to simulate the
multi-scale analysis in each ED unit. We split each convolution/deconvolution
into a convolution with a small kernel and a convolution with a large kernel,
e.g. squared kernels in size of 3 × 3 and 5 × 5. See Fig. 3 for the structure. The
same operation is also applied to directional convolution/deconvolution, e.g. ver-
tical kernels in size of 3× 1 and 5× 1. The decoding feature maps from different
types of kernels are also fused by summation. Assume the depth of the feature
maps without using the inception module is 2l, then the depth of each split feature
map after using the inception module is l. The repeatedly mixed convolutions can
form receptive fields of various sizes.

Unit Design In SED-Net, both the proposed directional convolutions and in-
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Figure 4: Illustration of the proposed ED Unit, which combines the directional convolutions and
inception modules.

ception module are introduced into the convolutional and deconvolutional layers.
For each unit, there are three types of convolutions: horizontal convolution, ver-
tical convolution, and normal convolution. Each type of convolution can be split
into two independent convolutions with the small or large kernel. Take horizontal
convolution for example, in the encoding stage, two convolutions with kernel size
1×3 and 1×5 are performed respectively, both with stride setting as (1, 2). Since
the size of the input feature is m×n×64, so the two encoding features are of size
m × (n/2) × 64, which will be concatenated along the depth dimension to form
an encoding feature of size m× (n/2)× 128. Then the horizontal deconvolutions
adopt the same setting and finally produce a decoding feature of size m× n× 64,
which is the same size as the input feature. Similarly, we can obtain the other two
decoding features with different kernel sizes and strides. Finally, the three types
of decoding results of size m × n × 64 are fused by element summation. In par-
ticular, the width and height of the feature map after encoding are shrunk by half
while the number of feature channels is doubled to keep more information. See
Fig. 4 for an illustration.

4.2. Network Architecture

Sequential ED Units Considering the iterative process of (3), we imple-
mented SED-Net as a sequential concatenation of ED units, as shown in Fig. 5.
Recall that the input and output of an encoding-decoding unit are of the same size,
so the number of built-in encoding-decoding units can be arbitrary.
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Figure 5: Illustration of the sequential ED units.

Stage-wise Connection The operation of adding the noise back is critical
to the process of (3). Therefore, we add skip connections to the CNN. As shown
in Fig. 1, the feature of the noisy image (output of the feature extraction layer) is
combined with decoding features of ED units to generate the clean image. This
connection way is not strictly the same as (3). For convenience, we flexibly
merge these features in the last layer so that we do not have to merge ”noise” with
decoding results everytime. The training process is more stable and the denoising
result is better after changing the connection way. We named this connection way
as stage-wise connection since each ED unit is like a simple denoising stage.

There are several benefits using stage-wise connections. First, skip connec-
tion naturally helps alleviate the gradient vanishing or exploding problems. Sec-
ond, the decoding results with different depths have complementary information
about image details. By combining information from layers in different depths,
the stage-wise connection can help preserve the image details during the denoising
process.

Architectural Details To preserve the spatial size of feature maps, we use
zero padding for the neighborhood outside input feature maps before convolu-
tion. In the feature extraction module, a convolutional layer with a kernel size of
3× 3 and 64 output channels followed by a rectified linear unit (ReLU) activation
function is performed on the input images to extract image features. The back-
bone contains 9 encoding-decoding units, which brings 18 convolutional layers.
Batch normalization and ReLU activation functions are performed after each con-
volutional layer of the encoding-decoding unit. Subsequently, the reconstruction
module is employed, which consists of a convolutional layer with a kernel size of
3×3 without an activation function, yielding one output channel for a gray image.
Therefore, the proposed SED-Net has 20 convolutional layers in total.
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5. Experiments

5.1. Experiment Setting
Datasets. We use the same training dataset as TNRD [27] but without crop-

ping the original images. The raw dataset contains 400 gray images of size
481 × 321 or 321 × 481. For each image, we crop 126 small images of size
64 × 64 by setting the cropping stride as 30 pixels. These cropped images are
then augmented in two ways, flipping along the y-axis and rotating by four angles
(0◦, 90◦, 180◦ and 270◦). Therefore, one small image can generate 8 samples.
403200 training samples are obtained after augmentation. Following DnCNN,
two popular testing datasets Set12 [21] and BSD68 [47] are utilized to evaluate
the performance. Note that the images of BSD68 are not included in the training
dataset although raw images are also from the Berkeley segmentation dataset.

