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Image Smoothing via Multiscale Global Perception
Xuyi He, Yuhui Quan, Yong Xu and Ruotao Xu

Abstract—Image smoothing provides a fundamental operation
for image processing, with a broad spectrum of applications. It
is a challenging task which requires global analysis on image
patterns with scale awareness. Existing deep models for image
smoothing are insufficiently efficient in global perception and
multi-scale processing. This paper proposes a deep model with
an efficient multi-scale fusion architecture and a series of global
processing blocks. The architecture enhances multi-scale feature
flow by incorporating features of different scales into both the
encoder and decoder blocks of a U-shape network, with multi-
scale feature fusion modules inserted between the encoder and
the decoder. The global processing blocks leverage the multi-
axis processing mechanism to achieve joint local and global
perception. Benefiting from these two key designs, our proposed
model enjoys superiority in both smoothing performance and
computational complexity, as demonstrated in the experiments
on two benchmark datasets.

Index Terms—Image smoothing, Multi-scale analysis, Global
perception, Multi-axis processing, Deep learning

I. INTRODUCTION

IMAGE smoothing aims at smoothing out insignificant
textures of an image while preserving meaningful struc-

tures, with wide applications such as artistic effect creation in
image editing, robustness enhancement for downstream vision
tasks, image data reduction, noise removal, and blind quality
assessment [1]. It is an important topic with continuous active
research in recent years [2]–[4].

Scales and edges are two crucial types of clues for im-
age smoothing. Scales allow utilizing the perceptual prior
that textures and structures usually lie at finer and coarser
scales, respectively. Edges provide intensity and orientation
cues to distinguish between textures and structures. The plain
Gaussian smoothing failed in awareness of both edges and
scales. In the past decades, many studies focused on edge-
aware filtering; bilateral filtering [5]–[7], weighted median
filtering [8], guided filtering [9], rolling guided filtering [9],
and Gaussian adaptive bilateral filtering [10]. These methods,
also known as local filtering, employ a sliding window with
weights adapted to structural edges for filtering textures out.
One of their weakness is the lack of perception on global cues
or constraints during smoothing.

Another popular approach to image smoothing is construct-
ing and solving regularization models; see e.g. [2], [11]–[14].
One representative work is the relative total variation (RTV)
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proposed by Xu et al. [12] that introduced a weighting scheme
to the total variation (TV) regularizer [15] to better distinguish
structural edges and strong textures. He et al. [2] proposed the
bilateral TV that combines TV with bilateral filtering to fur-
ther improve the identification of weak structures. Compared
to local filtering, these regularization model-based methods
have a global perception during smoothing as they perform
optimization over the whole image. However, the regularizers
they employ only operate on local image regions which cannot
fully utilize global information of the image.

Non-local methods [16], [17] provide an effective alternative
for exploiting global information. Xu et al. [16] introduced
a pixel-level non-local operator that exploits self-recurrence
prior of natural images for smoothing. Xu et al. [17] observed
that the self-recurrence prior holds for bother structures and
textures. Therefore, they exploited the anisotropy of structural
edges and the isotropy of texton distribution to design a di-
rectional non-local sparsification transform that only sparsifies
texture regions rather than structural edges.

The aforementioned methods leverage manually-designed
schemes or regularizers, failing to fit complex image patterns
with strong semantics. In recent years, due to their hierarchical
and non-linear architectures, Deep Neural Networks (DNNs)
have shown promising performance in handling semantic com-
plex textures; see e.g. [3], [4], [18]–[23]. Zhu [22] utilized two
backbones, VDCNN [24] and ResNet [25], to obtain a larger
receptive field for smoothing. Feng et al. [23] incorporated
edge detection and image smoothing into a DNN, using edge
maps containing global clues of image structures for guidance.
One limitation of this DNN is that its produced edge maps are
weakly supervised by the simple Canny edge detector, due to
the absence of ground truths in training data.

Most existing DNNs for image smoothing focus on enhanc-
ing edge awareness. Li et al. [3] considered scale awareness
by using an invertible DNN with the wavelet transform. The
invertible DNN also allows better disentanglement in the deep
feature space and a lightweight model. However, the standard
coupling layers used by the invertible DNN restrict the DNN’s
expressivity needed for handling rich textures and structures.

