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Text-Guided Portrait Image Matting
Yong Xu, Xin Yao, Baoling Liu, Yuhui Quan, and Hui Ji

Abstract—Image matting is a technique used to separate the
foreground of an image from the background, which estimates
an alpha matte that indicates pixel-wise degree of transparency.
To precisely extract target objects and address the ambiguity of
solutions in image matting, many existing approaches employ a
trimap or background image provided by the user as additional
input to guide the matting process. This paper introduces a novel
matting paradigm termed text-guided image matting, utilizing a
textual description of the foreground object as a guiding element.
In contrast to trimap or background-based methods, text-guided
matting offers a user-friendly interface, providing semantic clues
for the objects of interest. Moreover, it facilitates batch processing
across multiple frames featuring the same objects of interest. The
proposed text-guided matting approach is implemented through a
deep neural network comprising three-stage cross-modal feature
fusion and two-step alpha matte prediction. Experimental results
on portrait matting demonstrate the competitive performance of
our text-guided approach compared to existing trimap-based and
background-based methods.

Impact Statement—This paper proposes a new approach to
image matting, termed text-guided image matting. Departing
from conventional guidance-based methods, text-guided matting
relies solely on concise textual descriptions of the foreground
object for guidance. It provides semantic insights and facilitates
efficient batch processing of multiple frames with identical ob-
jects. The deep neural network developed for this purpose shows
competitive performance in portrait matting, outperforming tra-
ditional trimap-based or background-based methods. This work
marks a significant step towards more intelligent image matting
solutions, enhancing user-friendliness through the integration of
semantically-driven artificial intelligence.

Index Terms—Image Matting, Cross-modal Learning, Atten-
tion, Text Gudiance.

I. INTRODUCTION

Image matting is an important tool in the realm of multime-
dia, with a broad spectrum of applications ranging from image
editing and image fusion to digital art creation and filmmaking;
see e.g. [37], [39]. In image matting, an image Ī is modeled
as the composite of a foreground F and a background B:

Ī = α⊙ F + (1−α)⊙B, α(i) ∈ [0, 1], (1)

where α, the so-called alpha matte, represents the opacity of
the foreground intensity at each pixel. The symbol ⊙ denotes
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Fig. 1. Illustration of text-guided matting and other matting paradigms.

the operation of element-wise multiplication. The main task of
image matting is about extracting both the foreground and the
alpha matte from an input image. This extracted information
is instrumental in the synthesis of new, natural images against
varying backgrounds.

Image matting is a complex and inherently ill-posed prob-
lem, presenting significant solution ambiguity as it requires
estimating three unknowns at each pixel. To address this
ambiguity, many existing methods necessitate additional input
for guidance. For instance, a wide range of studies employ a
user-annotated trimap (i.e., a binary image with three regions:
foreground, background, and unknown) for guidance; see
e.g. [2]–[4], [12], [19], [29], [31], [34], [38], [40], [41], [45],
[48]–[50], [53], [54], [56], [57], [66], [67]. To lessen the
burden on the user, some recent works utilize a captured
background image for guidance [26], [44], [58]. However,
these methods can be labor-intensive, particularly in batch
processing like video matting, due to the demands for ex-
tensive annotation or data acquisition. Moreover, background-
based matting often has usability limitations, requiring spe-
cific hardware or user skills for capturing consistently lit,
well-aligned images. Guidance-free matting (e.g. [21], [64])
attempts to circumvent these challenges, where no additional
guidance information is introduced. However, this guidance-
free approach is substantially more difficult, and existing
attempts have not yet reached satisfactory performance levels.
Also it cannot specify particular objects of interest.

Addressing the limitations of existing methods, this paper
develops a novel image matting paradigm, termed text-guided
image matting. This method leverages concise textual descrip-
tions of the object of interest to guide the matting process.
Essentially, it automates the creation of the alpha matte based
on these verbose textual descriptions; refer to Fig. 1 for an
illustration comparing this new matting paradigm with others.
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Fig. 2. Illustration of basic procedure of proposed text-guided matting.

This new paradigm achieves an ideal equilibrium between
user-friendliness and performance. It exceeds trimap-based
or background-based matting in ease of use, while requiring
minimal additional effort compared to guidance-free matting.

The proposed text-guided matting paradigm offers several
practical advantages. First, it facilitates natural and descriptive
expression of objects of interest. Second, textual descriptions
offer semantic matting cues that could provide more guidance
than auxiliary images. For instance, the description “with long
brown hair” aids in recognizing both color and shape for
alpha matte prediction. Third, images on websites and social
media often come with captions, which enables automatic
text description generation, or at least a simplified process
through advanced image captioning tools (e.g. [7]). Fourth,
text descriptions can be reused across multiple image frames,
eliminating the need for frame-by-frame annotation in batch
processing. Lastly, the integration of speech recognition paves
the way for hands-free operation in text-guided matting,
offering potential applications in smart speakers and other
intelligent devices.