Implementation Details. As well as most CNNs for image denoising, Adam
optimizer [48] is chosen to minimize the mean squared error in this paper. We train
60 epochs for the SED-Net with a mini-batch size of 128. Piece-wise learning
rate is adopted for training, which is 10−3 for the first 30 epochs, 10−4 for the
next 20 epochs, and 10−5 for any remaining epochs. There are 3150 batches in
total, but only 2500 batches are sampled for training per epoch. All filters in
convolutional/deconvolutional layers are randomly initialized.

Hardware Configuration. All the experiments are conducted on a PC with
an i7-7700K CPU and a Titan V GPU.

5.2. Ablation Study
To verify the effectiveness of the sequential ED units, we construct a baseline

backbone using ED units with normal convolutions. Denoising networks using the
baseline backbone and a plain CNN are trained for comparison. Both of them have
a feature extraction layer and a reconstruction layer. Apart from this, the baseline
has 5 iterative encoding-decoding units and the plain CNN has 10 convolutional
layers in the middle to ensure that the two CNNs have the same depth.

The number of output channels of each convolution is set to 64 except for the
encoding convolutional layer and the reconstruction layer. The kernel size is 5×5.
Other proposed components are excluded to eliminate interference. The number
of training epochs is set to 40 and the mini-batch size is set to 64 since fewer
parameters need to be optimized. The settings of batch normalization, activation
function, and other unmentioned parameters are consistent with those mentioned
in Section 4.2 and section 5.1.
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Figure 6: Average PSNR and SSIM of the plain CNN and the baseline over BSD68. σ = 25. k is
kernel size.

Experiment results are shown in Fig. 6. With a smaller kernel size 3, the base-
line is comparable to the plain CNN in terms of PSNR but has a lower SSIM value.
A bigger kernel size is of benefit to capture the structural information. However,
the baseline achieves a significant gain of about 0.08dB by PSNR and 0.0043 by
SSIM on BSD68 if the same kernel size 5 is used. It might be because the en-
coding process is trained to better ignore the ”noise” signal and meanwhile learn
a compact representation of the clean signal so as to remove noise and protect
structures at the same time. Besides, the computational complexity of the base-
line backbone is half that of the plain CNN with the same depth and same kernel
size thanks to the convolution stride at encoding stages. The comparison result
demonstrates the encoding-decoding unit’s potential for image denoising.

Next, we conduct several experiments to study other proposed components’
influence on performance. The following three components are selectively applied
to the baseline. The resulting networks follow the same setting as the baseline if
not particularly mentioned. Backbones with different configurations are trained
and then evaluated on BSD68. Experiment results are shown in Table 1.

Directioinal Convolution (DC). To prevent edges or textures from being de-
stroyed by ”averaging”, directional convolution/deconvolution is added to en-
hance details preservation. The original convolutions in the encoding-decoding
unit of the baseline are replaced by mixtures of two types of directional convolu-
tions and one normal convolution, as shown in Fig. 2.
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Table 1: Influence analysis on proposed components. Average PSNR/SSIM on BSD68 with noise
level as 25, the number of parameters and GFLOPs are reported. The symbol X means embedding
the corresponding component into the baseline backbone.