Both edges and scales can be significantly spatially-varying
within an image. To achieve effective edge awareness and scale
awareness, not only local but also global information on the
image should be fully utilized. See Fig. 1 for a demonstration.
In Fig. 1(a), the bars on the door are considered as texture
since they repeat over the whole door, while the crack of
the door is considered as a structural edge. The successful
handling of this case requires a DNN to exploit both local
and global cues simultaneously. Another example shown in
Fig. 1(b) is, the coarse-scale stripes on the zebra’s body have
strong edges, thus being easily mistaken as structures within a
local receptive field. A correct identification of these stripes as
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Fig. 1: Two examples for demonstrating the importance of global perception for image
smoothing. Red squares: meaningful structures; green squares: repeating textures.

textures requires a large receptive field that covers the whole
zebra or at least multiple stripe regions.

However, considering computational efficiency, most exist-
ing DNNs (e.g. [3], [18]–[23]) are composed of a limited
number of convolutional layers, leading to restricted receptive
fields. In addition, their multi-scale processing pipelines are
usually done by a plain U-shape backbone, which cannot make
full use of features from different scales for global analysis.
In this work, we present a deep model that combines an
efficient multi-scale fusion architecture with a set of global
processing blocks, addressing the limitation caused by under-
utilizing global information and multi-scale cues in existing
DNN-based methods. Sharing a similar spirit with [27]–[30],
our multi-scale fusion architecture integrates multi-scale image
representation into the encoder and decoder components of
a U-shape backbone, while also incorporating multi-scale
feature fusion modules between them. The global processing
blocks utilize a multi-axis processing mechanism [31] to
achieve simultaneous local and global perception for feature
extraction. Through these two design elements, our DNN
enjoys superior performance over a set of recent methods in
terms of smoothing performance and computational complex-
ity, as demonstrated in our experiments on two datasets.

In summary, our main contribution is a new DNN for image
smoothing with the following components/merits:

1) an efficient multi-scale fusion architecture;
2) global processing blocks based on multi-axis perception;
3) excellent performance and low computational cost.

II. METHODOLOGY

A. Network Architecture for Multi-Scale Processing

Our proposed DNN, called MGPNet (Multi-scale Global
Perception Network), takes a textured image as input and pre-
dicts a smoothed texture-free version as output. See Fig. 2(a)
for an illustration of the architecture of MGPNet. It contains an
encoder part and a decoder part, whose blocks are organized in
a multi-scale structure inspired by [27], [28]. The encoder part
contains three encoder blocks (EBs) which form features from
fine scales to coarse scales progressively. Accordingly, the
decoder part contains three decoder blocks (DBs) that predict
the smoothed image from coarse to fine scales progressively.
Between the encoder and decoder parts, multi-scale fusion
blocks (MSFBs) are inserted to build up an enhanced pathway
of feature flow for multi-scale processing.

Feature encoding All the EBs in MGPNet have the same
structure, composed of a 1×1 convolutional layer for feature
channel number adjustment and two global processing blocks
(GPBs) for global feature extraction, with a skip connection
over the GPBs for residual learning. Each EB maps an input
feature tensor to a new one of the same spatial size. The input
feature tensor of an EB is generated as follows.

Let Y ∈ RW×H×3 denote the input image and (·)↓m the
downsampling operator with factor m. Define the multi-scale
versions of Y as follows: Y1 = Y and Yt = Y↓2t−1 ∈
R

W

2t−1× H

2t−1×3 for t > 1. The EB for the first (finest) scale
takes Y1 as input. Regarding the EB for tth scale with t > 1, its
input is defined by the concatenation of (i) the downsampled
version of the feature tensor from the EB of the (t-1)th scale
and (ii) the convolutional feature tensor of Yt generated by a
3×3 convolutional layer. Formally, the processing done in an
EB can be expressed as:

EBout
t =

{
EBt(Yt), if t = 1,
EBt(conv(Yt), (EBout

t−1)↓2), if t = 2, 3,
(1)

where “conv” denotes a convolutional layer.
Multi-scale feature fusion There are two MSFBs, each
of which fuses features from EBs of distinct scales and feeds
them to a DB for improved prediction. Concretely, the MSFBs
take feature tensors extracted by all the EBs as input. Before
inputting, upsampling or downsampling operations are applied
to the feature tensors for size consistency.
Feature decoding The DBs correspond to the EBs of
different scales and have the same structure as the EBs, i.e., a
1×1 convolutional layer and two sequential GPBs. Each DB
outputs a decoded feature tensor of the same spatial size as its
input. The DB for the roughest scale (t=3) directly uses the
feature tensor output by the EB at that scale. As for the DB at
the tth scale (t < 3), its input is defined by the concatenation
of (i) the upsampled version of the feature tensor output by
the DB of (t+1)th scale and (ii) the output of the MSFB at
the tth scale. The processing in a DB can be expressed as:

