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1. Algorithm Flow of Our DUN
For better understanding of our method, the algorithm flow of U3Net is provided in Algorithm 1.

Algorithm 1 Algorithm flow of U3Net.
Input: Y : wrapped phase; σ: noise strength
Output: X(T ): unwrapped phase

1: X(0) ← 1, E(0) ← 0
2: {λ(t), w(t), d(t)}Tt=1 = CAM(σ)
3: for t = 1 to T do
4: X
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(0) ←X(t−1), α(0) ← 0
5: for j = 1 to J do
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9: end for
10: X(t) = NNϕ(X

(t)

(J),Gt(X
(t)

(J)), w
(t))

11: E(t) = NNψ(E(t−1), d(t))
12: end for

2. Proof of Proposition 1
Consider X = W(X). We have

∇xX[m,n] = ∇xX[m,n]− 2π∇K[m,n],

where K[m,n] ∈ Z for any point [m,n]. Thus, ∇xK[m,n] = K[m1, n] − K[m,n] remains an integer. Recall that
∇xX[m,n] ∈ (−π, π) by 2D Itoh’s continuity condition. We have then

W(∇xX)[m,n] = ∇xX[m,n].

The same derivation is applicable for ∇y(X). Then, we have that

W(∇W(X))[m,n] = ∇X[m,n], if ∥∇X[m,n]∥∞ = max{|∇xX[m,n]|, |∇yX[m,n]|} < π. (1)

The proof is done.

3. Proof of Proposition 2
Once ∇Y = ∇X +∇N is satisfied, rewrite EY L by
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Since the U |X and N |X are independent and follow the same distribution P , we have that
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Thus, the second term (inner product term) in the right-hand side of Eq. (2) is zero. The last term in Eq. (2) EX,N ,U∥∇U −
∇N∥2F = (∇U −∇N)⊤(∇U −∇N) is a constant determined by the distribution of the noise and is independent of the
parameter values of F . Consequently, we have

EY L = EX,N ,U∥∇F
(
W(∇Y +∇U)

)
−∇X∥2F + C0, (3)

where C0 is a constant. The proof is done.

4. More Implementation Details of Our DUN
We set the number of stages as T = 3 and the number of steps for AGD as J = 10. The first convolutional layer of the
Sub-NN for estimating X outputs a feature map with 6 channels. As the spatial dimension of the features is reduced by
half, the channel number is progressively increased to 12, 24, 48 and 96. The convolutional layers in the up-scaling decoder
generate the symmetrical feature maps as the ones in the down-scaling encoder. The number of convolutional layers l in the
Sub-NN for estimating E and its hidden channel number are set to 6 and 32, respectively. The hidden channel number of
CAM is set to 128. The total loss Ltotal is applied at each stage, weighted by γt =

1
T−t+1 for the t-th stage.

5. Analysis of Figure 5 of Main Paper
Due to space limitation in the main paper, we provide the analysis of Figure 5 of the main paper here. Recall that in the
ablation study using Lsr → L (Lsr is replaced by L), the outer wrapping operator is ablated from Lsr. As a result, it fails
to mitigate the negative effects caused by the outlier points that do not conform Eq. (6) in the main paper. As seen from
Figure 5 of the main paper, the results of Lsr → L focus on addressing the 2π-jump outlier points, while neglecting the other
areas with more subtle changes. The incorrect gradients of these outlier points result in further unsatisfying reconstruction
results. As for the ablation study using w/o ∇U (i.e., the outer wrapping operation is included to preserve the correct phase
structure), the measurement noise remains unaddressed due to the exclusion of the noise-resistant mechanism in training.

6. More Analysis on Limitations of Our Approach
Our experimental results in the main paper show that, when the noise is severe (i.e. SNR = 0), our U3Net performs worse
than some supervised methods. This is probably due to that severe noise increases the number of outlier points, lowering
the effectiveness of the training function. However, U3Net still outperforms other supervised methods. Indeed, severe noise
presents a challenge to all compared GT-free methods, as seen in the experimental results. In comparison to those GT-free
methods, U3Net demonstrates its better noise robustness as its performance advantage is more noticeable for heavier noise.
Our research will focus on how to further improve the noise robustness.
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