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Abstract

Texture representation is a challenging problem due to the complex underlying physics
of texture as well as the variations caused by changes in viewpoint. Recent progress in
texture analysis has been made by the power of convolutional neural networks (CNNs)
in feature learning. However, most current methods aggregate the features from the
last convolutional layer of the CNN to obtain a global feature vector, which fails to
leverage shallow low-level visual cues and cross-layer feature patterns, limiting their
performance. In this paper, we propose to trace the features generated along the convo-
lutional layers via a histogram of local 3D invariant binary patterns, called deep tracing
patterns. This leads to a highly discriminative yet robust global feature representation
module. Building such a module into a CNN backbone, we develop an effective ap-
proach for texture recognition. Extensive experiments on six benchmark datasets show
that the proposed approach provides a discriminative and robust texture descriptor, with
state-of-the-art performance achieved.
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1. Introduction

Texture recognition is a fundamental task in computer vision, with a wide range of
applications such as material classification [1], terrain recognition [2], face analysis [3],
and object recognition [4]. One of the main challenges of texture recognition lies in its
high intra-class variations, which originates from its complex underlying physics and
the various spatial transforms caused by viewpoint changes. Moreover, the diverse and
even contradictory nature of texture, such as uniformity vs. deformability, regularity
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vs. randomness, and fine-scale patterns vs. coarse-scale patterns, also pose a significant
difficulty to the feature representation of texture. An ideal texture representation should
possess both high discriminability for capturing the underlying physics of textures and
high robustness to different types of spatial transforms and disturbances.

Texture recognition has been extensively investigated in the past decades. Tra-
ditional methods typically extract local features (e.g., using SIFT [5] and LBP [6])
from a texture image, and then aggregate them into a global representation (e.g., us-
ing BoW [7] and fractal statistics [8]) for classification. Recently, with the advent of
convolutional neural networks (CNNs) and their success in universal image classifica-
tion, numerous CNN-based texture recognition approaches have emerged. However,
texture image recognition presents unique challenges that may not be adequately ad-
dressed by generic CNNs, resulting in suboptimal performance. Consequently, to boost
the CNNs’ performance in texture recognition, specialized modules are developed to
bridge the gap between the general CNN architecture and the specific demands of tex-
ture recognition.

For instance, many existing methods address the tension between the need for ro-
bustness against spatial transformations in global aggregation and the spatially-indexed
fully-connected (FC) layers. To achieve an orderless representation, global average
pooling (GAP) [9, 10] is placed on the top-layer features to ensure invariance to spatial
deformations. Nevertheless, the straightforward use of GAP may yield less descrip-
tive features, raising the question of how to maintain discriminative power during ag-
gregation. To address this problem, several aggregation techniques based on specific
statistics have been proposed, such as FV-CNN [11], DeepTEN [12], and many others.

While numerous endeavors have been made to enhance global aggregation for tex-
ture classification beyond generic CNNs, local feature extraction, another crucial step
in texture recognition, has received comparatively less attention during the CNN era. In
this work, we investigate the exclusive requirements of local texture description against
the general CNN design. Towards this end, we propose a so-called Deep Tracing Pat-
tern (DTP) module that aims at extracting robust and discriminative local descriptors
for texture recognition. The main idea of the proposed DTP module is illustrated in
Fig. 1. Integrating the DTP module into a ResNet backbone, we develop DTPNet,
an effective deep model for texture recognition, which exhibits state-of-the-art perfor-
mance in the experiments.

1.1. Motivations and Main Idea

In this work, we explore the distinctive characteristics of texture recognition, which
should be considered in a local feature extraction scheme but ignored by a generally-
designed CNN. A local textural feature extraction module is then developed to fit these
properties and boost the texture recognition performance. The following characteristics
are taken into account:
Fine-grained details are crucial for texture recognition. In contrast to object or
scene recognition where coarse-scale structures play a dominant role, fine-scale details
typically can be decisive clues for texture recognition, as texture usually relates to
the “micro-structures” of an image. However, most existing methods concentrate on
the manipulation of the top-layer features, which inevitably overlooks some textural
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Figure 1: Illustration of the basic idea of deep tracing pattern (DTP), which takes feature maps
from multiple layers as input, encodes each local patch with binary codes, and aggregates them
into a histogram-based global feature.

characteristics in the fine scales due to the involved downsampled operations or learned
low-pass convolutional kernels. Hence, we exploit the local features on multiple layers,
taking both the shallow and the deep features into consideration.
Evolution rules across layers/scales provide useful clues for texture recognition.
As shown in [13], the evolution rule of texture structure across scales is useful for
recognition. However, these clues are seldom explicitly modeled for local feature ex-
traction in most existing CNNs. A CNN builds up a hierarchical representation of an
image based on a series of convolutional layers. The feature maps from one layer to
the next encode texture structures from a smaller to a larger scale. That is, we can
treat the generation of feature maps of a texture image along CNN layers as a dynamic
evolution process in scales, which should provide useful clues for texture recognition.
Fig. 2 illustrates this concept, where the cross-layer features are obtained by stacking
the size-normalized feature maps from different layers and the feature vectors are ex-
tracted along the stacked dimension for analysis. As plotted in the bottom-left part, the
vectors of the stone brick patches exhibit similar trends along the layers, while those of
stone brick and grass differ noticeably. The bottom-right plot visualizes these feature
vectors via t-SNE [14], where the features of the same classes are clustered, while those
of different classes are separated. This observation motivates us to trace the patterns
along CNN layers and explore them for more discriminative local features.
Texture recognition has a high demand for robustness against rotation and illu-
mination changes. Real-world textures can occur at arbitrary rotations and they
may be subjected to varying illumination conditions, highlight the importance of ro-
bustness for a texture descriptor. However, in conventional CNN pipelines, no explicit
constraints regarding such robustness are imposed. As a result, the robustness of the
local features is hard to guarantee when facing various transforms. This necessitates a
robust local encoding scheme, which can guarantee the robustness of the local features.