DBout
t =

{
DBt(MSFBout

t , (DBout
t+1)↑2), if t = 1, 2,

DBt(EBout
t ), if t = 3,

(2)

where (·)↑m is the downsampling operator with factor m.
The decoded feature tensor produced by each DB is fed to

a 3×3 convolutional layer, and the result is combined with
the input image (downsampled to the corresponding scale)
via a skip connection, producing a smoothed image at the
corresponding scale. The smoothed image at the finest scale
is used as the final prediction, while the ones at the other
scales are used for calculating the training loss.
Training loss The MGPNet is trained with a multi-scale
loss. Let Xt denote the smoothed image predicted by the DB
at the tth scale. Let Xgt denote the ground truth. The training
loss is defined as

L = λ1‖X1 −Xgt‖1 + Σ3
t=2λt‖Xt −Xgt

↓2t−1‖1, (3)

where the scale-related weights λt ∈ R+ are all set to 1.
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Fig. 2: Architecture of proposed MGPNet for image smoothing. (a) The overall architecture. (b) The structure of GPB. An example is shown with input feature shape (c, 4, 4) and
both block size and grid size set to (2, 2). The units of the same color are in the same spatial group of gMLP. Due to space constraints, the details of RCAB [26] are given in
the supplementary materials. (c) The structure of gMLP. (d) The structure of MSFB.

B. Details of Key Modules

GPB The GPB aims at extracting features with global per-
ception, which is built upon the multi-axis processing mecha-
nism [32] which arranges spatially-distant features into local
paths for global processing. See Fig. 2(b) for its structure. The
input feature tensor is first processed by a block consisting of
layer normalization (LayerNorm), a 1×1 convolution, and a
Gaussian error linear unit (GELU), and then it goes through
two parallel branches: the local branch with a local reception
field and the global branch with a non-local reception field.
This two-branches structure allows each GPB to jointly exploit
local and global patterns.

In the local branch, the half head of features with shape
( c
2 , h, w) is partitioned into several non-overlapping windows

of shape (b, b), which is equivalent to reshaping the feature
into a tensor of shape ( c

2 , b × b, hb ×
w
b ), called blocking.

Here the three dimensions of the transformed feature shape
denote channel, block and grid axis, respectively. In the global
branch, a (d, d) grid is used to re-organize the other half-head
of features into a tensor of shape ( c

2 ,
h
d ×

w
d , d × d), called

gridding. This operation allows spatially-distant features to
be related and processed together. On both branches, the re-
organized features are fed to a gated multi-layer perceptron
(gMLP) [33] with the structure shown in Fig. 2(c). There is
a spatial projection layer in gMLP, which is a linear mapping
along the block axis for the local branch and along the grid axis
for the global branch. Afterward, unblocking and ungridding
are applied on the two branches respectively so as to reshape
the features back.

The results from two branches are merged via concatenation

followed by a 1×1 convolution. Further, a residual channel
attention block (RCAB) [26] is used for channel re-calibration.
MSFB See Fig. 2(d) for the structure of MSFB. Its
inputs include three feature tensors from different scales
with normalized sizes, which are first concatenated along the
channel axis and then go through a 1×1 convolution and a
3×3 convolution. The output feature tensor encodes cues from
different scales, which is delivered to the corresponding DB.

III. EXPERIMENTS

A. Experimental Settings

1) Implementation details: Our MGPNet is implemented in
PyTorch and run on an NVIDIA RTX 3090 GPU. The model
training is done using the Adam optimizer with batch size
of 8 and 3 × 104 iterations. The learning rate is initialized
to 2 × 10−4 and decayed by half every 104 iterations. In
training, images are cropped to 128×128 patches, augmented
with horizontal or vertical flipping and rotations of 0◦, 90◦,
180◦ and 270◦. Ours source code will be released after paper’s
acceptance via github.com/csxyhe/MGPNet.

2) Datasets: The training split of the Structure-Preserving
Smoothing (SPS) dataset [23] is used for training, with 1.8×
105 (2000) samples for training (validation). The performance
is evaluated on two test sets: SPS test set with 100 image pairs
and Nankai Smoothing (NKS) [16] dataset with 200 image
pairs. The characteristics of SPS and NKS datasets differ a
lot, e.g., the structure images of SPS mainly contain texture-
less natural images, while the ones of NKS mainly contain
hand-drawn-like images. This allows a generalization test.
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Fig. 3: Visual comparison of results on synthesized images (1st row, from SPS dataset
[23]) and natural images (2nd-4th rows, from RTV [12]).

3) Evaluation metrics: Peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) are as the quantitative
metrics. Visual results are provided for subjective inspection.