However, to realize the advantages mentioned above, text-
guided image matting poses greater challenges than trimap-
based or background-based methods. This is because a tex-
tual description offers much weaker constraints on an object
compared to a trimap or a background image. Addition-
ally, text-guided image matting is a cross-modal problem,
as textual descriptions and images are inherently different
modalities. The primary challenge in this cross-modal context
is to effectively fuse data from both modalities and extract
sufficient information about the object’s alpha matte from its
textual description. In this paper, we address this challenge by
designing a specific deep neural network (NN) to tackle such
a challenge, as outlined in Fig. 2.

In the proposed NN, the first part focuses on extracting
cross-modal information through feature fusion and attention
mechanisms. This includes three key components designed to
maximize the guidance from text descriptions: multi-level fea-
ture fusion, cross-modal self-attention, and linguistics-driven
channel attention. The second part of the NN is dedicated to
predicting the alpha matte in two stages. Initially, it employs
the fused features to estimate an alpha matte that signifies
the foreground referenced by the text description, providing a
rough outline of alpha values. Subsequently, this alpha matte
undergoes refinement to further improve its accuracy. See
below for a summary of the contributions of this paper.

• We introduce a novel image matting paradigm that uti-
lizes text-based cross-modal guidance, offering a user-
friendly interface while maintaining competitive perfor-
mance compared to traditional guidance-based methods.

• We develop a deep NN for text-guided image matting,
comprising three-stage cross-modal feature fusion and
two-step alpha matte prediction to efficiently leverage
cross-modal guidance from textual descriptions.

• Building upon the foundation of established image mat-
ting datasets, we have augmented these collections with
textual annotations, facilitating future research of deep
learning for text-guided matting.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the proposed text-
guided image matting approach. Section IV reports the exper-
imental results. Section V concludes this paper.

II. RELATED WORK

Image matting has been extensively studied in the past.
Most methods introduced constraints or external guidance on
objects or backgrounds. Earlier work often used a green/blue-
screen environment [47] to simplify the problem by focusing
on uniformly colored backgrounds. For more complex back-
grounds, many studies have adopted a trimap or scribbles [20]
as guidance for solving the problem. There are two main
types of trimap-based methods: affinity-based and sampling-
based; see [68] for a comprehensive survey. Affinity-based
methods (e.g. [6], [20]) compute the affinity matrix from the
input image and then propagate the alpha values from known
areas to unknown areas in the trimap via this affinity matrix.
Sampling-based methods (e.g. [14]–[16], [51], [53]) estimate
the color of unknown areas of foregrounds and backgrounds
respectively by sampling the color of known areas, and then
estimate the alpha matte via (1). Li et al. [24] leveraged
manifold learning to combine these two types of methods for
further performance improvement.

The aforementioned methods are constrained by handcrafted
priors on the alpha matte, limiting their versatility in practice.
Recently, deep NNs have been increasingly employed for
image matting, which learn matting priors from extensive
datasets. Xu et al. [57] proposed an end-to-end NN for image
matting, together with a benchmark dataset. Wang et al. [54]
utilized deep features to enhance traditional Laplacian matting.
Tang et al. [50] developed two NNs for background and
foreground sampling, followed by matting. Lu et al. [34]
proposed an index-guided U-shaped NN for matting. Hou et
al. [12] employed two NN-based encoders to extract local
and global information respectively. Cai et al. [4] separated
matting into trimap adaptation and alpha estimation using two
NNs. Qiao et al. [41] applied spatial-channel attention for
edge and shape enhancement. Liu et al. [29] leveraged coarse
annotations from segmentation datasets for weakly-supervised
learning. Zhou et al. [67] designed an attention transfer module
to minimize artifacts in the matte. Liu et al. [31] focused on
information alignment for fine-grained image detail recovery.
Zheng et al. [66] redefined matting as a Gaussian process,
improving training efficiency with neighbor pixel pairs. Cai et
al. [3] and Park et al. [38] employed transformer-based NNs,
redefining trimap input as learnable tri-tokens to integrate
trimap information into deep image features.

Recently, there is an increasing interest on non-trimap-based
schemes for image matting [26], [44], [55], [63]. Rather than
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use a trimap, the mask-guided matting proposed by Yu et
al. [63] uses coarse binary masks for image matting, which
is done by a progressive refinement NN. Ding et al. [11]
replaced the trimap input with several user clicks, providing
a versatile and user-friendly manner. The background matting
proposed by Sengupta et al. [44] uses a captured background
for guidance and trained an NN with an adversarial loss for
better adaption to real data. Lin et al. [26] proposed a coarse-
to-fine NN to accelerate background matting for real-time
applications, with a small NN to predict an error map for
guiding the refinement of alpha matte. Based on untrained
NN priors, Xu et al. [58] an unsupervised learning approach
to background matting, which requires training two NNs on
each test image. Background matting is vulnerable to possible
misalignment and illumination changes between the observed
image and the background, which often occur in practice.

There are also some attempts on developing image mat-
ting methods without external guidance. Zhang et al. [64]
introduced some form of self-guidance by training two NN-
based decoders for foreground and background classification.
Li et al. [21] proposed to automatically generate a trimap
via an attentive NN. In comparison to the trimap/background-
based ones, these guidance-free methods are inapplicable to
target-specific matting for the image with multiple foreground
objects, due to the lack of guidance.