Motivated by the aforementioned observations, our proposed DTP module traces
the well-learned CNN features across layers and encodes them with an LBP-inspired
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Figure 2: Illustration of the evolutionary patterns across layers. Top: Four textured images from
two classes “Stone Brick” and “Grass”; Bottom left: Plot of the cross-layer feature vectors,
where the colors denote the corresponding sources patches marked in the top row; Bottom right:
t-SNE visualization of the cross-layer features of the images using `2 distances. All the features
used are extracted from ResNet50.

scheme. The fundamental idea is illustrated in Fig. 1, where features predicted by
different layers, from shallow to deep, are collected, resized, and concatenated to form
grouped cross-layer feature tensors. Then, the local patches in the grouped tensors
are encoded into 3D binary codes to capture both the spatial-local and the cross-layer
textural characteristics, followed by a spatial pyramid histogram for multi-scale global
feature extraction. Benefiting from such a pipeline, the resulting DTPNet that integrates
DTP into a ResNet backbone is effective for texture recognition.

1.2. Contributions

In summary, our contributions are as follows.
Exploiting cross-layer features in local feature extraction. Unlike most existing
approaches e.g. [12, 15, 16], which primarily focus on improving the global aggrega-
tion scheme, this work investigates local feature extraction by exploiting the cross-layer
features in CNNs. There are some approaches (e.g. [17]) that merge feature maps from
different layers into a new one, on which global feature aggregation is applied. In com-
parison, the proposed DTP module extracts the local pattern in the cross-layer statistics,
including the spatial details and the trends along layers. Our work thus can inspire fur-
ther studies on the evolution of CNN features for other computer vision tasks.
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Introducing robustness for local feature extraction. Texture features need to
be robust against deformation and disturbances as real-world textures can occur in
various rotation or illumination situations. However, the robustness of local features is
seldom addressed in the CNN period. In this paper, we construct an LBP-inspired local
encoding scheme for feature extraction, which explicitly enforces rotation invariance
and gray-scale robustness to extracted local codes.
State-of-the-art performance achieved. Incorporating the DTP module into CNN
backbones for boosting the robustness and discriminability of texture representation,
the proposed DTPNet achieves state-of-the-art results on several benchmark datasets
in classification and retrieval tasks.

2. Related Works

As a fundamental computer vision topic, texture recognition has been researched
for years. Interested readers are referred to [18] for a comprehensive survey. For a
concentrated introduction, we review the works related to ours in this section.

2.1. Handcrafted Features for Texture Recognition

Early approaches usually adopt handcrafted designs for texture recognition. His-
togram of textons (e.g. [19, 20]) and BoVW of texture (e.g. [7]) are two represen-
tative frameworks of this route. Both frameworks include two critical steps: local
patch encoding and global feature aggregation. For global feature aggregation, the re-
searchers make efforts on introducing additional discriminativeness beyond the naive
histograms. The VLAD [21] aggregates the first-order statistics on the accumulated
differences between a local descriptor and its correspondences. The Fisher vector [11]
further introduces the 2nd-order statistics for encoding. The MFS [8] employs fractal-
geometry-based statistics for global feature aggregation. Regarding local encoding, on
the contrary, many researchers aim at enhancing the invariance or robustness of the
local descriptors. Lowe et al. [5] introduce the scale-invariant feature transform(SIFT)
by locating the local minimum/maximum in the scale pyramid. Lazebnik et al. [7]
propose the rotation-invariant feature transform(RIFT), which maintains rotation in-
variance via the histograms of relative gradient orientation in rings. Ojala et al. [6]
introduce the local binary pattern, which achieves gray-scale invariance by threshold-
ing a local neighborhood at the gray value of the center pixel into a binary pattern.
Rotational invariance is further obtained by maximal circular bit-shift codes. Inspired
by LBP, we also introduce the binarization scheme and circular-shift maximization
mechanism for describing the cross-layer feature maps in CNN.