Setting DC IM SC PSNR SSIM #Params(M) GFLOPs

Baseline 29.12 0.8313 3.69 151.15
Use DC X 29.16 0.8333 5.16 223.81
Use IM X 29.10 0.8309 2.51 102.83
Use SC X 29.22 0.8343 3.69 151.45
Not SC X X 29.16 0.8318 3.69 160.96
Not IM X X 29.33 0.8366 5.17 224.11
Not DC X X 29.29 0.8354 2.51 103.13
SED-Net X X X 29.32 0.8359 3.69 161.26

Figure 7: DC’s influence on prediction.

The results verify the positive role of DC in denoising. As we can see, adding
DC into the baseline leads to good improvements over both PSNR and SSIM,
removing DC from SED-Net decreases 0.03dB by PSNR and 0.002 by SSIM. It is
not surprising that the changed value is relatively small because fine-grained edges
and textures have a limited influence over PSNR and SSIM. And the DC’s mission
is to recover clear edges and textures. We further visualize the denoising results in
Fig. 7 to see DC’s practical impact. There are four subfigures, including the noisy
Barbara image, its two predictions from SED-Net and Not DC respectively, and a
difference image. White pixels in the difference image indicate the corresponding
position where SED-Net predicts a better pixel value than Not DC. It is obvious
that clothes with fine textures are better recovered by SED-Net.

Inception Module (IM). The inception module is involved in the baseline to
reduce the number of parameters. We quantify the resulting effect by changing
original convolutions into inception modules. The simplified inception module
contains a small kernel (3 × 3) and a large kernel (5 × 5), both with half output
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channels compared to the corresponding convolutional layer. Thus, The proposed
IM has an intermediate number of parameters between the convolutions with small
kernel size and large kernel size.

Figure 8: Different models’ average running time on BSD68. The red curve represents PSNR
values and the blue curve represents the average running time on BSD68.

Compared to the baseline with large kernel size, using IM not only reduces
a great number of parameters but also achieves competitive performance. The
PSNR’s decrease is small (29.12dB versus 29.10dB) while SSIM decreases by
0.0004 (0.8313 versus 0.8309). Unlike these two cases, the baseline with small
kernel size 3 has poor performance (29.03dB PSNR and 0.8248 of SSIM), which
can be seen in Fig. 6. As the 5th column of Table 1 shows, the SED-Net has an
average PSNR of 29.32dB. If removing IM from SED-Net, the average PSNR is
29.33dB. In summary, in our network, using IM will only cause slight PSNR and
SSIM decrease. Fig. 8 presents a comparison of different models to evaluate the
influence of the proposed components on both runtime efficiency and reconstruc-
tion quality. Among the four compared models, SED-Net and Not IM have the
highest PSNR. But using IM can cut down about 30% parameters and thus ac-
celerate denoising time. So we decide to embed IM into SED-Net as a trade-off
between good denoising performance and computational efficiency.

Stage-wise Connection (SC). Extracted features of the first layer and features
from other decoding layers are concatenated before being inputted into the last
reconstruction layer. These connections are removed if SC is not X at the table.
Only the last decoding feature will be sent to the reconstruction layer.
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Figure 9: Average PSNR and SSIM on BSD68. σ = 25. #EDU means the number of Encoding-
decoding units. The red curve represents PSNR values and the blue curve represents SSIM index.

Remarkably, it appeared that the SC component is of great importance for
SED-Net, because removing SC from SED-Net causes large decrease in both
PSNR and SSIM. The result of Use SC and Baseline also illustrates the SC’s
great impact on performance. The reason might be that the gradients are hard to
be propagated to the shallower layers in training and the images’ structures are
inevitably being destroyed as the network goes deeper without short connections.
By sparsely connecting features of various depths, the image structure’s feature
of shallow layers can be well preserved which is complementary to that of deep
layers.

5.3. Comparison with SOTA
It is widely accepted that a deeper network has stronger learning ability. Recall

that the iterations of encoding-decoding units in the SED-Net are flexible. So we
first conducted an experiment to seek out an appropriate depth for the SED-Net.
Fig. 9 shows experimental results in relation to the number of encoding-decoding
units. Experiment results indicate that 9 is an appropriate and acceptable number
for consideration of model size and performance.