The user interface of our proposed text-guided image mat-
ting is akin to the so-called ”referring image segmentation”
(RIS) introduced by Hu et al. [13], designed to segment
objects from an image based on natural language descriptions.
Ding et al. [8] further enhanced this by incorporating clicks,
offering additional cues alongside text for more precise object
localization. In [13], visual features and linguistic features
are encoded via a convolutional NN (CNN) and a recurrent
NN (RNN), respectively. These features are fused via 1 × 1
convolution and passed to another CNN for segmentation mask
prediction. Liu et al. [28] suggested initially merging visual
features with the linguistic features of each word, followed
by encoding the fused word-wise features using long short-
term memory (LSTM) units. Ye et al. [59] introduced a
dual convolutional LSTM network for further performance
improvement. Li et al. [23] diverged from treating individual
word features as RNN units, instead of focusing on refining
multi-level visual features recurrently. Parallel to our work,
Li et al. [22] have also explored referring image matting, with
a focus on dataset development.

Although image matting and segmentation seem closely
related, they diverge notably in their characteristics and
methodologies. Foreground segmentation generally involves
predicting a binary mask with 0/1 values to identify foreground
objects. In contrast, image matting entails estimating an alpha
matte with continuous values, which captures both the object’s
location and its varying transparency. This added intricacy
renders image matting a more complex task than segmentation,
especially when dealing with semi-transparent areas. Conse-
quently, the efficient integration of both low-level and high-
level features is crucial in image matting. This integration is a
central consideration in our design of the NN for text-guided
image matting. Specifically, our NN incorporates a three-stage

cross-modal feature fusion scheme and features a two-step
process to precisely predict a continuous-valued alpha matte.
The first step roughly delineates the locations and transparency
of foreground objects, leveraging RIS data for augmentation.
The following step is dedicated to refining the alpha matte,
thereby achieving improved accuracy.

In the design of NN for cross-modal feature fusion, attention
mechanisms have been extensively utilized in various cross-
modal tasks including RIS (e.g., [1], [18], [30], [35], [65]).
Yu et al. [61] and Luo et al. [36] adopted a two-stage method:
initially detecting candidate instances in an image to simulate
attention, followed by isolating the target instance as directed
by the text description. Shi et al. [46] employed self-attention
to assess the significance of each word for every pixel, fusing
such information through a weighted mean. Ye et al. [60]
implemented self-attention in their fusion process with multi-
level visual features. Chen et al. [5] utilized spatial attention to
enhance the quality of fused features. Ding et al. [9] leveraged
a transformer to extract more contextual information.

III. METHODOLOGY

Our proposed NN for text-guided image matting is illus-
trated in Fig. 3. It comprises two main components: (i) a
three-stage cross-modal feature fusion, which integrates the
text description of the object of interest into the feature rep-
resentation, and (ii) a two-step alpha matte prediction process
that initially predicts the alpha matte using the fused features
and subsequently refines it for further accuracy improvement.

A. Cross-Modal Feature Fusion and Attention

The NN’s input includes an image of size H × W × C
and a text description consisting of N words. Initially, the
NN utilizes an image encoder and a text encoder to embed
input elements into a latent space, enabling the fusion of
visual and linguistic semantics. The image encoder, defined
as a CNN featuring down-sampling layers, converts the image
into a feature tensor. The text encoder applies word embed-
ding to the text description and then channels the resulting
N word vectors through the gated recurrent units (GRU).
Consequently, the text description is transformed into to N
linguistic feature vectors, denoted by {pn}Nn=1, encoding the
contextual information of the words. To effectively utilize the
guidance from the text description, we implement a three-stage
attention strategy to fuse the features, specifically designed for
the matting process.

1) Multi-level feature fusion: Linguistic and visual features
are initially fused in the first stage as follows. The NN
aggregates the linguistic features {pn}Nn=1 into a single feature
vector b using a fully-connected (FC) layer. The vector b is
then mapped to a vector b0 ∈ Rc via another FC layer. To
align the vision and linguistics domains, the feature tensor
from the image encoder is converted to X0 ∈ Rh×w×c via a
convolutional layer and then element-wisely multiplied with
b0 along the channel dimension. It is a common strategy in
multi-modal fusion [33].

Considering the varying scales of information within the
intermediate feature tensors produced by the image encoder,
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Fig. 3. Architecture of proposed NN for text-guided image matting.

we also incorporate feature tensors from the last two down-
sampling layers for fusion. These tensors are similarly trans-
formed into X1 ∈ Rh×w×c and X2 ∈ Rh×w×c via convo-
lutional layers. Each feature tensor Xj at the current scale is
combined with the preceding scale’s tensor Xj−1 through con-
catenation and 1× 1 convolution. Concurrently, the linguistic
feature v is transformed to corresponding vectors b1, b2 ∈ Rc

using FC layers for fusion. Finally, a fused feature tensor
Y ∈ Rh×w×c is generated, encapsulating context information
from the text description and different levels.