2.2. CNN-based Texture Recognition

Inspired by the success of CNN in the computer vision realm, a growing number of
methods utilize CNN as a powerful feature extractor for texture recognition. One of the
seminal works can be traced back to the work of Bruna et al. [22], which implements
scattering transformation with convolutional layers for texture classification. Though
relishing the invariance brought by scattering transform to certain deformations, their
CNN is not learned but with predetermined weights, e.g. basic wavelet filters, and thus
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cannot leverage the power of deep learning. To introduce the learning power of CNNs,
Cimpoi et al. [23] use a plain CNN architecture followed by fully connected (FC) layers
for texture recognition. However, as demonstrated in [9], a CNN with FC layers is not
a good choice for texture recognition. A probable reason is that texture recognition has
a higher demand for robustness to spatial transformation, which is against the spatial-
indexing nature of FC layers. To improve the robustness, Andrearczyk et al. [9] and
Fujieda [10] apply global average pooling(GAP) to achieve invariance to the spatial ar-
rangement. However, simple spatial accumulation may lead to low discriminativeness.
To address this issue, Lin and Maji [24] apply bi-linear pooling which exploits the
correlation between channels. Inspired by the handcrafted features aggregation mecha-
nisms, Perronnin et al. [11] introduce the FV to encode the convolutional features from
a pre-trained CNN. Owing to the non-differentiable nature of FV, the weights of the
pre-trained backbone CNN in [11] cannot be fine-tuned. To enable end-to-end learn-
ing, Zhang et al. [12] generalize VLAD and FV, and integrates an encoding layer on top
of convolutional layers into CNN. Xue et al. [2] combine DeepTEN and GAP, by which
local appearance and global context are simultaneously captured. The combination is
done by applying bi-linear pooling to the features pooled from DeepTEN and GAP.
Bu et al. [25] propose a locality-aware coding layer that performs dictionary learn-
ing and feature encoding on convolutional features. Note that the methods mentioned
above utilize orderless pooling for aggregation, which may ignore the spatial layout
of local features. To encode the spatial dependency between local primitives, Zhai et
al. [26] propose a model called DSRNet with a dependency learning module, which
exploits the spatial dependency among texture primitives for capturing structural rela-
tions between local features. Based on multi-fractal geometry, Xu et al. [15] leverage
the hierarchical fractal analysis to encode the fractal property of spatial arrangement
within the CNN’s feature maps. Mao et al. [16] propose a deep residual pooling net-
work that combines a residual encoding module that preserves spatial information and
an aggregation module that generates orderless features.

Enhancing the discriminativeness while ensuring robustness has always been the
objective for texture representation. The methods mentioned above all achieved the
improvement with better manipulation of the top-layer feature maps at a coarse scale.
However, different from object or scene recognition, fine-scale details are also impor-
tant for texture recognition. To encode feature maps in different scales, Hu et al. [27]
propose to encode multiple-layer features, which performs feature aggregation on dif-
ferent convolutional blocks individually and fuse the results by an FC layer, Chen et
al. [17] also consider feature maps across layers, which learns an implicit model of
statistical self-similarity carried within the CNN’s feature maps.

The mentioned methods all make their efforts on improving the global feature ag-
gregation, while the counterpart, local encoding gains little attention in the CNN pe-
riod. In this work, we make our efforts on local feature encoding by introducing the
local binary pattern on the cross-layer features.

2.3. LBP and LBP-inspired CNNs
Local binary pattern (LBP) is originally proposed by Ojala et al. [6], serving as

a significant and typical tool for image classification, e.g. texture recognition [28]
and face recognition [29]. The key idea of LBP is to extract the feature from the
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differential distribution of a texture image based on texture spectrum modeling. For
addressing the problem caused by scale transformation and noise interference, Luo et
al. [28] propose an LBP-based texture descriptor named SNELBP which combines
the advantages of multi-scale Gaussian filter, MRELBP [30], noise-robust and scale-
invariant histogram. Shu et al. [31] construct an LBP-based texture descriptor called
GRLBP to analyze the nature of pixel intensity distribution in local neighborhoods
with the assistance of global information for higher discriminativeness. With the rapid
development of CNNs, a number of approaches focus on the combination between the
handcrafted features (e.g. LBP and HOG) and the CNN features as a discriminative
texture representation. Inspired by LBPs, Xu et al.[32] propose the so-called local bi-
nary convolution (LBC), which exploits a set of fixed pre-defined binary differential
filters for feature extraction. Though the LBC can afford significant parameter sav-
ing, rotation invariance is not considered and introduced in LBC. Aiming at rotation
invariance, Zhang et al. [33] propose a deep architecture named Local Binary orienta-
tion Module (LBoM), where the orientation feature is learned and then discarded for
robust features. Unlike the fusion schemes mentioned above, our proposed method is
the pathfinder for adopting the LBP descriptor on the cross-layer features from CNN.

3. Proposed Method

3.1. Overview

In this paper, we proposed a novel Deep Tracing Pattern Network (DTPNet) for
real-world texture recognition, which captures discriminative and robust local features
by tracing the local patterns across different network layers. The overall architecture
of DTPNet is illustrated in Fig. 3. The proposed network is built upon the ResNet
backbones [34], which consists of a series of residual blocks(RBs), followed by an
average pooling layer to extract the global feature, and a fully-connected layer with
Softmax for label prediction. To capture the texture patterns across layers, we proposed
a deep tracing pattern (DTP) module, which takes the features from T selected residual
blocks (RBs) in the backbone as inputs and outputs a DTP feature. Formally, the DTP
module can be written as

fDTP = DTP(F1, · · · ,FT ), (1)

where Fi ∈ RHi×Wi×Di denote the feature tensor output by the i-th selected RB, and
fDTP is outputted global DTP feature. The DTP feature fDTP is then concatenated with
the GAP’s output of the backbone for classification. The details of the proposed DTP
module are given as follows.

3.2. Deep Tracing Pattern Module

The DTP module consists of three phases: cross-layer feature grouping, robust
local feature encoding and spatial pyramid histogram calculation.
Cross-layer feature grouping Recall that the spatial size Hi ×Wi and the channel
number Di vary across different RBs. In the first phase, the DTP module firstly nor-
malizes the inputs Fi ∈ RHi×Wi×Di into the same shape. Toward this end, we apply
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Figure 3: The overall architecture of DTPNet. The proposed DTP module is integrated into a
ResNet backbone, which groups the feature maps from multiple layers through the cross-layer
feature grouping scheme (left), extracts local features using the DTP encoding (middle), and
aggregates the global feature using soft spatial pyramid histogram (right).

a 1 × 1 convolution to transform each Fi into a D-channel one and then upsample it
into the same spatial resolution H ×W , with H = maxiHi and W = maxiWi. In the
implementation, we utilize bilinear interpolation for upsampling.