B. Results and Comparison
Our MGPNet is experimentally compared with (i) two local

filtering methods: GF [9] and RGF [34]; (ii) six regularization
model-based methods: L0GM [11], RTV [12], SDF [35],
PNLS [16], ISO [17] and ILS [13]; (iii) five DNNs-based
methods: DEAF [18], DRF [19], ResNet [22], JESSNet [23]
and SASNet [3]. For a fair comparison, all the compared DNN
models are trained using the same data as ours. The parameters
of the local filtering methods and regularization model-based
methods are tuned to the universal ones.

See Table I for a quantitative comparison. Our MGPNet
outperforms other compared methods in both PSNR and SSIM
metrics. It is the top performer in PSNR, with 1.08dB and
0.80dB gain over SASNet on the two test sets, respectively,
and also one of the top performers in SSIM. See Fig. 3 for four
examples of visual inspection. Our results enjoy better visual
quality than that of other compared methods. The third row
of Fig. 3 shows a challenging case which requires removing
the background texture while maintaining the small structures
of the flowers and woman’s eyes. L0GM does not smooth
the background texture at all, RGF, RTV and ISO over-blur
the whole image, and JESSNet fails to maintain the small
structures. In comparison, MGPNet wins the trade-off.

Table II compares the number of parameters and the number
of floating-point operations (FLOPs) of different models. Our
MGPNet enjoys the smallest number of FLOPs, as most of
its operations are 1×1 convolution and small-dimension linear
operations. This demonstrates that the performance gain of our
MGPNet is not from increasing model complexity, but from a
more delicate architectural design.

C. Ablation Study
We verify the effectiveness of the multi-scale architecture

of MGPNet by (i) replacing all EBs and all DBs by the

TABLE I: Quantitative comparison on two datasets. The best and second-best results are
boldfaced and underlined, respectively.

Type Method SPS NKS
PSNR SSIM PSNR SSIM

Filtering GF [9] 25.33 0.65 28.15 0.83
Filtering RGF [34] 25.86 0.64 32.56 0.91

Regularization L0GM [11] 25.48 0.78 28.32 0.90
Regularization RTV [12] 26.89 0.82 30.69 0.90
Regularization SDF [35] 27.06 0.80 33.17 0.89
Regularization ILS [13] 25.46 0.62 31.50 0.81

Non-local PNLS [16] 25.43 0.66 33.20 0.92
Non-local ISO [17] 27.10 0.81 33.25 0.95

DNN DEAF [18] 27.36 0.82 30.45 0.90
DNN DRF [19] 27.01 0.79 30.02 0.88
DNN ResNet [22] 29.84 0.88 33.24 0.92
DNN JESSNet [23] 31.73 0.92 34.24 0.94
DNN SASNet [3] 33.18 0.94 34.75 0.95
DNN MGPNet 34.26 0.95 35.55 0.95

TABLE II: Number of parameters and number of FLOPs of different DNNs in processing
a 512× 384 image. The lowest values are boldfaced.

Method ResNet JESSNet SASNet MGPNet

#Params (M) 1.97 3.42 2.17 3.72
#FLOPs (G) 387.5 672.0 209.1 92.1

plain ones used in the standard U-Net [36], respectively; and
(ii) removing the multi-scale design of MSFB. In addition,
we verify the effectiveness of GPB by only using its local
branch or only using its global branch. We increase the channel
number to make the model size of these resulting variants
of MGPNet close to the original one. See Table III for the
results. We can see that each of our design element has a
noticeable performance contribution. For instance, a PSNR
gain of 1.12dB is achieved by the multi-scale design of MSFB.
Without the local or global branches in the GPB modules, there
is a PSNR drop of 0.66dB and 0.30dB, respectively.

TABLE III: Effectiveness of different components of MGPNet on SPS test dataset. The
terms C, L, G respectively denote the utilization of the complete GPB, solely the local
branch of GPB, and solely the global branch of GPB. The best results are boldfaced.

EB DB MSFB GPB PSNR #Params
C / L / G (dB) (M)

Plain Plain w/ MS C 33.69 3.713
Plain Proposed w/ MS C 33.86 3.719

Proposed Plain w/ MS C 33.37 3.717
Proposed Proposed wo/ MS C 33.14 3.717
Proposed Proposed w/ MS L 33.96 3.696
Proposed Proposed w/ MS G 33.60 3.696
Proposed Proposed w/ MS C 34.26 3.723

IV. CONCLUSION

The paper proposed an efficient DNN for image smoothing,
which integrates a multi-scale fusion architecture with multiple
global processing blocks. The experimental results have shown
that our proposed DNN enjoys not only superior performance
in both quantitative and visual comparison, but also high
computational efficiency. However, the size of our model is
slightly larger compared to other models, though it has a small
number of FLOPs. In future, we will investigate models with
higher compactness.
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