2) Cross-modality self-attention-based fusion: This stage
focuses on exploiting the spatial dependencies and interactions
between visual and linguistic features. To accomplish this,
multi-head self-attention (MHSA) [52] is initially applied
separately to the visual features Y and the linguistic features
{wi}Ni=1. Then, these features are utilized in a cross-modal
fashion to enhance the interaction between the two modalities.

Self-attention relates different positions of a sequence to
create another representation of the sequence. It processes
each input through three FC layers, yielding sets of keys,
queries, and values stored as K = [k1, · · · ,kL] ∈ RL×d,
Q = [q1, · · · , qL] ∈ RL×d, and V = [v1, · · · ,vL] ∈ RL×d

respectively, where L and d denote the number and dimension
respectively for keys/queries/values. The output of the self-
attention is then calculated as:

SA(Q,K,V ) = softmax
(QK⊤

√
d

)
V . (2)

Subsequently, MHSA is employed to obtain varied represen-
tations of (Q,K,V ), computes self-attention for each, and
concatenates the results. MHSA is defined as follows:

MHSA(Q,K,V ) = [Head1, · · · ,HeadM ]W O, (3)

where Headm = SA(QW Q
m,QW K

m,QW V
m)

with learnable weight matrices {W Q
m}m, {W K

m}m, {W V
m}m,

for 1 ≤ m ≤ M and W O. For further improvement on
training efficiency, a typical MHSA block sequentially attaches

a residual addition, a layer normalization, a feed forward layer
(i.e., a stack of two FC layers) and a layer normalization after
the MHSA, which is also implemented in the proposed NN.

For the feature tensor Y , it is flattened into a second-order
tensor y ∈ Rhw×c. Each row y(i, :) ∈ Rc is treated as a
sequence, and this sequence is fed to an MHSA block, yielding
new features zi ∈ Rc for each i. Regarding the linguistic
features {pn}Nn=1, each pn is first transformed to a feature
vector of length c. This sequence is then processed by an
MHSA block, producing new features rn ∈ Rc for each n.
Position encoding [52] is also applied to the input of MHSA
to improve their awareness to relative locations during self-
attention.

To facilitate cross-modal interactions, we initially em-
ploy {zi}i to generate the pair (key, value), denoted by
(KImage,V Image), and use {rn}n to generate the queries
denoted by QText. The cross-modal MHSA for {rn}n is then
executed using a modified self-attention that follows [9], [10]:

SAText
Image = SA(QText,KImage,V Image). (4)

The outputs from this cross-modal MHSA are denoted {r′n}n.
Similarly, {r′n}n is used to create the pairs (key, value)
denoted by (KText,V Text), and use {zi}i to create the queries
denoted by QImage. The cross-modal MHSA on {zi}i is then
with a modified self-attention:

SAImage
Text = SA(QImage,KText,V Text). (5)

The results of this cross-modal MHSA are denoted as {z′
n}n.

In essence, visual features and linguistic features alternatively
guide the self-attention mechanism for each other. This ap-
proach effectively utilizes textual guidance to have feature
representation with best quality.

3) Linguistics-driven channel attention: In the previous
stage, the fusion mainly targets spatial dimensions. For fur-
ther performance improvement, we integrate guidance from
linguistic features through a channel attention driven by these
features. Note that deep feature maps of an image correlate
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differently with the object of interest. For instance, curvy
features may be more closely related to curly hair compared
to straight features. Hence, linguistic features can effectively
select relevant feature maps. This selection process is achieved
via channel attention. Specifically, the linguistic features are
fed into an FC layer with a Sigmoid activation function. The
output is reshaped to generate the weights for adjusting the
significance of each channel in the visual features. Afterward,
these reshaped re-calibrated features are fed to the subsequent
modules for predicting the alpha matte.

B. Alpha Matte Prediction
With the fused feature tensor in hand, it is input into a

decoder implemented via a CNN with up-sampling layers. This
decoder generates an initial estimate of the alpha matte, de-
noted as α0. While this estimate effectively localizes the target
object, its accuracy in representing opacity values might be
compromised due to potential information loss during feature
fusion. To counter this, we introduce a second CNN dedicated
to refining the alpha matte estimate. This refinement CNN
uses a combination of the initial alpha matte and the original
image as input, producing another alpha matte α1 that is more
aligned with the input image. The input text description is re-
engaged as channel attention for the intermediate features. The
original text features are converted into attention weights using
a FC layer and then applied to the feature maps. Empirically,
this channel attention offers a moderate improvement since the
text description generally only contains limited information
about detailed optical transparency.