Let N1, · · · ,NT ∈ RH×W×D denote the size-normalized feature tensors. To ca-
pute the patterns along layers, We reorganize Nis into D feature tensors as

Gd = [Nd
1 ;Nd

2 ; · · · ;Nd
T ] ∈ RH×W×T , ∀d, (2)

where Nd
i denotes the d-th channel ofNi and [·; ·] denotes the concatenation along the

channel dimension. In other words, the feature maps from different layers but the same
channels are grouped into tensors, so the patterns along layers can be extracted from
the reorganized feature tensor Gds.
Robust local feature encoding Each local neighborhood located in Gd contains
rich structures that encode complex spatial characteristics and along-layer patterns of
textures. The second phase of the DTP module aims at extracting discriminative and
robust features for each local neighborhood. Borrowing the idea of LBPs which has
shown their effectiveness in characterizing local patterns, we sample 3D local patches
in each position of each tensor Gd with a sliding window, and extract a binary code for
each 3D patch. Specifically, for some sampled patch X ∈ Rk×k×T , a set of equally
spaced pixels on a ball around the patch center with radius r is sampled. Let x =
[x1, x2, · · · , xP ] denotes the values of sampled pixels andM denotes the median value
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of the patch. The binary code of the patch X is then calculated as

φ(x,M) =

P∑
p=1

s(xp −M)2p−1. (3)

Here, the median value is used for its higher robustness to noises, and the differences
between each pixel and median value encourage robustness against the illumination
changes. For the robustness against rotation, we further calculate minimized code
among different permutations as

ψ(X ) = min
π∈Π

φ(π ◦ x,M), (4)

where Π is a set of permutation operations that represents rotations on the sampling
ball. The minimization among these permutations leads to rotation-invariance on the
final binary codes.

For local feature encoding, we calculate the binary codes cp,t = ψ(Xp,t) for each
patch Xp,t that locates at the p-th position of the t-th grouped tensor Gt. Then, the
binary codes for the same position but different tensors are concatenated into feature
vectors cp = [cp,1, · · · , cp,T ] ∈ RT . A linear projection is further applied to each
feature vector, which refines and transforms them into lower dimensions. Formally, the
calculation of the local features can be written as

fp = Wcp,∀p ∈ I, (5)

where I = {1, · · · , H} × {1, · · · ,W} denotes the spatial indices and W ∈ RN×T
denotes the projection matrix. In our implementation, the linear projection is imple-
mented with 1 × 1 convolutions, and the feature length N is set to be 4, 16 for the
ResNet18 and ResNet50 backbones, respectively.
Spatial pyramid histogram In the former phase, a set of local features {fp| p ∈ I} is
produced. The global feature aggregation phase aims at aggregating these local features
into a single global feature vector. Instead of the simple global average pooling, we
calculate a soft histogram for each dimension in feature fps. Specifically, for the i-th
dimension, the global histogram can be calculated as hi = Hist({fp|p ∈ I}), whose
k-th element is defined as

hi,k =
∑
p∈I

exp(−s2
i,k · (fp,k − βi,k)2)∑K

k′=1 exp(−s2
i,k′ · (fp,i − βi,k′)2)

, (6)

for k = 1, · · · ,K, where fp,i denotes the ith element of fp, βi,ks are learnable bin cen-
ters , and si,ks are the learnable scaling factors. Note that in (6), the global histogram
completely discards the spatial orders, which may limit the descriptive capacity of the
representation. To overcome the problem, we apply the idea of the spatial pyramid in
the histogram calculation. Specifically, we partition the image into 2`×2` segments for
the `-th scale, with ` = 0, 1, · · · , L, resulting inM = (4L+1−1)/3 segments. The soft
histograms are then calculated for all the segments and finally concatenated into a vec-
tor representation of the whole image. Let I` denotes the indices of the ` segment, and
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h(`) = Hist({fp}|p ∈ I`}) denotes the corresponding histogram. The global feature
for the i-th channel is then constructed by concatenating these histograms as

fi = [h
(0)
i , · · · ,h(M−1)

i ].

The bin centers and scaling factors in h
(`)
i are shared for different ` but vary across

different i. The final DTP feature vector is then defined as fDTP = [f1, · · · ,fL], which
is then concatenated with the GAP’s output for classification.

Remark 1. Multi-scale pooling has also been considered in general image classi-
fication, which generates multi-scale patches and concatenates the descriptors from
different scales for classification. In comparison, the proposed DTP module does not
consider the multi-scale representation of CNN features in each layer but considers the
dynamics of the evolution flow of feature maps along the CNN depth dimension. Be-
yond the multi-resolution analysis, DTP also considers the flow dynamics along layers,
which provides implicit discriminative clues for texture recognition. In addition, for
robustness to image transforms like rotation, we adopt the idea from the LBP-inspired
module to obtain a rotation-robust descriptor to characterize those dynamics.

3.3. Implementation Details
In the implementation of our DTPNet, the parameters during the cross-layer feature

grouping are set as: T = 5, D = 16. While in the local feature encoding phase, the
parameters are set as: k = 5, P = 14, r = 2; For the spatial pyramid histogram, the
paramters are set as: L = 2, K = 8.