Then we compared the proposed method with some state-of-the-art approaches.
Twelve well-known and representative denoising methods, including the old but
famous engineered method BM3D [21], the weighted nuclear norm minimization
method (WNNM [49]), the classical learning-based method TNRD [27], and nine
outstanding CNNs: DnCNN [29], MemNet [32] and NLRN [52], FFDNet [30],
NLED [50], DRUNet [51], CDNet [36],DRUNet [51], WINNet [38] and MWD-
CNN [40] are picked. Among them, WINNet and MWDCNN are two recently-
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Table 2: Average PSNR/SSIM results of different Gaussian denoising methods. The best two
results are highlighted in red and blue respectively.

Dataset Method σ = 15 σ = 25 σ = 50

Set12

BM3D [21] 32.37/0.8952 29.97/0.8504 26.72/0.7676
WNNM [49] 32.70/0.8952 30.28/0.8557 27.05/0.7775
TNRD [27] 32.50/0.8958 30.06/0.8512 26.81/0.7680
NLED [50] 32.61/.08983 30.20/0.8566 26.91/0.7702

DnCNN [29] 32.86/0.9031 30.44/0.8622 27.18/0.7829
FFDNet [30] 32.75/0.9029 30.43/0.8641 27.32/0.7906
DRUNet [51] 32.94/- 30.59/- 27.40/-
WINNet [38] 32.85/0.9033 30.54/0.8647 27.40/0.7926
CDNet [36] 32.87/0.9034 30.53/0.8646 27.38/0.7924

MWDCNN [40] 32.91/0.9037 30.55/0.8651 27.34/0.7914
MemNet [32] - - 27.38/0.7931
NLRN [52] 33.16/0.9070 30.80/0.8689 27.64/0.7980
SED-Net 33.06/0.9093 30.72/0.8710 27.55/0.7965

BSD68

BM3D [21] 31.07/0.8717 28.57/0.8013 25.62/0.6864
WNNM [49] 31.37/0.8766 28.83/0.8087 25.87/0.6982
TNRD [27] 31.42/0.8769 28.92/0.8093 25.97/0.6994
NLED [50] 31.43/0.8773 28.93/0.8101 26.02/0.7012

DnCNN [29] 31.73/0.8907 29.23/0.8278 26.23/0.7189
FFDNet [30] 31.63/0.8902 29.19/0.8295 26.29/0.7261
DRUNet [51] 31.79/- 29.31/- 26.36/-
WINNet [38] 31.70/0.8907 29.27/0.8311 26.36/0.7270
CDNet [36] 31.74/0.8916 29.28/0.8314 26.36/0.7272

MWDCNN [40] 31.77/0.8925 29.28/0.8319 26.29/0.7266
MemNet [32] - - 26.35/0.7294
NLRN [52] 31.88/0.8932 29.41/0.8331 26.47/0.7298
SED-Net 31.88/0.8995 29.42/0.8403 26.46/0.7348

published methods, which are inspired by or involve wavelet transform, whose
comparison can show the benefits of consideration of the whole wavelet analysis
model in our method. All comparison results are presented in Table 2.

As the table shows, NLRN and SED-Net win the comparison with the highest
PSNR and SSIM. Besides, our SED-Net achieves competitive results compared to
NLRN without incorporating nonlocal operations into the network. On BSD68,
SED-Net shows the best denoising ability except for only one average PSNR value
less than the NLRN’s. On Set12, although SED-Net achieves the second-best
PSNR, it earns a slightly better SSIM value over NLRN. The result demonstrates
SED-Net’s superior denoising performance and detail preservation ability. In ad-
dition, compared with MWDCNN and WINNet, the proposed method gains ob-
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vious improvement, which demonstrates the advantages of the proposed wavelet
analysis model-inspired design over just consideration of wavelet transform.

Table 3: Complexity comparison of different Gaussian denoising methods. The number of FLOPs
and running time (in seconds) for processing a 256×256 image are reported.