C. Training and Inference
Recall that our NN generates two alpha matte estimates: α0

and α1. Given a ground-truth alpha matte αgt, the training loss
is defined for both α0 and α1 as follows:

Lpredict := ∥α0 −αgt∥1 + λ∥α1 −αgt∥1, λ ∈ R+. (6)

Furthermore, we utilize an RIS dataset to create an auxil-
iary task, aiming at improving the learning of rough alpha
matte prediction. This scheme mitigates possible over-fitting,
especially when the number of training samples for text-
driven matting is limited. Let βgt denote the ground-truth
segmentation mask corresponding to a pair of an image and
a text description. We then define the auxiliary training loss
using cross-entropy as follows:

Laux := −
∑
i

βgt logβ1(i)+(1−βgt(i)) log (1− β1(i)), (7)

where β1 denotes the binary version of α1, obtained by
applying a threshold of 0.5. Essentially, we anticipate that
the initial alpha matte prediction will accurately localize the
objects of interest, aligning with the ground-truth segmentation
mask. The total loss is then given by

L := Lpredict + γLaux, γ ∈ R+. (8)

During inference, an image and a corresponding text de-
scription of the target of interest are input into the NN, from
which we derive an alpha matte. Subsequently, the foreground
is extracted using a multiplication-based method, a common
approach in existing literature such as [25], [34], [57].

IV. EXPERIMENTS

A. Training Data and Implementation Details

The proposed method is evaluated on portrait matting. Since
no public dataset for text-guided portrait matting exists, we
constructed a training dataset by combining samples from
three existing related datasets listed below. (i) SC (synthetic-
composite) Adobe dataset [57]: From this popular matting
dataset, we select 269 portrait foregrounds of 431 general
foregrounds. As this dataset does not provide text descriptions,
we generate a text description for each foreground object using
an autonomous image captioning tool [7], followed by re-
organization and manual corrections for low-quality captions.
See Fig. 4 as well as supplemental material for some examples
of these text annotations. During training, we composited
input images from two different portrait foregrounds and one
background, using one portrait’s description to predict its alpha
matte. (ii) Human2K dataset [32]: This large-scale portrait im-
age matting dataset includes 2000 distinct foreground portraits.
Similar to the procedure for processing SC Adobe dataset, we
annotated text descriptions and composited training images.
(iii) RefCOCO RIS dataset [62]: Used solely for auxiliary
training loss Laux, it features 19,994 images with 142,209
referring expressions for 50,000 objects (humans and non-
humans), including ground-truth binary segmentation masks.
For each image in training, one object and its description were
randomly selected as input. All the training/test data will be
released together with the code for re-producible research upon
the paper’s acceptance.

In all the experiments, the parameters λ, γ in the train-
ing loss are set to 1 and 0.5, respectively. We employ the
DarkNet [43] as the image encoder, the Tok2Vec function
provided by the spaCy library as the text encoder, and the
MaskNet [63] as the NN for refining the alpha matte. The
pre-trained models of DarkNet and MaskNet are utilized
for initialization. The entire NN is trained using the Adam
optimizer with a learning rate of 10−4 over 50 epochs. For ease
of reference, we name the proposed method TIM (Text-based
Image Matting). Four quantitative metrics are employed for
performance evaluation: SAD (Sum of Absolute Differences),
MSE (Mean of Squared Error), Grad (Gradient) and Conn
(Connectivity). These metrics are calculated by comparing the
estimated alpha mattes with the ground-truth mattes at their
original sizes.

B. Evaluation on SC Adobe Dataset

We assessed the performance of our trained TIM model
on the test set of the SC Adobe dataset. In line with the
methodology in [57], we chose 11 portrait foregrounds from
the test set and combined them with 20 randomly selected
backgrounds, yielding a total of 220 test images. The text
descriptions for these images were generated in the same
manner as for the training data, as detailed in Section IV-A.

Since text-guided image matting is a new topic, there
are no methods of this topic for comparison. To ensure a
comprehensive evaluation, we selected various methods for
comparison: (i) IM [34] and GCA [25], two prominent trimap-
based methods that use a pair of image and trimap as input; (ii)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
(a) “a woman with glasses and flowing hair holding a cup of coffee”
(b) “a man wearing glasses with a black hair”
(c) “an old man wearing a Santa hat”
(d) “a beautiful woman with roses on her long hair”
(e) “a young woman with black hair and white shirt”
(f) “a woman with white hair wearing black shirt”
(g) “a woman in a white dress with wings”
(h) “a woman in pink with big hair seeing her cell phone”
(i) “a woman in a blue dress holding a blue dress”
(j) “a children in golden hair and blue shirt” (k) “a girl with a ponytail”
(l) “a brown-curly-haired woman in a denim jacket”

Fig. 4. Examples of our text annotations and corresponding foreground
images (combined with background images to form training samples).

TABLE I
EVALUATION ON PORTRAIT IMAGES OF SC ADOBE DATASET. THE BEST

(SECOND BEST) RESULTS ARE BOLDFACED (UNDERLINED).