Following existing works, ResNet18 and ResNet50 [34] are used as the backbones.
Our model is trained using an SGD optimizer with a momentum of 0.9 with batch size
set to 32. The learning rate is initialized to 1× 10−3 and decreased in the cosine decay
scheme. The model is trained for 30 epochs for convergence. The ResNet backbone
is initialized with pre-trained models and other network parameters are initialized by
the default Kaiming [35]. The model is then trained with 30 epochs for convergence.
Following [12, 2], we resize the images to 256× 256 and then crop them to 224× 224
during training and test. All training images are randomly horizontally flipped with a
probability of 0.5 for data augmentation. We implement our model with PyTorch and
conduct the following experiments on a single RTX Titan GPU.

4. Experiments

4.1. Datasets and Protocols

Benchmark datasets We evaluate our model on six benchmark datasets, whose
details are as follows. (a) Ground Terrain in Outdoor Scenes (GTOS) [36] is a dataset
of outdoor ground materials with 40 categories, with a training/testing split given.
(b) GTOS-Mobile [2] is a dataset collected from GTOS via mobile phone, which con-
sists of 100011 material samples from 31 categories. (c) Materials in Context 2500
(MINC-2500) [1] is a dataset of 23 material categories, each of which contains 2500
images. It provides five training/test splits. (d) KTH-TIPS2b [19] is a dataset com-
posed of 4752 images from 11 material categories. (e) Describable Texture Dataset
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(DTD) [37] contains 47 categories of wild textures, with 120 images per category. It
provides 10 preset splits into equally-size training, validation, and test sets. (f) Flickr
Material Dataset (FMD) [38] is composed of 10 different material categories, with 100
images each category. These datasets cover a broad spectrum of textures. See Fig. 4
for some examples.
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Figure 4: Samples images from six datasets.

Protocols Following the recent works [26, 17], we use the pre-set splits on GTOS
and MINC-2500, and the splits as [17] for DTD. As for KTH-TIPS2b and FMD, each
dataset is randomly divided into 10 splits with recommended split size. The mean
results across splits are reported. In classification experiments, the results over multiple
runs are collected, and their averages and standard deviations (std) are recorded in the
form of “mean ± std.%”. As for the compared methods, the results are directly quoted
from the recent works (mainly from [17]), otherwise, blanks are left.

4.2. Comparison against State-Of-The-Arts

Results on texture recognition We compare the performance of our method with
11 SOTA CNN-based texture recognition approaches, including DeepTEN [12], DEP-
Net [2], LSCNet [25], MAPNet [39], DSRNet [26], HistNet [40], CLASSNet [17],
FENet [15], RPNet [16], TEMNet [41], and MSBFEN [42]. Table 1 summarizes the
classification results on six benchmark datasets. When incorporated with the ResNet18
backbone, the proposed DTPNet obtains the best results among four of six datasets.
The proposed method outperforms the second-best performer with significant improve-
ments of 2.6% accuracy on FMD and 3.4% accuracy on GTOS-mobile. With ResNet50
as the backbone, our DTPNet ranks first on half of the datasets including KTH, FMD,
and GTOS-Mobile. The overall results demonstrate the effectiveness of the DTP en-
coding.
Results on texture retrieval We also evaluate the proposed method in the texture re-
trieval task and compare it with features produced by DEPNet [2] and DeepTEN [12].
For evaluation, each query image is fed into the proposed DTPNet and the concate-
nated feature vector before the FC layer is used for feature matching in terms of cosine
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Table 1: Performance comparison of different methods in terms of classification accuracy (%).
The result with the highest average accuracy on each dataset is marked in bold.

Method Backbone DTD KTH FMD MINC GTOS GTOS-Mobile

DeepTEN [12]

ResNet18

- - - - - 76.1
DEPNet [2] - - - - - 82.2
LSCNet [25] - - 76.3 - - -
MAPNet [39] 69.5 ± 0.8 80.9 ± 1.8 80.8 ± 1.0 - 80.3 ± 2.6 83.0 ± 1.6
DSRNet [26] 71.2 ± 0.7 81.8 ± 1.6 81.3 ± 0.8 - 81.0 ± 2.1 83.7 ± 1.5
HistNet [40] - - - - - 79.8 ± 0.8
CLASSNet [17] 71.5 ± 0.4 85.4 ± 1.1 82.5 ± 0.7 80.5 ± 0.6 84.3 ± 2.2 85.3 ± 1.3
FENet [15] 69.6 ± 0.1 86.6 ± 0.1 82.3 ± 0.3 80.6 ± 0.1 83.1 ± 0.2 85.1 ± 0.4
RPNet [16] 71.6 ± 0.7 86.7 ± 2.7 83.3 ± 3.0 79.0 ± 0.5 83.3 ± 2.2 76.6 ± 1.5
TEMNet [41] 70.2 ± 1.0 88.0 ± 3.5 83.1 ± 0.8 80.8 ± 0.4 83.4 ± 1.9 83.6 ± 0.0
DTPNet 71.8 ± 0.7 86.7 ± 1.3 85.7 ± 0.9 80.7 ± 0.4 84.8 ± 2.4 87.0 ± 1.2

DeepTEN [12]