Method GFLOPs Time (s)

TNRD [27] 7.99 0.002
DnCNN [29] 36.51 0.013
FFDNet [30] 7.99 0.023
NLRN [52] 1630.30 220.48

MemNet [32] 191.54 0.088
DRUNet [51] 143.48 0.033
WINNet [38] 103.36 0.114

MWDCNN [40] 214.87 0.048
SEDNet 161.26 0.078

Computation time is a critical performance measure for evaluating image de-
noising methods. In this study, we evaluated the performance of several methods
and compared their prediction times, which are presented in Table 3. Among the
evaluated methods, SED-Net and NLRN demonstrated the best performance, with
SED-Net taking only 0.08 seconds to denoise a 256 × 256 image, while NLRN
required approximately 220 seconds. This is mainly because NLRN incorporates
nonlocal operations into neural networks, which increases its runtime consump-
tion significantly. Our proposed method is slightly slower than DnCNN, but its
performance is competitive with NLRN, and on average, it increases the peak
signal-to-noise ratio (PSNR) by 0.19dB compared to DnCNN.

We also report the giga floating point operations (GFLOPs) for each method
in Table 3. For instance, DnCNN with a depth of 17 requires approximately 37
GFLOPs when the input image size is 256×256. In contrast, our proposed method
requires approximately 161 GFLOPs, which is roughly 4 times that of DnCNN.
Notably, a single nonlocal module in NLRN requires over 100 GFLOPs, which are
repeated 15 times during prediction, making NLRN the method with the highest
GFLOPs among all compared deep learning methods. Additionally, the trained
model of NLRN can only accept patches as input due to the insufficient memory
to load the intermediate nonlocal matrix for a large image, resulting in extra patch
aggregation. In contrast, DnCNN and our proposed network usually accept the
entire image as input.

We also include a PSNR vs Running Time plot in Fig. 10, which illustrates the
trade-off between the efficiency and effectiveness of the evaluated methods. The
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Figure 10: Average PSNR versus computation time on Set12. σ = 25.

plot shows that SED-Net achieves a good balance between efficiency and effec-
tiveness, providing both state-of-the-art performance and relatively low computa-
tional cost.

Putting aside the numbers of PSNR and SSIM, SED-Net also generates better
vision results. We show the visual comparison of the SED-Net and other com-
pared methods except for MemNet in Fig. 11. For the huge poster image from
BSD68, there are some small edges around the man’s head. We zoom in on
the area to see the details. It can be seen that only the SED-Net successfully
recovers these small edges even though NLRN achieves the best PSNR result.
It might be because the compared methods tend to smooth the area around the
man’s head since there are minor intensity differences between the tiny edges and
the background. For methods like BM3D, WNNM, and NLRN that use NSS prior,
they may fail to find similar patches correctly due to that the noise corruption is
stronger than the edges’ sharpness. But our network is capable of enhancing edge
preservation via learning directional convolutions. Another image example is the
classical Lena image. NLRN and SED-Net recover clear edges of the hat while
other methods oversmooth them. Second, it is notable that SED-Net not only
suppresses hair’s noise but also keeps its right shape compared to other methods,
including NLRN.
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(a) Huge poster image

(b) Lena image

Figure 11: Visual comparison. The first image is from BSD68 and the second one is Lena image.
The noise level is set as 25.
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6. Conclusion

This work proposed a CNN-based image denoiser to win the trade-off be-
tween computational efficiency and denoising performance. By drawing inspira-
tions from traditional wavelet-based variational models, we developed a model-
inspired CNN architecture containing iterative encoding-decoding units, direc-
tional convolutions, inception modules, and stage-wise connections. Experimen-
tal results showed that our proposed approach achieved high computational effi-
ciency, while still attaining competitive denoising performance compared to state-
of-the-art methods. Overall, the proposed method provided a promising solution
for efficient image denoising. Our future work will investigate the extension of
the proposed directional convolution to a more general patterned convolution so
as to design a shallower and faster image restoration CNN with even better per-
formance.
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