Method Input SAD MSE Grad Conn

IM [34] Trimap 13.86 0.0015 7.91 12.70
GCA [25] Trimap 12.49 0.0021 4.53 10.83
DMP [58] Background 15.63 0.0017 15.05 13.68

BGMv2 [26] Background 16.46 0.0019 11.86 14.82
MGM [63] Mask 13.35 0.0007 4.40 7.74

C2F [42] Mask 16.13 0.0027 16.73 19.27
LF [64] Free 25.90 0.0030 11.50 19.94

AIM [21] Free 181.66 0.0684 66.65 181.69
MODNet [17] Free 79.60 0.0233 33.30 78.26

VLT [9] Text 149.69 0.0405 58.41 147.95
TIM [Ours] Text 14.34 0.0009 4.47 8.70

DMP [58] and BGMv2 [26], two background-based methods
requiring a pair of image and background as input; (iii)
MGM [63] and C2F [42], two mask-based methods that utilize
the foreground regions of trimaps provided by the dataset as
masks;1 (iv) LF [64], AIM [21] and MODNet [17], three
guidance-free methods that only requires an image; and (v)
VLT [9], an RIS method we adapted for our task by fine-
tuning its published pre-trained model with our image matting
training data (including our text annotations), using the cross-
entropy loss (instead of ℓ1 loss for optimal results). For all

1Originally designed for video matting, C2F takes a rough mask and a video
frame as input. For image matting, we adapt it to process a single frame, using
binarization on the ground-truth alpha matte for a suitable mask.

TABLE II
EVALUATION ON PORTRAIT IMAGES OF HUMAN2K DATASET.

Method Input SAD MSE Grad Conn

IM [34] Trimap 9.69 0.0006 10.56 9.04
GCA [25] Trimap 5.55 0.0002 3.45 4.36

TIMINet [32] Trimap 4.76 0.0002 2.37 3.24
MGM [63] Mask 10.26 0.0004 5.37 5.92

C2F [42] Mask 21.62 0.0013 24.41 15.12
LF [64] Free 38.68 0.0041 33.82 32.62

AIM [21] Free 193.87 0.0429 82.00 192.73
VLT [9] Text 173.47 0.0223 96.02 168.51

TIM Text 11.08 0.0006 6.01 7.02

trimap-based and mask-based models, whenever feasible, we
re-trained them using our portrait data constructed from Adobe
and Human2K datasets for a fair comparison. For further
performance improvement, their published pre-trained models
were used for initialization.

The quantitative results are listed in Table I for performance
comparison of different methods. Notably, TIM’s performance
is second-best in all metrics except SAD, closely trailing
the top performer, MGM, which is a mask-guided method
utilizing a well-annotated trimap’s foreground area as the input
mask. This outcome is understandable considering that TIM
relies on a brief text description rather than a precise mask.
Nevertheless, TIM outperforms another mask-based method,
C2F, as well as various trimap-based, background-based, and
the guidance-free ones, in three metrics. When compared to
VLT, TIM demonstrates significantly better results. This is
attributed to the harder challenge of text-guided image matting,
which demands precise alpha matte estimation, a task more
complex than RIS.

These results highlight the feasibility and superior perfor-
mance of text-guided image matting. Visual examples shown
in Fig. 5 also demonstrate TIM’s effectiveness, not only in
correctly identifying the subject in the first sample but also in
capturing semi-transparent parts with rich details, as evidenced
in all three samples.

C. Evaluation on Human2K Dataset

TIM’s performance is also evaluated on the Human2K
test set, which contains 100 different portrait foregrounds.
We utilized the 2000 evaluation images provided by [32],
composed of these 100 portrait foregrounds and 20 randomly
chosen backgrounds. The text descriptions were generated
similarly to the training data, as outlined in Section IV-A.
For comparison, we used most of the methods from the
previous subsection, including IM [34], GCA [25], MGM [63],
C2F [42], LF [64], AIM [21] and VLT [9]. In addition, we
quote the results of TIMINet [32] for comparison. Background
matting methods were excluded as the Human2K test set does
not provide backgrounds. For a fair comparison, all models
pre-trained on the SC Adobe training set were fine-tuned using
our constructed portrait matting dataset.

See Table II for the quantitative results. The trimap-based
methods perform quite well, largely due to the high accuracy
of trimaps in the test set; see e.g. the second column in Fig. 6
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Image Trimap IM MGM BGMv2 LF TIM [Ours] Ground Truth

Fig. 5. Alpha mattes predicted by different methods on images from SC Adobe dataset. Descriptions for each row, from top to bottom are “a woman in
white bathrobe blowing her long hair”, “a woman with a wedding dress”, and “a girl with red hair”, respectively.

Image Trimap IM MGM AIM LF TIM [Ours] Ground Truth

Fig. 6. Alpha mattes predicted by different methods on images from Human2K dataset. Description for each row, from top to bottom are ”a cute little girl
wearing glasses pointing”, ”a beautiful brunette woman with curly hair”, and ”a young woman posing with long curly hair”, respectively.

versus that in Fig. 5. The trimap-based methods assume the
trimaps are accurate and directly project known areas into final
results, making it challenging for mask-guided methods like
MGM, and TIM to surpass trimap-based methods when trimap
quality is high. Although TIM’s performance trails MGM,
it is comparable to or even surpasses IM, a trimap-based
method, and significantly outperforms C2F, another mask-
guided method. This demonstrated the effectiveness of TIM in
utilizing text guidance for high-quality alpha matte prediction.
Compared to guidance-free methods like LF and AIM, TIM
shows superior performance, balancing better results with
greater user-friendliness than obtaining trimaps. TIM also
notably outperforms VLT. See Fig. 6 for some visual results,
where AIM includes non-portrait regions into the alpha mattes.
In contrast, TIM accurately captures targets with richer details,
showing competitive accuracy compared to IM and MGM.