ResNet50

69.6 82.0 ± 3.3 80.2 ± 0.9 81.3 84.5 ± 2.9 -
DEPNet [2] 73.2 - - 82.0 - -
LSCNet [25] - - 81.2 - - -
MAPNet [39] 76.1 ± 0.6 84.5 ± 1.3 85.2 ± 0.7 - 84.7 ± 2.2 86.6 ± 1.5
DSRNet [26] 77.6 ± 0.6 85.9 ± 1.3 86.0 ± 0.8 - 85.3 ± 2.0 87.0 ± 1.5
HistNet [40] 72.0 ± 1.2 - - 82.4 ± 0.3 - -
CLASSNet [17] 74.0 ± 0.5 87.7 ± 1.3 86.2 ± 0.9 84.0 ± 0.6 85.6 ± 2.2 85.7 ± 1.4
FENet [15] 74.2 ± 0.1 88.2 ± 0.2 86.7 ± 0.2 84.0 ± 0.1 85.7 ± 0.1 85.2 ± 0.4
RPNet [16] 73.0 ± 0.6 87.2 ± 1.8 87.2 ± 2.4 81.6 ± 0.4 83.6 ± 2.3 77.9 ± 0.3
MSBFEN [42] 77.8 ± 0.5 86.2 ± 1.1 86.4 ± 0.7 85.3 ± 0.7 86.4 ± 1.8 87.6 ± 1.6
DTPNet 73.5 ± 0.4 88.5 ± 1.6 87.8 ± 1.3 83.7 ± 0.3 86.1 ± 2.5 88.0 ± 1.2

similarity. The average precision and recall over all the query images are collected.
See Fig. 5 for the precision-to-recall (PR) curve by varying S from 1 to the number of
samples as well as the corresponding mean average precision (mAP). The figure shows
that the retrieval result using the deep representation from DTPNet significantly outper-
forms the ones from DeepTEN and DEPNet, indicating the excellent discriminative-
ness and robustness of the feature learned by the DTP module. See also the reported
mAP in the plots, where the proposed DTPNet also achieves obvious improvements
over the competitors, i.e.more than 0.08mAP on FMD, 0.15 mAP on KTH and 0.10 on
GTOS.
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Figure 5: PR curve of the retrieval results on 3 datasets. The mAPs are also reported in the
legends. The ResNet18 backbone is used.
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Table 2: Complexity, training and test time comparison of different models.

Model #Params (≈, M) FLOPs (≈, G) Training time (min.) Test time (10−3 sec.)

ResNet18 ResNet50 ResNet18 ResNet50 ResNet18 ResNet50 ResNet18 ResNet50

Backbone 11.19 23.57 1.82 4.11 2.52 6.83 0.63 1.27
DeepTEN 11.37 23.90 1.82 4.12 2.57 6.88 0.60 1.29
DEPNet 12.01 25.56 1.82 4.11 2.63 6.98 0.63 1.30
CLASSNet 11.23 23.70 1.83 4.14 22.36 26.87 7.40 8.22
FENet 11.51 23.93 1.82 4.12 3.21 7.97 0.73 1.46
DTPNet 11.23 23.70 1.83 4.14 13.12 21.74 3.70 5.65

Model complexity comparison For evaluation of complexity, we compare our
method with FENet, CLASSNet, DeepTEN, DEPNet and ResNet backbone in terms of
(a) model size measured by the number of model parameters (#Params); and (b) com-
putational complexity measured by the Floating-Point Operations per second(FLOPs)
of the model. See Table 2 for the comparison results. The results show that our model
contains the least number of parameters except for the simple backbones, and the com-
plexity of our model is comparable to the others in terms of FLOPs. In other words,
the improvement of our method does come from network module design, rather than
the increased model complexity.
Training and running time comparison The training time and inference time of
different methods are also compared in the Table 2, which are all evaluated on the same
platform with a TITAN RTX GPU. The per-epoch training time and per-image testing
time are reported. Both the training and test of DTPNet are faster than CLASSNet,
but slower than other methods. One reason is that DTPNet requires cross-layer feature
grouping and local 3D patch extraction. Such operations are currently not optimized
for acceleration by Pytorch. How to accelerate them with some approximate operations
with Pytorch-supported acceleration will be one of our future works.

4.3. Behavior Analysis

Ablation study We construct two baseline models for analyzing the effectiveness
of the proposed DTP module as follows. (a) Model named ’w/o DTP’ denotes a base-
line model built by removing the DTP module in DTPNet. (b) Model named ’w/o
GAP’ denotes another baseline model from DTPNet by removing the GAP branch. (c)
Model named ’Backbone+’ denotes the ResNet18 model but with more channels in
each layer to maintain a similar number of parameters with DTPNet, i.e., similar with
’w/o DTP’ but more parameters. For a fair comparison, we train these models using
the same schemes with the ResNet18 backbone used. The ablation results are sum-
marized in Table 3. It can be seen that removing the DTP module brings a significant
performance drop on both datasets, suggesting that DTP brings extra discriminabil-
ity and robustness. In addition, the model without GAP performs slightly better than
the model without DTP, indicating that our proposed DTP encoding works for texture
recognition and even provides more benefits than only using the GAP branch. Both
the results of model ’w/o DTP’ and ’w/o GAP’ are worse than the proposed DTPNet,
which indicates that the DTP encoding and GAP features are crucial and complemen-
tary for texture recognition. Note that the proposed DTP encodes the fine-scale details
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Table 3: Ablation study. ResNet18 backbone is used. The best results are marked in bold.