TABLE III
RESULTS OF ABLATION STUDIES.

TIM SC Adobe dataset Human2K dataset

SAD MSE Grad Conn SAD MSE Grad Conn

Original 14.34 .0009 4.47 8.70 11.08 .0006 6.01 7.02
w/o MLFF 16.52 .0016 4.62 10.92 12.74 .0008 6.50 8.24
SLFF 15.74 .0014 4.56 9.87 12.19 .0007 6.23 7.71
w/o CMSA 15.96 .0013 4.81 10.38 13.01 .0009 6.69 8.57
w/o LDCA 18.15 .0018 5.15 12.81 12.71 .0008 6.34 8.15
w/o Refine 82.48 .0137 47.78 70.71 99.67 .0115 82.72 90.77
w/o Laux 21.45 .0023 7.89 15.61 17.24 .0016 9.49 10.22

D. Evaluation on Real-World Data

The generalization performance of TIM was assessed on
some real portrait images sourced from the Internet. We
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Image LF AIM MODNet IM-1 IM-2 TIM via D1 TIM via D2

Fig. 7. Comparison of matting results from different methods on real-world images (cropped and resized for clarity) featuring multiple people. Each sample
uses two descriptions D1 and D2. First image: D1 is “a woman on right in a wedding dress” and D2 is “a man on the left”. Second image: D1 is ”the
man on the far right in a blue suit.” and D2 is “the man on the far left”. Third image: D1 is ”the woman on the right” and D2 is “the woman on the left”.
Trimap inputs for IM are provided in the supplemental material.

Image Patch LF AIM MODNet TIM

Fig. 8. Comparison of matting results of different methods on real images of single human subject. First image: “the girl with earrings”. Second image:
”the naked man”. Third image: ”a man with white clothes”.

collect 20 images from Google, each of which contains one
or multiple people. The text descriptions are annotated by
the same way as that in Section IV-A. Fig. 7 displayed the
results. For images with multiple persons, we annotated two
descriptions for different individuals, as noted in the figure
captions, and computed the results separately. The extracted
foreground and alpha matte were then combined with a green
background, offering an alternative accuracy check.

TIM consistently identifies the correct target with precise
details, outperforming guidance-free methods that often fail to
distinguish the intended subject. For instance, most methods
wrongly include all individuals in the second image, while
only MODNet responds to the first and third images. TIM,

however, accurately captures the designated person in all sam-
ples, including semi-transparent elements like the headdress
in the first image and the hair in the third image. Additional
testing was conducted using real images with single subjects
from the internet. Fig. 8 illustrates these results, where TIM
shows competitive performance.

E. Ablation Studies

Recall that there are three stages of the text-guided fea-
ture fusion in TIM. To evaluate the effectiveness of each
stage, we established three baselines: “w/o MLFF (multi-level
feature fusion)”, “w/o CMSA (cross-modality self-attention-
based fusion)” and “w/o LDCA (linguistics-driven channel
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Fig. 9. Visual inspection of results in ablation studies.

attention)”. Additionally, we created three more baselines for
further analysis: ”SLFF (single-level feature fusion)”, ”w/o
Laux” and “w/o Refine”. In setting up these baselines, we
increased the channel number of the image encoder to ensure
the baseline models are comparable in size to the original TIM
for a fair comparison.

The baselines are defined as follows. (i) w/o MLFF: Multi-
level feature fusion is substituted by up-sampling and convolv-
ing the image encoder’s final output features (for dimension
consistency) without including the linguistic features from the
text encoder; (ii) SLFF: This baseline further modifies the
previous one by fusing linguistic features from the text encoder
using an FC+Tanh layer; (iii) w/o CMSA: Cross-modality self-
attention-based fusion is omitted, and the output from the
preceding stage is fed directly to the subsequent stage; (iv) w/o
LDCA: Linguistics-driven channel attention is removed, and
the output of the preceding stage is passed straight to the alpha
matte prediction module; (v) w/o Laux: The auxiliary loss is
disabled, and consequently, training data from the RefCOCO
RIS dataset is not utilized; and (vi) w/o Refine: The alpha
matte refinement module is excluded, and the output from the
alpha matte decoder is taken as the final result.

(a) (b) (c) (d) (e) (f)

Fig. 10. Visualization of feature maps output at different modules. (a) Input
image with text ”man on the left”; (b) image encoder output; (c) MLFF output
; (d) CMSA output; (e) LDCA output. (f) Coarsest scale feature map from
refinement step..