Dataset w/o DTP w/o GAP Backbone+ DTPNet

MINC 78.0 ± 0.6 79.2 ± 0.5 77.9 ± 0.5 80.7 ± 0.4
GTOS-mobile 82.2 ± 1.3 82.5 ± 0.4 81.9 ± 1.5 87.0 ± 1.2
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Figure 6: Confusion matrices of several models on GTOS-Mobile.

and the patterns in evolution, while the GAP of top-layer features captures coarse-scale
semantics, which is a probable reason for the boosting with the combined feature. Fi-
nally, compared with ’Backbone+’, DTPNet shows significant improvements on both
datasets, which indicates that the improvement of DTPNet does not come from the
enlarged model size, but from its specific module design.
Confusion analysis For a deeper inspection of the behavior of DTPNet on each cate-
gory, we compute the confusion matrices on the GTOS-Mobile dataset using ResNet18
backbone and compare it with ResNet backbone and other competitive methods, i.e. DEP-
Net [2], CLASSNet [17] and FENet [15]. The results are shown in Fig. 6 where the
confusion matrices produced by DTPNet are more diagonally concentrated than other
methods. It can also be seen that the proposed DTPNet can well distinguish the con-
fusing pairs of FENet, e.g. Sand versus Cement and Stone Asphalt versus Asphalt.
Such results further verify the stronger robustness and greater discriminative capacity
provided by the proposed DTPNet.
Influences of local sampling strategies The proposed DTP module uses 3D ball
sampling for local encoding. To further investigate the influences of local sampling
strategies, we evaluate three DTPNet variants with different sampling patterns: 1)
Cylinder, which uses uniform sampling circle size across layers. 2) Shrinking cone,
which uses larger sampling circles in the preceding layers. 3) Dilating cone, which
uses smaller sampling circles in the preceding layers. Only in-plane rotation is applied
for code shifting in these variants. The models are all evaluated on the GTOS-mobile
dataset using the ResNet18 backbone. The results are shown in Table 4. It can be seen
that the other three sampling strategies result in around 1% drop in accuracy, which
experimentally validates the superiority of the 3D ball scheme we used. Note that the
proposed scheme enables circular shift among both the spatial domain and the scale
pyramid, and retrieving the minimum value, which mimics the scheme for scale in-
variance in SIFT and SURF, i.e. finding maximum values in the spatial pyramid. This
likely explains its superior performance over other sampling schemes.
Influences of local encoding schemes To investigate the influences of local en-
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Table 4: Performance comparison between different sampling strategies on GTOS-M dataset.

Sampling Cylinder Shrinking Cone Dilating Cone 3D ball (Ours)

DTPNet 85.9 ± 0.2 85.5 ± 0.4 85.8 ± 0.7 87.0 ± 1.2

Table 5: Performance comparison of different local encoding schemes. The best results are
marked in bold. The ResNet18 backbone is used.

Encoding Scheme DTD KTH MINC GTOS-M

3D Statics

Std 71.5 ± 0.6 86.2 ± 2.2 80.7 ± 0.4 83.3 ± 0.3
Mean 71.4 ± 0.8 86.5 ± 1.8 80.6 ± 0.6 84.0 ± 0.2

Skewness 71.5 ± 0.6 86.2 ± 2.4 80.6 ± 0.4 84.9 ± 0.3
Slope 71.5 ± 0.5 86.2 ± 2.1 80.4 ± 0.7 82.3 ± 0.3
DBC 71.5 ± 0.4 85.4 ± 1.1 80.5 ± 0.6 85.3 ± 1.3

Handcrafted SIFT 71.4 ± 0.5 86.3 ± 1.8 80.5 ± 0.5 85.9 ± 0.4
SRI-LBP 71.5 ± 0.6 86.5 ± 1.6 80.6 ± 0.4 85.7 ± 0.1

Neural LBP
LBC 70.9 ± 0.3 84.5 ± 1.0 80.4 ± 0.5 83.0 ± 0.4

LBoM 71.2 ± 0.4 85.5 ± 1.3 80.5 ± 0.6 84.7 ± 0.3

Ours DTP 71.8 ± 0.7 86.7 ± 1.3 80.7 ± 0.4 87.0 ± 1.2

coding schemes for the cross-layer feature tensor, we select 5 commonly-used local
statistics, in the place of DTP encoding. The results are shown in Table 5. Note that
the differential box-counting (DBC), which is introduced in [17] for encoding the self-
similarity statistics in the cross-layers of a CNN, is also evaluated and compared. As
can be seen, all these cross-layer statistics benefit the classification performance over
the backbone ResNet18, indicating that the implicit discriminative information in the
cross-layer evolution does exist and benefit texture recognition. Along the presented
statistics, the DTP brings the largest improvement in most cases, proving its effective
capacity of dynamic evolution encoding for texture patterns.

We selected two handcrafted descriptors for further analysis, including the well-
known SIFT descriptor [5] and an LBP variant called SRILBP [43], both of which are
rotation and scale invariant. We integrate these descriptors into a ResNet18 backbone in
a similar way as our DTPNet, forming two models denoted as SIFT-Net and SRILBP-
Net, respectively. Their results are shown in Table 5. We can see that our DTPNet
outperforms both models by over 1%, highlighting the advantages of the DTP module.

Furthermore, we also compared the proposed local encoding scheme with other
existing LBP-inspired neural modules, namely LBC [32] and LBoM [33]. Baseline
models are constructed by replacing the local encoding scheme with multiple LBC or
LBoM layers. We trained the networks with the training parameters consistent with
DTPNet. The results are shown in Table 5, where our DTPNet outperforms both base-
lines noticeably, demonstrating the effectiveness of our proposed scheme.
Performance on different backbones Using diferent backbone models may influ-
ence the performance of the DTPNet. Table 6 lists the results on DTD, KTH and FMD
of DTPNet using ResNet18, ResNet50, ResNet101, and ResNet152 as the backbone.
It can be seen that the deepest backbone ResNet152 gains the best accuracy, possibly
due to that it contains more cross-layer dynamics for the DTP encoding.
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Table 6: Performance comparison on different backbones.