See Table III for the baseline results. Each of the three
stages in the text-guided feature fusion significantly enhances
quantitative performance across all four metrics. The auxiliary
task defined by Laux also plays a critical role. Given our limited
size of text-based matting training data, the loss Laux utilizes

Image Result using D1 Result using D2 Ground Truth

Fig. 11. Matting results of TIM using two different text descriptions: (D1)
“a woman with a wedding dress”; and (D2) “a female with a white veil”.

the RefCOCO dataset to counter possible over-fitting, thereby
improving the learning of text-based object localization. As
anticipated, the alpha matte refinement stage is the most im-
pactful. Without it, TIM’s performance significantly declines,
leading to the loss of many details in the predicted mattes. This
is primarily because the auxiliary training loss prompts TIM’s
first stage to concentrate on object localization with roughly
estimated alpha values, making the refinement stage essential
for achieving accurate and detailed results. See Fig. 9 for some
visual results, which demonstrate how each module enhances
qualitative performance, particularly in transparency details
and object localization. Notably, CSMA and Laux are more
crucial for accurately locating the target object. In contrast,
MLFF, LDCA and the refinement step contribute more to the
details in the predicted alpha matte. Overall, each part of TIM
is essential to its effectiveness.

To more clearly illustrate the role of each module, Fig. 10
visualizes the intermediate features generated at various stages.
It is evident that the modules do not distinctly exhibit separate
functions such as part recognition or ordering. Instead, they
collectively and progressively improve the localization of the
target portrait.

F. More Analysis

We evaluated the robustness of TIM to text descriptions. In
Fig. 11, TIM processes two distinct descriptions for the same
image separately. The results, interestingly, are remarkably
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Image Result using D1 Result using D2 Result using D3 Result using D4

Fig. 12. Matting results of TIM using different text descriptions: (D1) ”a woman”; (D2) ”a woman with long hair”; (D3) ”a woman in a white bathrobe”;
(D4) ”a man blowing his long hair”.

(a) (b) (c) (d) (e) (f) (g)

Fig. 13. Matting results of TIM on RefCOCO. The text inputs are (a) ”left woman”; (b) ”man in suit and tie”; (c) ”guy beard”; (d) ”a man on the phone”;
(e) ”a woman wearing a blue white top”; (f) ”right girl”; (g) ”a cute baby”. The text inputs are directly quoted from RefCOCO if available.

Image VLT TIM

Fig. 14. Visual results of TIM and VLT. The text input is ”African American
boy with black curly hair”.

similar and highly accurate. In Fig. 12, we further evaluate the
performance with varied and somewhat imprecise text descrip-
tions. It shows that TIM’s results are not overly sensitive to
minor inaccuracies in descriptions. Additionally, Fig. 13 shows
the results of TIM on the samples of the RefCOCO dataset,
demonstrating its effectiveness even with cross-dataset images
and text descriptions.

Text-guided matting bears resemblance to RIS. Fig. 14
shows a comparison between the results of TIM and VLT [9].
VLT was initially developed for RIS and produces coarser
matting results compared to TIM. This is primarily attributed
to the absence of a refinement stage and the use of a resizing
strategy in VLT for computational feasibility. In comparison,
TIM is capable of capturing finer details.

G. Batch Processing on Video Frames

We also apply TIM to video matting. When a text descrip-
tion remains consistent through a video clip, matting can be
done with only one description. This is often the case for an
object with consistent description through a video clip. See
Fig. 15 for a demonstration on the frames from a real-word
video collected from Internet, compared to two recent video
matting methods including MODNet [17], RHVM [27] and
C2F [42]. While these three methods focus on all persons in a
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Fig. 15. Matting results on video frames. The given text description is ”the
woman on left with long hair”.

video frame, limiting their flexibility for targe-specific matting,
TIM can identify the person of interest with varying poses
in a video clip, requiring only a single text description. This
demonstrates TIM’s significant potential for video matting.

Although our TIM is designed for single-image input and
does not yet exploit temporal cues from videos, leaving room
for accuracy enhancement, TIM still delivers commendable
matting results. In Fig. 16 and Fig. 17, we present TIM’s
results on video frames from [44], featuring single persons. As
these frames include corresponding backgrounds, BGMv2 [26]
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Fig. 16. Matting results on cropped video frames. The given text description
is ”a woman with glasses and skirt”.

is also used for comparison. Even in the case of single human
subjects, the results of TIM remain competitive against other
methods.

V. CONCLUSION

This paper introduced a text-guided image matting ap-
proach, providing a novel alternative to existing paradigms
with the added benefit of semantic clues. Implemented through
a deep NN featuring cross-modal fusion and a two-step
prediction process, the proposed approach is more user-
friendly than background-based methods and more efficient
in batch processing than both trimap-based and background-
based methods, while delivering competitive performance. Its
potential for video matting is also notable.

There are several potential extensions of this paper that offer
promising practical advantages. Firstly, the focus on portrait
matting could be broadened to encompass general objects
with transparency. Secondly, there is a lot of room for further
improving the handling of real-world images through model
adaptation. Thirdly, incorporating temporal cues to boost the
accuracy of video matting represents an interesting research
problem for the advancement of video matting. Fourthly, the
development of more interpretable NNs could be instrumental
in mitigating over-fitting. Lastly, it is very promising to
merge textual semantic cues with spatial guidance from clicks,
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Fig. 17. Matting results on cropped video frames. The given text description
is ”a man with glasses”.

potentially leading to a more refined cross-modal self-attention
mechanism and improved positional embedding.
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