Backbone DTD KTH FMD

ResNet-18 71.8 ± 0.7 86.7 ± 1.3 85.7 ± 0.9
ResNet-50 73.5 ± 0.4 88.5 ± 1.6 87.8 ± 1.3
ResNet-101 74.0 ± 0.8 88.5 ± 2.0 87.9 ± 1.4
ResNet-152 74.5 ± 0.9 88.7 ± 1.6 88.5 ± 1.2

Table 7: Robustness test under four types of corruption. The ResNet18 backbone is used. Best
results are in bold.

Corruption Gaussian Noise (SNR) Salt-pepper Noise (ρ)

SNR / ρ 15 25 35 45 1% 2% 6% 10%

ResNet 58.06 77.94 80.20 80.53 64.80 58.47 41.49 28.60
DeepTEN 37.83 74.07 80.45 80.81 60.72 54.55 23.85 18.50
DEPNet 46.26 80.12 82.51 82.46 64.87 54.98 30.00 21.20

CLASSNet 62.88 81.87 85.39 85.62 71.00 65.89 47.10 31.64
FENet 64.36 83.88 85.69 85.87 69.68 62.56 46.88 38.33

DTPNet 64.39 84.65 87.12 87.62 72.09 67.13 47.87 39.35

Corruption Poisson Noise (λ) Gaussian Blur (σ)

λ / σ 1 2 3 4 1 2 3 6

ResNet 74.12 67.52 63.12 59.58 79.99 63.02 54.53 29.69
DeepTEN 68.81 63.72 61.41 59.38 75.93 63.35 53.73 31.55
DEPNet 75.32 65.86 60.90 53.43 79.43 65.63 48.80 27.93

CLASSNet 79.51 74.53 70.28 66.85 80.79 69.78 54.68 28.16
FENet 79.72 74.98 69.54 65.66 81.14 70.05 58.57 29.56

DTPNet 80.98 75.06 70.44 67.24 84.39 74.30 58.75 32.36

Robustness analysis on different corruptions To further investigate the robustness
of DTPNet, we conduct additional robustness tests against four types of corruption
including 1) Gaussian noises with SNRs; 2) Poisson noises with different strengths
λ; 3) Salt-pepper noises with different ratios ρ; and 4) Gaussian blurs using Gaussian
kernels with different standard deviations σ. The results on the GTOS-Mobile dataset
are shown in Table 7. All the methods experience declines in performance under the
corruptions, particularly when these corruptions are severe. In contrast, the proposed
method maintains relatively higher performance under all the corruptions, indicating
robustness against diverse distortions.
Visualizing DTP encoding To verify the effectiveness of DTP encoding, we il-
lustrate the DTP codes on four texture images within two classes, see Fig. 7. As can
be seen in the figure, two texture patterns from the same class but in different rotated
angles contribute to a similar representation, e.g. (a) v.s. (b), indicating the rotation
invariance brought by the robust DTP descriptor on the features. Besides, two texture
patterns from the same class but with different colors devote to a similar representation,
e.g. (c) v.s. (d), demonstrating the illumination invariance brought by the proposed
method. The DTP codes on different classes of texture images significantly differ,
e.g. (a/b) v.s. (c/d), which demonstrates the discriminative capacity of DTP module.
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Figure 7: Illustration of the flattened feature tensors produced by the DTP module. Left: the
input images. Image (a) and (b) belong to class “Brick”, while image (c) and (d) belong to
another class “Painting”. Right: the plot of the global feature vectors.
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Stone asphalt Cement Pebble Soil Plastic

Figure 8: Confusing cases of DTPNet on GTOS-Mobile. Top: failure samples and their true
labels. Bottom: The incorrectly-predicted labels and samples from the predicted classes.

Limitation and discussion To investigate the limitations of the proposed DTPNet,
we further show some confusing cases in Fig. 8. It can be seen that each confusing pair
has quite a similar appearance with only slight differences in the fine-grained patterns,
leading to great challenges for discrimination. Note that such confusing cases are also
challenging for other SOTA methods, e.g. CLASSNet. To address these confusing
cases, it might be necessary to develop a module that captures the subtle discrepancies,
which will be considered in our future work.

5. Conclusion

The paper makes an effort on improving local encoding for texture recognition
in the CNN period. The proposed DTP encoding mechanism can well encode the
fine-scale details and CNN-evolutional patterns in local codes, with rotation invari-
ance originating from the LBP-based coding. Extensive experiments demonstrated
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the effectiveness of the proposed DTP mechanism. LBP and its variants are deeply
researched in the past. Besides the rotation-invariant design, other well-established de-
signs, e.g. equivalence-class, and ternary codes, also have the potential in enhancing
local features in CNNs, which will be our future work. In addition, texture represen-
tation is a fundamental task in computer vision and thus can undoubtedly benefit other
vision applications, e.g., object recognition, scene recognition, fine-grained recogni-
tion, semantic segmentation and texture synthesis. Therefore, we would like to extend
our idea of encoding cross-layer feature tensor patches via invariant local pattern en-
coding to other image classification tasks.
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